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The average person who evaluates the changes occurring in the status of the atmosphere nowadays 

views weather forecasting as an essential and vital procedure in daily life. Moreover, for many 

industries including mining, aviation, agriculture and energy production, weather forecasting is 

essential because it facilitates decision-making and reduces the risks associated with extreme 

weather occurrences. For effective weather decisions, making an accurate prediction of 

environmental factors is a must. Previously, various weather systems have been reported that were 

based on conventional statistical forecasting techniques; however, it was not effective on nonlinear 

data patterns because it worked on a linear correlation structure between forecasts and historical 

data. With technological advances, machine learning-based forecasting techniques are found to be 

a better solution to mapping nonlinear patterns in data than linear statistical conventional modelling 

approaches, which consequently leads to better decision-making in relation to weather prediction. 

In this article it has been explored that all those weather forecasting system devised based on deep 

learning techniques. This review has summarized the detailed analysis of the adopted techniques; 

dataset employed and obtained performance of the systems in the reviewed articles. The analysis 

presented in the articles for weather forecasting system will helps the working professional to 

choose the suitable technique for their current problem in the similar context.  

 

Keywords: Weather Forecasting, Artificial Intelligence (AI), Machine Learning (ML), Deep 

Learning (DL), Big Data Analytics, Numerical Weather Prediction (NWP), Automated Weather 

Forecasting System, Meteorological Data. 

 

 

1. Introduction 

The proper functioning of several businesses, such as agriculture, aviation, marine 

transportation, and energy generation, depends on accurate weather forecasting. Accurate 

weather forecasts may help farmers choose when to sow, water, and harvest their crops, 

increasing agricultural yields and lowering the chance of weather-related crop damage. More 
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sustainable farming methods and increased food security result from this. 

Precise weather forecasts are essential for flight planning in aviation, since they guarantee both 

crew and passenger safety. These forecasts are essential for pilots and air traffic controllers to 

avoid hazardous weather situations including thunderstorms, turbulence, and ice that might 

endanger flight safety. This leads to less fuel being used, more effective flying paths, and fewer 

delays (Salman et al. 2015) [1]. 

Accurate weather forecasting is also very beneficial to maritime traffic. Weather forecasts are 

used by shipping firms to create safer and more effective routes, steering clear of hazardous 

situations like storms and high waves. This reduces the possibility of expensive mishaps and 

delays in addition to safeguarding the lives of the crew and cargo. 

Weather forecasts are crucial to the energy generation industry, especially for renewable 

energy sources like solar and wind power, which maximize energy output. Accurate forecasts 

of solar radiation levels and wind speeds help energy businesses better balance supply and 

demand, improving grid stability and lowering dependency on fossil fuels. 

Numerical weather prediction (NWP) models are the cornerstone of conventional weather 

forecasting. These models mimic and forecast atmospheric behaviors by utilizing intricate 

mathematical formulas and information obtained from ocean-atmosphere interactions. The 

dynamic and chaotic character of weather systems presents inherent hurdles to the accuracy 

and dependability of NWP models, even with notable breakthroughs in this domain. 

Furthermore, advancements in solar energy prediction, projected to play a larger role in the 

power grid, are anticipated to result in $455 million in savings for utility companies by 2040 

(Haupt et al. 2014) [2]. The meteorological community faces an enviable problem: how to deal 

with a huge influx of mesoscale weather information, rapid improvements in numerical 

modeling  and data assimilation, and extraordinary enhancements in our ability to 

communicate graphical information and data to individuals at nearly any location (Mass et 

al.2011) [3]. Significant cost reductions can also be achieved through enhanced forecasting in 

other sustainable computational domains. Therefore, researchers and professionals like 

meteorologists are working tiredly to forecast the weather with any required accuracy. 

Optimality, the same become the objective of the present research too. 

Traditional computational intelligence techniques felt out of place when it came to producing 

precise weather forecasts in the big data era that has now arrived for weather forecasting; 

hence, artificial intelligence or machine learning has been proposed to be implemented (Gao 

& Chiu, 2012) [4]. 

Meteorological satellites are used by countries to swiftly transmit weather observations and 

revisions in today's rapid communications network, producing amazingly accurate forecasts 

(Emies & Knoche 2009) [5]. The volume of data is expanding rapidly relative to computational 

capacity, and there are various definitions of big data. According to theories, big data requires 

new technological architectures, data analysis methods, and tools to create valuable resources 

for businesses and uncover hidden insights through analytics value (Katal et al., 2014; Weyn 

et al., 2021) [6][7]. 

Because of the characteristics of big data, existing infrastructure and conventional methods 

are inadequate for managing it. Therefore, there is a need for tools capable of processing and 
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storing vast quantities of data, along with new approaches and methodologies specifically 

designed for big data analytics (Rahmani et al) [8]. 

Artificial intelligence (AI) and associated data science techniques have been created to manage 

vast amounts of data across various domains. Integrating AI methods with a scientific 

Understanding the environment can greatly improve the precision of predicting various 

factors. This approach builds upon conventional Model Output Statistics (MOS) methods 

(Glahn & Lowry, 1972) [9], which generate stochastic, nominal, and causal predictions based 

on output from Numerical Weather Prediction (NWP) models.  

AI methods employed in environmental sciences include Artificial Neural Networks (ANNs), 

decision models, evolutionary algorithms, imprecise logic, and principal component analysis 

(Allen et al., 2007) [10]. Clustering was utilized for classification of rainfall areas (Baldwin et 

al., 2005) [11]. Further clustering was employed for radar-echo classification mapping 

(Lakshmanan & Smith, 2010) [12], It was further used for storm track detection, and also was 

applied to radar image segmentation (Manross et al.) (Henry et al., 2021) [13][14]. 

Furthermore, because AI-driven models are flexible and can learn from real-time data, they 

are excellent at handling unexpected disasters and abrupt weather changes. When fresh 

information becomes available, these models iteratively update and improve their forecasts, 

increasing their efficacy under changing meteorological circumstances. Because of this 

flexibility, meteorologists and emergency personnel may quickly modify plans and distribute 

resources in response to changing weather patterns and new threats. 

Essentially, using AI and ML to weather forecasting improves operational effectiveness while 

fortifying society's resistance to hazards associated with climate change. Through increased 

precision, predictability, and flexibility in weather predictions, these technologies are vital for 

reducing the effects of extreme weather, promoting sustainable growth, and strengthening 

worldwide readiness for disasters. 

Even with major improvements, there are still a number of difficulties with weather 

forecasting. These include the standardization of meteorological data from various sources, 

the integration of hybrid models that integrate AI/ML with traditional Numerical Weather 

Prediction (NWP) methodologies, and the improvement of computer performance to handle 

the challenges of large-scale data processing. To tackle these obstacles, interdisciplinary 

cooperation, continuous investigation, and significant expenditures on state-of-the-art 

technology are necessary. 

The major problem is developing hybrid models that combine classic NWP techniques with 

AI/ML. While AI/ML methods are highly effective in identifying patterns and managing 

intricate data linkages, classical NWP models are necessary for modeling atmospheric physical 

processes. When these methods are seamlessly integrated, prediction accuracy and 

dependability may be improved across a range of weather phenomena and timescales (Henry 

et al., 2021) [14]. 

Furthermore, because meteorological data comes in a variety of forms, sizes, and sources, 

standardizing it still presents a major challenge. Improving data consistency and quality 

requires standardizing data standards and harmonizing data from satellite imaging, climate 

models, and ground-based observations. This standardization provides more comprehensive 
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and trustworthy research, enhancing prediction accuracy and enabling decision makers in 

weather-sensitive businesses. 

Enhancing computational efficiency is also essential for managing the growing amount and 

complexity of meteorological data. Increased computer power allows for faster data 

processing, model simulation, and real-time forecasting. It also makes weather forecasts 

timelier and more accessible for stakeholders and the general public (Kapucu, N. 2008) [15]. 

It will need consistent work in research, technological development, and cooperation both 

inside and beyond the meteorological community to overcome these obstacles. The working 

professionals and researchers can improve the dependability and accessibility of weather 

forecasts by tackling these challenges. As a result, society gains from improved risk 

management techniques, more informed financial planning choices, and the encouragement of 

efficient environmental stewardship measures in response to weather-related effects and 

climatic unpredictability. Customer needs and perceptions are changing at rapid pace. For 

organizations to survive, aligning to these changes with agility will be of paramount 

importance. Accurate forecasts will play a vital role to support the managers for correct 

decision making (Yerpude et al., 2017) [16]. 

Due to incorporation of AI and machine learning, accurate weather forecasting has become 

more accessible. Previously exclusive to national meteorological organizations, advanced 

forecasting systems are now affordable for small enterprises and municipal governments. At 

the local level, this democratization encourages creativity and adaptability, allowing for 

proactive remedies to weather-related issues like heatwaves, snowstorms, and droughts. 

For instance, the energy sector uses weather predictions to balance supply and demand; the 

aviation sector uses them to determine the optimum flight paths; the marine sector uses them 

to assure safe navigation; and the agriculture sector uses them to schedule planting and 

harvesting. Weather forecasting has enormous economic ramifications and has the ability to 

reduce the negative impacts of severe weather, perhaps saving millions of dollars. 

Traditionally, the cornerstone of weather forecasting has been Numerical weather prediction 

(NWP) models forecast weather patterns by utilizing statistical techniques and information 

from ocean-atmosphere interactions. These models use complex mathematical equations to 

describe the physical processes controlling the atmosphere. The environment's high degree of 

dynamic and chaos poses challenges for these traditional methodologies, even with their 

increasing use and accuracy improvements.  

The accuracy and stability of traditional NWP models are limited by factors such air 

turbulence, sudden changes in the weather, and the nonlinear nature of atmospheric events. 

The inherently unpredictable character of the weather system highlights the need for 

increasingly sophisticated and accurate forecasting techniques. 

In order to visualise the impact of AI and ML on the performance improvement of weather 

forecasting systems, the present article explored the report research work. This review of 

reported work aims to provide an extensive evaluation of the current level of AI and ML 

applications in weather forecasting. 
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2. Literature review on related work  

A number of forecasting models have been created by academics for time series forecasting in 

a variety of sectors, including power production, finance, agriculture, and industry. All these 

models or techniques use historical time series data primarily for prediction. Forecasting 

techniques based on historical data may be broadly divided into two categories: statistical 

techniques were used to construct the first, while learning approaches were used to generate 

the second. For forecasting purposes, statistical techniques including the ARIMA model, 

multiple regressions, and exponential smoothing were employed. 

When combined, these models are known as time series models for forecasting. These 

traditional estimators for worldwide predictions are the ARIMA approaches, which have been 

used in several data-driven forecasting applications by academics.  However, artificial 

intelligence (AI) models, also known as soft computing approaches, predict outcomes more 

rapidly and with less processing than these statistical time series models when compared to 

statistical techniques like ARIMA techniques. They use a variety of techniques to provide 

forecasts about solar energy. Among the techniques employed are deep learning (DL) 

frameworks, fuzzy logic (FL), genetic algorithms (GA), probabilistic models, and optimization 

techniques. These methods are further divided into four groups: DL techniques, ML 

techniques, and artificial intelligence techniques. An all-AI based model has been shown to be 

a beneficial tool for forecasting, and these approaches are employed when nonlinear data 

analysis and forecasting are involved in the problem. All of these models use the data as inputs 

to get the desired results, including: 

Gore and Gawali (2023) [17] analysed the weather forecasting using machine learning 

algorithms. For the research data has been provided by The Indian Metrological Department 

(IMD) in Pune, Maharashtra, India. Using machine learning techniques, author have 

developed a forecasting system for the Marathwada region. In terms of mean and highest 

temperatures, average and least temperature, entirety month of rainfall, substantial 

precipitation in the month, the number of rainy days, average wind speed, average station and 

sea level pressure, and relative humidity, author have obtained overall accuracy values of 1.83, 

1.95, 1.89, 2.66, 32.16, 11.91, 2.24, 1.69, 1.43, 1.62, and 9.37, respectively.  

Singh and Rawat (2023) [18] also employed machine learning model such as Boost, Random 

Forest and SVM for weather forecasting. The dataset has been collected from IMD India for 

predicting temperature in Visakhapatnam. Random Forest and SVM found to be performed 

somewhat better on a number of metrics.  

(Abdulla et al., 2022) [19] Investigated how meteorological feature can be predicted using 

deep learning model with Long-Short-Term-Memory (LSTM). LSTM model is extended for 

univariate and multivariate problems, followed by a comparison. The experimental results 

show that the prediction error is 45% reduced compared to baseline models, when adaptive 

learning was used based on a bidirectional LSTM model. In addition, the results also indicate 

that by using only univariant model, author can use less features for learning which 

subsequently decreases time as well as memory usage of model construction and maintenance. 

Makala et al. (2021) [20] employed ARIMA and SVM for the price prediction of gold. The 

analysis was done on daily data taken from the World Gold Council spanning 1979 to 2019. 
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Both models were trained using data up to 2014; the remaining data is used for validation. 

Using the performance assessment tools of RMSE and MAPE, the study's findings 

demonstrate that ARIMA, RMSE, and MAPE resulted in 36.18 and 2897, respectively. But as 

compared to ARIMA, SVM performed well with RMSE of 0.028 and MAPE of 2.5. Schultz 

et al (2021) [21] found the recent excitement surrounding artificial intelligence that reignited 

enthusiasm for using AI techniques that have been effective in the domains of robotics, 

strategic games, image identification, voice recognition, and other application areas. But also 

found little evidence to suggest that by integrating big data mining and neural networks into 

the weather forecasting workflow, prediction.   

Latif et al (2023) [22] evaluates the LSTM and ARIMA models' ability to predict Bitcoin 

prices. This study demonstrates that even with ARIMA's sophistication, LSTM can 

consistently anticipate fluctuations in the price of Bitcoin. 

ArunKumar et al. (2021) [23] conducted an analysis for comparison, as numerous machine 

learning and deep learning models were published in the scientific literature to predict 

COVID-19, but no thorough analysis comparing statistical and deep learning models has been 

done. To predict the trends of the COVID-19, GRU, LSTM, ARIMA, and SARIMA models 

were trained, tested, and optimized. LSTM and GRU outperformed statistical ARIMA and 

SARIMA models 

In this work, author has proposed a review on AI techniques for weather forecasting that can 

fully replace the existing numerical weather models and data assimilation systems. This topic 

includes an examination of cutting-edge machine learning theories and how they relate to 

meteorological data and its relevant statistical features. Menculini et al. (2021) [24] compared 

When LSTM and ARIMA for predictions actual historical prices. During the given time 

period, the LSTM model was able to predict both the direction and the value of Bit coin values, 

while ARIMA could only follow the trend of the prices. This study demonstrates that even 

with ARIMA's sophistication, LSTM can consistently anticipate fluctuations in the price of 

Bitcoin. 

Singh et al. (2020) [25] forecast of confirmed SARS-CoV-2 infections in the most impacted 

nations using ARIMA and LS-SVM. The findings showed that the LS-SVM model 

outperformed the ARIMA model in terms of accuracy and also pointed to a sharp increase in 

SARS-CoV-2 confirmed instances across all of the countries included in the analysis. 

Atique et al. (2020) [26] forecast daily solar energy generation using ARIMA and machine 

learning techniques on time series data. In experimentation, the superior performance of SVM 

in this field of work demonstrates the promise of machine learning based methodologies 

compared to the ARIMA model. Tiwari et al. (2020) [27] used SVM and ARIMA modeling 

techniques to analyze continuous one-year ambient noise data. To train the model, a case study 

of every commercial location is used. Tenfold cross-validation has been utilized in SVM to 

determine the ideal value of the hyper-parameters (γ, ε, and C). An alternative method for 

simulating ambient noise levels during the day and night is the Box-Jerkin ARIMA 

methodology. A number of statistical measures, including R2, MSE, RMSE, and MAPE, were 

employed to evaluate the performance of the suggested models. The SVM model has been 

found to perform better than ARIMA models. Zhang et al. (2020) [28] computed standard 

precipitation evapotranspiration index (SPEI) using ARIMA, WNN, and SVM models. For 
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this temperature and precipitation data gathered from seven meteorological stations in the 

research area between 1979 and 2016, the was used. The R2 and NSE values of the WNN 

model were 0.837 and 0.831, respectively; those of the SVM model were 0.833 and 0.827, 

respectively which were best to ARIMA model.  

Alim et al (2020) [29] compared the efficacy of the XGBoost and ARIMA model for 

forecasting the incidence of brucellosis. The human brucellosis data from January 2008 to June 

2018 comprised the training set,July 2018 to June 2019 made up the test set. Alternatively, the 

test set yielded the XGBoost model's MAE, RSME, and MAPE was 249.307, 280.645, and 

7.643, while the ARIMA were 529.406, 586.059, and 17.676 respectively. Ai Amin et al. 

(2020) [30] utilize electrical load forecasting to contrast the forecasting performance of the 

ARIMA and SVM models. Following the comparison, it was discovered that SVM 

outperforms ARIMA for non-linear patterns, whereas ARIMA performs better when 

approximating linear types of loads based on MAPE and MSE scores. Liu et al. (2020) [31] 

compared three models such as EEMD-ARIMA, EEMD-BP, and EEMD-SVM using the 

hourly urban water consumption dataset for times series prediction. As per the findings The 

EEMD-ARIMA, EEMD-BP, EEMD-SVM, ARIMA, BP, and SVM have mean absolute 

percentage errors (MAPE) of 5.2036, 1.4460, 1.3424, 5.7891, 4.3857, and 3.8470%, 

respectively.  

Chattopadhyay et al (2020) [32] used deep learning model to weather forecasting. The author 

has suggested using capsule neural networks, or CapsNets in this work to weather forecast. 

CapsNets had learned on huge mid tropospheric circulation patterns (Z500) labelled 0–4 based 

on the presence and geographic location of surface high temperatures over America multiple 

days in advance, utilizing information from a large-ensemble fully coupled Planet model.  

Only using Z500, the training networks had accuracy (recalls) of 69–45% (77–48%) or 62-

41% (73–47%) when predicting the existence or location of cold or heat waves 1–5 days in 

advance. 

Jakaria et al (2020) [33] developed machine learning-based intelligent weather prediction 

system. give a method for predicting the weather that makes use of past data from several 

weather stations to train basic machine learning models. This method can quickly produce 

predictions that are useful for predicting specific weather conditions in the near future. The 

evaluation findings demonstrate that the models' accuracy is sufficient to be employed in 

conjunction with the most advanced methods currently available.  

Suresha et al (2020) [34] used Shannon Airport meteorological dataset's variables for cloud 

cover, sky visibility, the humidity level, and sun shine duration to test multiple linear 

regression was to forecast rain. The model found to be performed well on given dataset. 

Diez and Del (2020) [35] analyzed the effectiveness of eight machine learning and statistical 

techniques for long-term daily precipitation prediction in a semi-arid climate that are 

influenced by atmospheric synoptic patterns. The research's findings show that the chosen 

hyperparameters have a significant impact on how well most machine learning models 

function. It is discovered that neural networks operate best at predicting the occurrence and 

severity of rainfall. Verma et al (2020) [36] develops an interactive weather prediction system 

that may be used to forecast weather information for a variety of locations, including 

residences, businesses, stadiums, and agricultural settings. The system makes use of an LDR 
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light level sensor and a DHT11 temperature and humidity sensor. The artificial intelligence 

environment is set up using a logistic regression model. The system gives 84% accuracy. 

Coulibaly et al (2020) [37] devised rule-driven machine learning for information extraction 

from meteorological data. Using this approach, variable such as latent as well as sensible heat 

flux, air humidity and temperature, the speed and direction of the wind, rain, global radiation, 

etc was tested and results was found effective in the domain.  Mansfield et al (2020) [38] 

educate societal adaptation and mitigation actions, as it is essential to comprehend and estimate 

regional climate change under various scenarios of anthropogenic emissions. For this machine 

learning has been applied and found effective.  Stirnberg et al (2020) [39] tested the air quality 

using machine learning the implementation of a machine learning model advances the 

knowledge of the factors that contribute to near-ground PM10 and our ability to infer PM10 

using satellite AOD. Hourly PM10 concentrations are connected to meteorological, land cover, 

and satellite-based AOD parameters. The overall R2 of 0.77 has been achieved. 

Lv et al (2020) [40] extend the one-step forecasting model for HFRS by presenting a multistep 

prediction technique based on XGBoost. The data was gathered on the occurrence of HFRS in 

mainland China between 2004 and 2018. To create the yearly ARIMA model and XGBoost 

model, the information from 2004 to 2017 were split into training sets. The prediction 

performance was tested using the 2018 data. Fang et al (2020) [41] compared XGBoost model 

and ARIMA model to see which was better at predicting the occurrence of COVID-19 in the 

United States. The training and validation sets' MAPE scores for the XGBoost model (4.046% 

and 7.892%) were both very good.  Noorunnahar et al (2020) [42] utilized XGBoost model 

and ARIMA model for rice production prediction. In contrast, the XGBoost algorithm's test 

set's MAPE value (5.38%) was less than the ARIMA model's (7.23%), suggesting that 

XGBoost outperforms ARIMA when estimating Bangladesh's yearly rice production. Zhang 

et al (2020) [43] performed sales volume time series forecast with XGBoost. Priyadarshini et 

al (2020) [44] analyzed time data and identifying anomalies to create reliable smart homes. 

Here ARIMA model worked well. Makridakis et al (2020) [45] presents the data used and 

their features, as well as the competition's background, organization, and implementations. As 

such, it facilitates their understanding by acting as an introduction to the outcomes of the two 

forecasting tasks. Hoang et al (2020) [46] employed neural network LSTM to practice 

predicting weather conditions using various combinations of meteorological factors, including 

temperature, precipitation, humidity, wind speed, and pressure, in the context of modern 

technology. The model gains 64% accuracy. Fallucchi et al (2020) [47] presents an 

experimental development of a machine learning time series analysis related to the paroxysmal 

meteorological occurrence known as a "cloudburst," which is characterized by a highly 

concentrated, severe storm that occurs within a few hours and is much localized.  

Namini et al (2020) [48] demonstrate comparison and behavioral analysis between LSTM and 

BiLSTM models. The goal is to investigate the extent to which adding more data layers for 

training could help adjust the involved parameters. The findings demonstrate that BiLSTM-

based modeling, which incorporates extra data training, provides more accurate predictions 

than standard LSTM-based models. Paliari et al (2020) [49] focuses on modeling and 

predicting general time series gathered from many open datasets through the training and 

implementation of contemporary machine learning algorithms, such as Deep Neural Network 

techniques. In order to forecast how particular economic and social phenomena would change 
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over time, a specific focus on these phenomena informed the selection of the data utilized in 

the experiments. The comparison of the previously described prediction methods and their 

optimization to increase accuracy remain the primary and ultimate objectives. Kalimuthu et al 

(2020) [50] demonstrate projects use machine learning, one of the most modern advances in 

crop prediction, to assist beginning farmers in planting appropriate crops. A supervised 

learning algorithm called Naive Bayes suggests how to do it. Here, the crop seed data are 

gathered at the ideal conditions—temperature, humidity, and moisture content—to ensure the 

crops grow successfully. The model achieved 97% accuracy. Kirbas et al (2020) [51] verified 

models for the COVID-19 instances from Denmark, France, the United Kingdom, Finland, 

Switzerland, and Turkey were created using the LSTM, ARIMA and NARNN) techniques. 

The most accurate model was chosen using six model performance metrics (MSE, PSNR, 

RMSE, NRMSE, MAPE, and SMAPE). The study's initial phase's findings indicated that 

LSTM was the most accurate model. 

Nguyen et al. (2019) [52] forecast the final price of Bitcoin the following day, algorithms for 

machine learning and (ARIMA) model was used in this work. Subsequently, author introduces 

hybrid techniques that combine machine learning and ARIMA to enhance Bitcoin price 

prediction. The findings of the experiment demonstrated that hybrid approaches have higher 

prediction accuracy when using RMSE and MAPE. Yamak et al. (2019) [53] attempted to 

make a time series forecast by contrasting three distinct machine learning models. Our time 

series data collection will be the price dataset for Bitcoin, from which we will get our 

predictions. The outcomes demonstrate that the ARIMA model outperformed regression 

models based on deep learning in terms of performance. For both MAPE and RMSE, ARIMA 

yields the greatest results, at 2.76% and 302.53, respectively. Nevertheless, the Gated 

Recurrent Unit (GRU) outperformed the LSTM, with corresponding MAPE and RMSE of 

3.97% and 381.34. 

Hua (2019) [54] compared the forecasting accuracy of the value of bitcoin in US dollars using 

two distinct models: the ARIMA model and LSTM network. Pycurl obtains real-time pricing 

information from Bitfine. TensorFlow and Keras are used to implement the LSTM model. In 

this study, the ARIMA model is primarily utilized to offer a traditional comparison of time 

series forecasting. As anticipated, it is capable of making efficient predictions limited to short 

time intervals, with a time period-dependent consequence. The LSTM could perform better 

with more essential time for training the model, particularly when using a CPU. Singh et al 

(2019) [55] goal to create a weather forecasting system that may be utilized in remote 

locations. Weather conditions are predicted using machine learning and data analytics 

techniques like random forest categorization. This study develops a portable, low-cost weather 

forecast system. 

Anjali et al (2019) [56] employed three machine learning models MLR, ANN, and SVM for 

temperature prediction via comparative study of meteorological data gathered from Central 

Kerala between 2007 and 2015. Compared to ANN and SVM, MLR is a more accurate model 

for temperature prediction, as seen by the error metrics and the CC. Ratra and Kumar (2019) 

[57] developed a simulated framework using data analysis and machine learning techniques to 

predict various climate conditions. Kim et al (2019) [58] devised links reported weather 

forecasts with undisclosed weather variables through a two-step modeling procedure. The 

empirical findings demonstrate that, regardless of the specific machine learning algorithms 
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used, this strategy outperforms a base approach by significant margins. The R-squared value 

of 70.5% in the test data indicates that the random forest regression technique outperforms all 

other algorithms in solving this particular problem. Four variables are produced by the 

intermediate modeling procedure, and the post-analysis gives these variables a high priority. 

The developed model makes accurate forecasts up to one day in advance. Muszynski et al 

(2019) [59] provided optimized technique that uses machine learning and topological data 

analysis to identify atmospheric rivers (ARs) in climate data.  Rhanoui et al (2019) [60] 

provide a predictive strategy that utilizes and contrasts the Deep Learning Recurrent LSTM 

model and the Machine Learning ARIMA model. Because of its capacity to infer non-linear 

relationships from data, the LSTM model performs better than the ARIMA model, as 

demonstrated by both the application and the comparison analysis.  Oswal (2019) [61] 

compared the different assessment criteria of these machine learning model and show how 

reliable they are in predicting rainfall through weather data analysis.  De Saa et al (2019) [62] 

evaluates deep learning methods and the ARIMA model for temperature forecasting. Limited 

convolutional layers are used in the deep learning model to derive spatial features, and LSTM 

layers are used to extract temporal features. Szeged, Hungary's hourly temperature data 

collection is used to test both of these models. The experimental findings showed that the deep 

learning model outperformed the conventional ARIMA methodology.  Zhou et al (2019) [63] 

used a web traffic dataset for forecasting performance comparisons utilizing several evaluation 

metrics. ARIMA and LSTM were used. Using the most recent techniques, both models 

produced results that were comparable, with LSTM marginally outperforming its classical 

equivalent in the TSF challenge. Azari et al (2019) [64] demonstrate the Cellular traffic 

prediction and classification using ARIMA and LSTM and LSTM performed better over 

ARIMA in this application. Shafin (2019) [65] attempted to determine the trend of 

Bangladesh's annual average temperature as well as the average temperature by season using 

many machine learning methods. Machine learning techniques like Linear Regression, 

Polynomial Regression, Isotonic Regression, and Support Vector Regressor were employed in 

the experiment. The training dataset is most accurately predicted by the Isotonic Regression 

algorithm, whereas the future average temperature is most accurately predicted by the 

Polynomial and Support Vector Regressors.  

Yovan (2019) [66] use the K means clustering strategy has a faster calculation time than the 

other clustering models for rainfall and Storm Prediction. The findings show that compared to 

the other method currently in use, the K-means clustering tool conducts clustering more 

quickly.  

Ransom et al. (2019) [67] evaluate statistical and machine learning techniques for integrating 

weather and soil conditions into maize nitrogen recommendations. The RM approach was the 

best machine learning algorithm for modifying N recommendation tools (r2 rose between 0.72 

and 0.84 and the RMSE dropped between 41 and 94 kg N ha−1). 

Deb et al. (2019) [68] suggested method enables to determine a relationship between changing 

weather parameters and the degree of traffic congestion. The city of Mumbai, India's Uber 

Movement traffic data was incorporated into many machine learning algorithms that had 

already been evaluated. After comparing the outcomes of the various machine learning 

algorithms, we were able to determine that, with an accuracy of 85%, logistic regression 

performs the best when applied to the Uber data that was gathered.  
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An enhanced rainfall forecast model using wavelet transform and seasonal ANN was 

suggested by Tran et al (2019) [69]. The authors also looked into other approaches for 

forecasting monthly precipitation. 

In a comparison of market forecasting models utilizing ANN, Medina et al (2019) [70] found 

that neural networks gave results that were more reliable than those from other techniques. 

Author in Weyn et al (2019) [71] without explicating the information from the physical 

phenomena, has proposed a simple weather prediction models based on the deep convolutional 

neural networks (CNNs). The proposed CNN model had trained on historical data of weather. 

The proposed system has anticipated one or two basic meteorological fields on a Northern 

Hemisphere grid.  The proposed CNNs has been trained on only 500-hPa geopotential height 

outperform persistence, climatology, and the dynamics-based barotropic vorticity model at 

forecast lead times up to 3 days. However, the model had fall short of an operational full-

physics weather prediction model.  

Further it has been notable that the CNN model has been capable to foresee large changes in 

the strength of weather systems, as opposed to the barotropic vorticity equation, the basic 

dynamical equation that only uses data from 500 hPa. The CNN predictions have been slightly 

enhanced by adding input data with a thickness of 700–300 hPa. Our most effective CNN is 

capable of predicting realistic meteorological states with lead times of 14 days and does a 

decent job of reflecting the seasonality and annual variations of 500-hPa heights. Only using 

Z500, the training networks had accuracy (recalls) of 69–45% (77–48%) or 62-41% (73–47%) 

when predicting the existence or location of cold or heat waves 1–5 days in advance. 

Naveen and Mohan (2019) [72] has described an ensemble weather predictive model that 

iteratively forecasts six important meteorological variables with a six-hour temporal resolution 

using the Deep Learning Weather Prediction (DLWP) models. Convolutional neural networks 

(CNNs) on a cube-globe grid had used in this operationally effective approach to provide 

global predictions. The experiment was performed on a one GPU, the trained model had 

generated a 320-member collection of six-week forecasts at 1.4° resolution in about three 

minutes. I 

Further in order to construct a collection of 32 DLWP models with slightly different learned 

weights, the CNN training has been randomized. The DLWP model suggests total column 

water vapour but not rainfall, and it provides a reliable 4.5-day probabilistic forecast of 

Hurricane Irma. In a one-year unrestricted simulation, it not only simulates mid-latitude 

weather systems but also randomly produces tropical cyclones.  

The ensembles' mean RMSE sustains accuracy in regard to climatology after 2 weeks when 

averaged worldwide and over a 2-test set, with anomalous correlation coefficients staying 

above 0.6 through six days. 

As to regulate load and amplitude, transform wind energy into electricity, and securely link 

wind energy to the grid, effective wind-power prediction can improve a wind power system's 

ability to react to the volatility of wind energy. 

Further Yin et al. (2019) [73] proposed wind power prediction model. Author has utilized a 

hybrid data decomposition method, where EMD is first used to breakdown the signal. IMF1 

is then further broken down using VMD. 
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Similarly, a study on several weather prediction models using decision trees, support vector 

machines, and ANN was conducted by Kunjumon et al (2018) [74]. In their study of machine 

learning-based weather forecasts and related issues, Naveen and Mohan (2018) [72] covered 

a range of weather prediction application areas. Sher et al (2018) [75] developed wavelet 

neural network-based prediction models. An evolutionary approach with many objectives is 

used to train the wavelet neural network. The choice of mother wavelet and decomposition 

levels determines how accurately the wavelet-based decomposition technique can de-noise 

signals.  

In order to predict wind speed, various research has recently been conducted using EMD-based 

models. The most effective and improved data decomposition model for information denoising 

and nonlinear and discontinuous time series analysis is called EEMD (Ensemble Empirical 

Mode Decomposition). 

Using MapReduce and machine learning algorithms, Reddy and Babu (2017) [76] investigated 

various big data weather forecasting models. The authors also discussed the drawbacks and 

problems of big data weather prediction, particularly predicting rainfall. 

 

3. Types of model analysis for weather forecasting  

In weather forecasting, the use of machine learning (ML) and artificial intelligence (AI) 

techniques has transformed the industry. Large-scale meteorological data generated by 

weather stations, satellites, and smart devices, together with advances in computer technology, 

have propelled these developments. Machine learning algorithms have demonstrated 

promising results in identifying intricate patterns in meteorological data that conventional 

models would overlook [78][79] [84]. 

Large datasets may be processed by these algorithms, which can also identify intricate patterns 

and forecast outcomes quickly and accurately. Weather forecasting has undergone a dramatic 

paradigm change with the integration of AI and ML, switching from conventional, 

deterministic models to data-driven, probabilistic techniques. This change signals the 

beginning of a new era in meteorological sciences that will allow for more accurate and 

consistent weather forecasts.  

 

Figure 1: Comparison of Different ML Algorithms in Weather Forecasting 
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This paper is reviewing many machine learning techniques in the context of weather 

forecasting, and also weighed the benefits and drawbacks of AI or ML models such as 

Artificial Neural Networks (ANNs), Long Short-Term Memory (LSTM) networks, Support 

Vector Machines (SVM), and Decision Trees [80][81]. 

Artificial Neural Networks (ANNs) are designed to mimic the way the human brain is 

structured.  They are particularly good at recognizing patterns and solving nonlinear issues, 

which makes them suitable for identifying complex links in meteorological data. Because they 

can store information over long periods of time, a kind of recurrent neural network called an 

LSTM network is particularly helpful for time series forecasting, improving forecasts of 

sequential weather patterns. While Decision Trees give interpretable models that offer clear 

insights into crucial weather factors, Support Vector Machines (SVMs) are preferred because 

to their resilience in handling high-dimensional data and classification jobs [82][83]. 

Moreover, there are several benefits and difficulties associated with combining these machine 

learning methods with weather forecasting. Because of their ability to recognize patterns, 

artificial neural networks (ANNs) may identify minute correlations in meteorological data, 

increasing the precision of forecasts for phenomena like temperature swings and storm 

patterns. Long-term forecasting and climate modelling benefit from the use of LSTM networks 

because they can capture temporal relationships, improving predictions over longer time 

periods.  

SVMs are very good at categorizing weather occurrences and differentiating across weather 

patterns, which makes them useful for accurate classification and forecasting jobs in 

meteorology. These methods have advantages, but they also have drawbacks: For training and 

optimization, ANNs need a lot of computer power and knowledge, whereas LSTM networks 

could have trouble processing noisy or erratic data patterns. Large-scale meteorological 

datasets might cause scalability problems for SVMs, which perform well in high-dimensional 

environments, while Decision Trees, although intuitive, run the risk of oversimplifying 

complicated weather occurrences. 

Because Artificial Neural Networks (ANNs) mimic the structure of the human brain, they are 

particularly good at pattern recognition and nonlinear problem solving. They are useful for 

identifying minute connections in weather patterns because they are skilled at capturing 

complex linkages within meteorological data. Recurrent Long Short-Term Memory (LSTM) 

neural networks are very useful for weather forecasting because of their long retention and use 

times. This ability enhances their ability to predict time-dependent phenomena, such as 

temperature trends and precipitation patterns. 

Decision trees give models that are simple to grasp and comprehend, giving valuable insights 

into important meteorological factors. They make it easy to see the decision-making processes 

involved in weather prediction with their hierarchical structure. Support Vector Machines 

(SVMs), on the other hand, are excellent at categorization jobs and work well with high-

dimensional meteorological data. Their ability to classify and distinguish between distinct 

weather patterns allows them to contribute to the development of more precise and trustworthy 

weather forecasts. 

When these machine learning methods are used with big meteorological datasets, they have a 
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lot to offer. They improve the accuracy and timeliness of weather forecasts by analyzing and 

assessing large amounts of data. When it comes to understanding and categorizing 

meteorological data, Decision Trees and SVMs offer clarity and robustness, while ANNs and 

LSTM networks deepen the analysis by catching intricate trends across time. When combined, 

these methods give meteorologists the ability to produce forecasts that enhance public safety, 

boost economic efficiency, and aid in crucial decision-making for weather-dependent 

businesses. 

The analysis's other main area of interest is the smooth transition between deep learning 

analytics and weather forecasting. Increasing prediction accuracy requires utilizing a wide 

range of data sources and contemporary data processing methods. Weather monitoring 

equipment generates vast volumes of data, therefore sophisticated analytics methods are 

required for effective handling, processing, and evaluation. Utilizing the deep learning 

technology is crucial for merging information from many sources, such satellite imagery, 

climate models, and ground-based observations, into extensive databases. By greatly 

enhancing the forecasting models' dependability and resilience, this integration enables 

meteorologists to provide predictions that are more accurate and consistent. 

This integrated approach is critical to the use of AI and ML technology in meteorological 

applications. These tools can find hidden patterns and connections in meteorological data that 

traditional approaches might miss by utilizing deep learning analytics. The ability of ANNs 

and LSTM networks to analyze vast amounts of data and capture intricate temporal 

relationships improves the forecasting power of weather models. When combined with large 

data, decision trees and support vector machines (SVMs) offer reliable frameworks for for 

precisely analysing and categorizing meteorological occurrences. 

This research also explores the challenges involved in deep learning - driven weather 

prediction. To overcome these obstacles, strong algorithms that can efficiently handle the 

enormous amount of meteorological data must be developed. As part of this, high processing 

speeds must be maintained in order to handle real-time data streams quickly and precisely. In 

addition, one major challenge is the heterogeneous nature of meteorological data, which comes 

from many sources, scales, and formats. To fully utilize this broad data landscape in decision 

support systems and predictive modelling, standardization and harmonization are crucial. 

It is imperative to solve these difficulties in their whole in order to integrate the deep learning 

analytics into weather forecasting. In addition to controlling data velocity and volume, 

efficient algorithms also need to preserve data consistency and quality across many sources. 

High processing speeds are essential in real-time forecasting scenarios where quick data 

analysis may make the difference between prospective threats and effective early warnings. 

This necessitates using cutting-edge computing strategies like parallel processing to efficiently 

maximize computational resources and speed up data analysis. 

In order to maximize computer resources and accelerate data analysis, it is imperative to 

leverage parallel processing techniques in order to design efficient algorithms that can handle 

large amounts of meteorological data. The ability to compute simultaneously across several 

processors or cores is known as parallel processing, and it greatly improves the speed and 

effectiveness of data handling in applications related to weather forecasting. Meteorologists 
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may increase the precision and timeliness of weather forecasts by streamlining data analysis 

procedures and making the most of these computing capabilities. 

By carefully examining these problems, this study seeks to determine workable answers and 

potential areas for further investigation. The intricacies of weather forecasting based on large 

data need novel methods for algorithm development and computer optimization. This entails 

optimizing algorithms to manage heterogeneous data, expanding processing power to 

accommodate real-time data streams, and guaranteeing consistent and reliable data from a 

variety of sources. 

Understanding and methodically addressing these challenges is essential to maximizing the 

advantages of AI and ML in weather forecasting. Meteorologists may improve prediction 

accuracy, fortify early warning systems, and facilitate well-informed decision-making in 

weather-sensitive businesses by growing algorithmic skills and computing efficiency. In 

addition to optimizing the application of AI and ML technologies, this proactive strategy also 

supports their usefulness in strengthening societal resilience to weather-related risks and 

difficulties. 

When AI and ML technologies are combined, weather forecasting might benefit greatly. 

Improved forecast accuracy not only lowers economic losses but also improves public safety 

by improving preparedness for extreme weather occurrences. In order to provide prompt 

preventative measures that shield communities, infrastructure, and livelihoods from the effects 

of severe weather conditions, early warning systems depend on accurate and fast weather 

predictions. Forecasts that are precise enough to be used in advance enable decision-makers 

to take preventative actions, such making preparations for evacuation and allocating resources, 

which reduce risks and increase readiness. 

Furthermore, by streamlining their operations with more accurate forecasts, weather-

dependent companies stand to gain. The energy industry is better able to control changes in 

supply and demand, allocating resources optimally and reducing interruptions. In order to 

prevent weather-related delays and dangers, aviation businesses can enhance flight planning 

and scheduling, guaranteeing passenger safety and operational effectiveness. The agricultural 

industry may improve crop management techniques to maximize yields and minimize losses 

from unfavourable weather. 

Accurate weather forecasts, for instance, have the power to completely transform a variety of 

industries. Accurate projections help businesses in the energy sector keep a careful balance 

between supply and demand. Companies are able to improve resource allocation, minimize 

inefficiencies, and alleviate costs associated with abrupt changes in weather conditions by 

forecasting weather patterns that affect energy production and consumption. 

Analogously, accurate weather forecasts enable airlines to maximize flight patterns and 

timetables in the aviation industry. Airlines can increase passenger safety, reduce aircraft 

interruptions, and boost operational efficiency by avoiding bad weather and circumstances. 

This not only helps the airline sector but also improves traveller satisfaction generally and 

lessens the environmental effects of fuel usage. 

Furthermore, precise projections are essential for farmers to efficiently organize their 

operations in agriculture. Farmers can plan planting dates, irrigation schedules, and crop 
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protection strategies by forecasting weather patterns. This proactive strategy maximizes yields, 

ensures food security, and reduces agricultural losses brought on by unfavourable weather 

conditions. Thus, improved weather forecasting encourages sustainable farming methods and 

increases the resilience of the world's food supply. 

These developments highlight how improved weather forecasting helps society as a whole. 

Accurate projections support sustainable development objectives by boosting resilience and 

economic efficiency in important industries. By offering prompt alerts and facilitating 

proactive steps to reduce the hazards connected to climate change and extreme weather 

occurrences, they enhance readiness for disasters. In the end, accurate weather forecasting is 

essential for developing adaptive strategies, boosting environmental sustainability globally, 

and boosting climate resilience. 

Table 1: Analysis of Model’s types of reviewed articles 
S.No. Authors  Models Dataset  

1. Gore and Gawali [17] Autocorrelation and Linear 

Regression 

IMD Pune  

2. Singh and Rawat [18] XGboost, Random Forest and SVM IMD Pune 

3. Abdulla et al., [19] Adaptive Deep Learning Models 

(LSTM) 

Historical Weather Data 

4. Latif et al.,[22]  ARIMA and LSTM Bit coin 

5. Makala et al., [20] ARIMA and SVM Price prediction of gold  

6. Weyn et al., [7]  Deep Learning  Climate Data 

7. ArunKumar et al., [23]   LSTM and GRU ARIMA and 

SARIMA  

COVID-19 cases  

8. Kim et al., [77]  Neural network El Niño forecasts 

9. Menculini et al., [24]  ARIMA and LSTM Food prices 

10. Singh et al., [25] ARIMA and SVM COVID-19  

11. Atique et al., [26]  ARIMA, ANN and SVM Solar energy  

12. Tiwari et al., [27]   ARIMA and SVM Noise levels 

13. Zhang et al., [28]  ARIMA, WNN and SVM Drought forecasting 

14. Alim et al., [29]  ARIMA and XGBoost  Infected patients  

15. Al Amin et al., [30] ARIMA and SVM Electrical load  

16. Liu et al., [31] ARIMA, BP and SVM Water usage  

17. Chattopadhyay et al., [32]  CapsNets Weather prediction 

18. Jakaria et al., [33]   Ridge Regression SVR, MLPR, and 

Extra-Tree Regression (ETR). 

Weather prediction 
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19. Suresha et al., [34]  Multiple Linear Regression Weather forecasting  

20. Diez and Del [35]  8 regression and machine learning 

methods 

Rain forecasting 

21. Verma et al., [36] Logistic regression model Weather forecasting 

22. Coulibaly et al., [37] Data mining Weather forecasting 

23. Mansfield et al., [38]  Regression Weather forecasting 

24. Stirnberg et al., [39]  Gradient Boosted Regression Trees Air quality 

25. Lv et al., [40]  ARIMA, XG Boost Infectious disease 

prediction 

26. Fang et al., [41]  XG Boost COVID-19 patients’ data  

27. Noorunnahar et al., [42]  ARIMA, XG Boost Rice production  

28. Zhang et al., [43] ARIMA, XG Boost and LSTM Retail sales dataset  

29. Priyadarshini et al., [44]  ARIMA, SARIMA, and LSTM Load forecast 

30. Makridakis et al., [45]  Multiple model Retail unit sales 

31. Hoang et al., [46] LSTM model Weather prediction 

32. Fallucchi et al., [47]  Machine learning  Weather Series Analysis 

33. Namini et al., [48]  LSTM  

BiLSTM 

Stock indices 

34. Paliari et al., [49]  ARIMA, LSTM and XGBoost Stock indices 

35. Kalimuthu et al., [50]  Naive Bayes Weather forecasting  

36. Kirbas et al., [51] ARIMA, LSTM and NARNN COVID-19 cases  

37. Nguyen et al., [52]  ARIMA, LSTM and CNN Bit coin  

38. Yamak et al., [53]  ARIMA, LSTM and GRU Bit coin 

39. Hua [54]  ARIMA, LSTM  Bit coin 

40. Singh et al., [55] Random forest Weather forecast 

41. Anjali et al., [56]  MLR, SVM and ANN Temperature prediction  

42. Ratra and Kumar [57]  Random Forest Regression and 

Logistic Regression 

Weather Prediction 

43. Kim et al., [58] Random forest regression Weather Prediction 

44. Muszynski et al., [59]  SVM Climate data 

45. Rhanoui et al., [60]  LSTM and ARIMA Financial budget 

46. Oswal [61]  Logistic Regression, Decision Tree, 

KNN, AdaBoost and Gradient 

Boosting  

Rainfall Prediction 

47. De Saa et al., [62] LSTM and ARIMA Temperature prediction  

48. Zhou et al., [63]  LSTM and ARIMA Web traffic 

49. Azari et al., [64]  LSTM and ARIMA Cellular traffic prediction 

50. Shafin [65]  Linear Regression, Polynomial 

Regression, Isotonic Regression, and 

Support Vector Regressor 

Weather prediction  

51. Ransom et al., [67] Random forest  Weather and soil 

prediction  

52. Deb et al., [68]  Logistic regression Weather prediction 

 

4. Analysis of performance matrixes  

In order to evaluate the performance of the proposed ANN model on the given dataset of the 

following testing parameters have been chosen. 

1. Coefficient of determination  

2. MSE 
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3. RMSE 

4. Precision  

5. Recall 

6. F1 score  

7. Accuracy  

4.1 Coefficient of determination  

In case of forecasting the result of an event, the coefficient of determination being a statistical 

measurement looks at how variations in one variable may be explained by differences in a 

second variable. 

The Coefficient of determination has been representing by the equation 1. 

R2 = 1 − 
RSS

TSS
                                                         (1) 

Where RSS means to sum of squares of residuals  

and TSS = total sum of squares 

4.2 MSE 

MSE is an abbreviation for Mean Squared Error. It basically lets you know how closely a 

regression line resembles a set of data points for the given dataset. In actuality, being a risk 

function, it corresponds to the squared error loss's expected value. The average, more 

particularly the mean, of errors squared from data related to a function is used to determine 

the mean square error. The MSE has been representing by the equation 2. 

MSE = 1/n ∑ (yi − y^
i
)2   

n

i=1
  (2) 

4.3 RMSE 

The model’s error in predicting quantitative data has been measured using the Root Mean 

Square Error (RMSE). The RMSE is representing in equation 3. 

RMSE = √∑
(yi−y^

i)2

n
n
i=1       (3) 

An implementation of a CNN network can be tested employing performance measures such 

as precision, recall, F1-score, and support, which are calculated after the training of network.  

4.4 Precision  

It is defined as the ratio of accurately positive observations was predicted to the total number 

of correctly observations predicted. 

                                   Precision =
True Positive

True Positive+False Positive
                                             (4) 
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4.5 Recall  

It is defining the ratio of true positive observations predicted to all of yes observations in the 

original class. 

                                      Recall =
True Positive

True Positive+False Negative
                                           (5) 

4.6 F1score 

It is result of average (in weighted) of Recall and Precision. This rating is based on into account 

both false positives and false negatives. 

                                    F1 Score  =
2

Recall −1+Precision−1                     (6) 

Or 

                                         F1 Score  = 2
Recall X Precision

Recall+ Precision
                    

(7) 

Or 

      F1 Score  =
True Positive

True Positive+
1

2
(False Positive+False Negative )

                            (8) 

4.7 Accuracy is defining as the ratio of correct predicted instances or samples to all instances  

           Accuracy =
True Positive+True Negative

True Positive+True Negative+False Postive+False Nagative
                      (9) 

 

The performance metrics analysis of various reviewed papers is described in the table 2. 

Table 2: Analysis of performance metrics of reviewed articles 
S.No. Authors  Metrics Results  

1. Gore and Gawali [17] Accuracy  Effective   

2. Singh and Rawat [18] Several  Random Forest and SVM found to be 

performed somewhat better on a number of 

metrics 

3. Abdulla et al., [19] RMSE RMSE decreases from 0.864 to 0.593. 

4. Latif et al.,[22]  Accuracy LSTM = 99.73% 

5. Makala et al., [20] RMSE and MAPE a 2.5 MAPE and an RMSE of 0.028. 

6. Weyn et al., [7]  RMSE Deep Learning is suitable for the application  

7. ArunKumar et al., [23]  RMSE  LSTM outperformed other model 

8. Kim et al., [77]  Correlation 

coefficient 

The Nino3.4 index prediction and associated 

temporal classification showed increases in 

the correlation coefficient of 5.8% and 13%, 

respectively. 

9. Menculini et al., [24]  Accuracy  LSTM outperformed ARIMA  

10. Singh et al., [25] RMSE, MAE and 

MSE 

LS-SVM outperformed  

11. Atique et al., [26]  MAPE SVM outperformed 

12. Tiwari et al., [27]   RMSE, R2 and MSE SVM outperformed 

13. Zhang et al., [28]  NSE, R2 and MSE The WNN model's R2 and NSE values are 

0.837 and 0.831. 
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14. Alim et al., [29]  MAE, RAME For the XGBoost model, the MAE, RSME, 

and MAPE are 249.307, 280.645, and 7.643, 

in that order. 

15. Al Amin et al., [30] MSE and MAPE SVM outperforms ARIMA 

16. Liu et al., [31] Numerous  EEMD-ARIMA's MAPE is 5.2036; EEMD-

BP is 1.4460; EEMD-SVM is 1.3424; 

ARIMA is 5.7891; BP is 4.3857; and SVM 

is 3.8470. 

17. Chattopadhyay et al., 

[32]  

Accuracies and 

recalls 

CapsNets outperform 

18. Jakaria et al., [33]   RSME ML performed well on data 

19. Suresha et al., [34]  RSE and R2 0.4096 

20. Diez and Del [35]  Accuracy  Neural networks perform best 

21. Verma et al., [36] Accuracy 84% 

22. Coulibaly et al., [37] ------ Effective  

23. Mansfield et al., [38]  RMSE Effective 

24. Stirnberg et al., [39]  R2 0.77 

25. Lv et al., [40]  MASE, MAPE, MPE, 

MAE 

MAE= 132.055 and 173.403 

26. Fang et al., [41]  MASE, MAPE, MPE, 

MAE 

MAPE= 4.046% and 7.892%  

27. Noorunnahar et al., [42]  MSP XG Boost outperform ARIMA 

28. Zhang et al., [43] MAE, RSME XG Boost outperform existing model 

29. Priyadarshini et al., [44]  MAE, RSME ARIMA outperform other model 

30. Makridakis et al., [45]  Accuracy Promising  

31. Hoang et al., [46] Accuracy 64% 

32. Fallucchi et al., [47]  Accuracy Promising  

33. Namini et al., [48]  RMSE  BiLSTM outperformed LSTM 

34. Paliari et al., [49]  MAE LSTM outperformed other 

35. Kalimuthu et al., [50]  Accuracy 97% 

36. Kirbas et al., [51] MSE, RMSE LSTM outperformed other 

37. Nguyen et al., [52]  RMSE Hybrid approaches have higher prediction 

accuracy 

38. Yamak et al., [53]  RMSE Gated Recurrent Unit (GRU) outperformed 

the LSTM, with corresponding MAPE and 

RMSE of 3.97% and 381.34. 

39. Hua [54]  Time efficiency  LSTM perform better 

40. Singh et al., [55] Accuracy  87.90% 

41. Anjali et al., [56]  RMSE, MSE MLR is a more precise over other  

42. Ratra and Kumar [57]  F1, recall, precision  Logistic Regression performed better  

43. Kim et al., [58] R2 70.5% 

44. Muszynski et al., [59]  Accuracy  90% 

45. Rhanoui et al., [60]  MSE LSTMs outperformed other models  

46. Oswal [61]  Accuracy Decision Tree= 91% 

47. De Saa et al., [62] MSE LSTMs outperformed other models  

48. Zhou et al., [63]  MSE LSTMs outperformed other models 

49. Azari et al., [64]  MSE LSTMs outperformed other models 

50. Shafin [65]  MSE, RMSE and R2 Isotonic Regression algorithm outperformed 

other models 

51. Ransom et al., [67] Accuracy  Promising 

52. Deb et al., [68]  Accuracy  85% 
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The above table 2 analysis of different performance metrics has done and results are shown. 

This matrix used by meteorologists and various agencies to check the performance of various 

models using MSE (Mean Square error), RMSE (Root Mean Square Error, accuracy, 

Correlation Coefficient etc. 

 

5. Conclusion 

Weather forecasting has benefited greatly from the application of Artificial Intelligence (AI) 

and Machine Learning (ML), outperforming conventional Numerical Weather Prediction 

(NWP) models in terms of accuracy and dependability of predictions. These developments 

result from AI and ML's capacity to analyse enormous volumes of detailed meteorological 

data and find subtle patterns that conventional models could miss. In the field of 

meteorological sciences, this shift from deterministic models to data-driven probabilistic 

techniques represents a critical turning point. 

Because AI and ML technologies make it possible to analyze intricate linkages and nonlinear 

processes in the atmosphere, weather forecasting has undergone a revolution. By identifying 

minute patterns and complex connections in meteorological data, they have increased 

prediction accuracy and reliability, improving disaster preparedness and public safety. The 

precision and anticipation of severe weather alerts have significantly improved, enabling 

communities to better plan and get ready for crises and lessen the damage that extreme weather 

events due to people and their property. 

Weather forecasting powered by AI has advantages for a number of sectors. Precise weather 

forecasts in the energy sector allow for the best possible supply and demand balancing, which 

minimizes operational interruptions and inefficiencies. Improved flight planning and 

scheduling improves the aviation sector by increasing passenger safety and operational 

effectiveness and reducing environmental impact. In a similar vein, the agricultural industry 

can maximize yields and guarantee food security by making knowledgeable decisions about 

planting, irrigation, and crop protection. This proactive strategy strengthens the resilience of 

the world food supply and encourages sustainable farming methods. 

But there are still difficulties. To properly utilize AI in weather forecasting, challenges 

including heterogeneity in data and the requirement for more effective algorithms must be 

resolved. Better data assimilation methods and increasingly complex AI models must be 

created as a result. In real-time forecasting scenarios, where quick data analysis may 

distinguish between possible hazards and useful early warnings, high processing speeds are 

crucial. To maximize computer resources and speed up data analysis, it is essential to use 

cutting-edge computing techniques like parallel processing. 

Resolving these issues is crucial to raising the accuracy and efficiency of weather predictions 

even more. Improving algorithmic power and computational effectiveness will maximize the 

use of AI and ML technologies while reinforcing their usefulness in enhancing societal 

resilience to weather-related hazards and difficulties. Significant economic gains will result 

from these developments, which will also enhance public safety by better planning for 

catastrophic weather events, promote sustainable development, and strengthen climate 

resilience. 
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In conclusion, by boosting resilience and economic efficiency across important industries, the 

incorporation of AI and ML into weather forecasting is a revolutionary advance that supports 

sustainable development goals. AI-driven weather forecasting plays a critical role in 

catastrophe planning by enabling pre-emptive actions and delivering early alarms, eventually 

boosting environmental sustainability and global climate resilience.  
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