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A sub set 𝐷 ⊆ 𝑉(𝐺) of a fuzzy graph 𝐺(𝜎, 𝜇) is said to be equitable dominating 

set if each 𝑣 ∈ 𝑉 − 𝐷, there exists a vertex 𝑢 ∈ 𝐷 such that  𝑢𝑣 ∈ 𝐸(𝐺) and 
|deg𝑠(𝑢) − deg𝑠(𝑣)| ≤ 1.  An equitable dominating set 𝐷of 𝑉(𝐺) is said to be 

2-equitable dominating set in a fuzzy graphs 𝐺(𝜎, 𝜇), if every vertex 𝑣 ∈ 𝑉 − 𝐷 

there exists a vertex 𝑢 ∈ 𝐷 or 𝑣 is equitable dominated by at least two vertices in 

𝐷. A 2-equitable dominating set 𝐷 ⊆ 𝑉(𝐺) of a fuzzy graph 𝐺(𝜎, 𝜇)  is said to 

be connected 2-equitable dominating set if the induced subgraph 〈𝐷〉 is 

connected.  In this study, connected 2-equitable equitable dominating set, its 

number in fuzzy graphs are introduced.  Bounds and some theorems related to 

connected 2-equitable equitable domination numbers are stated and proved.  

Keywords: Fuzzy graph, equitable dominating set, equitable domination 

number, 2 - equitable dominating set, connected equitable dominating set and its 

number, connected 2 - equitable dominating set, connected 2 - equitable 

dominating number. 

 

 

1. Introduction 

Applications of fuzzy graph are include data mining, clustering, image capturing, networking, 

communications, planning, etc.,  L.A Zadeh [1] introduced fuzzy sets in 1965. Fuzzy graph 

theory was initiated by A. Rosenfeld [2] in 1975. Gurubaran et.,all[4] initiated the concept 2- 

equitable domination in fuzzy graphs in 2018. Complementary nil g-eccentric domination 

fuzzy graphs concepts introduced by Mohamed Ismayil and Muthupandiyan[5] in 2020.  

S. Muthupandiyan and A. Mohamed Ismayil [7] introduced the concept isolate g-eccentric 
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domination in fuzzy graph in 2023.  John JC, Xavier P, Priyanka GB.[8] Divisor 2-equitable 

domination in fuzzy graphs in 2023. Muthupandiyan S, Ismayil AM[9] introduced the concept 

of connected g-eccentric domination in fuzzy graphs in 2022.   Rabeeh Ahamed et.al.,[10] 

stated the concept complementary nil equitable domination in fuzzy graphs in 2024. 

 

2. Basic Definitions 

Definition 2.1[4]: A fuzzy graph G = (σ, μ)is characterized with two functions ρ  on V and 

μ  on E ⊆ V × V, where σ: V → [0,1] and μ: E → [0,1] such that μ(x, y) ≤ ρ(x)⋀ρ(y) ∀x, y ∈
V. We expect that V is finite and non-empty, μ is reflexive and symmetric. 

We indicate the crisp graph G∗ = (σ∗, μ∗) of the fuzzy graph G(σ, μ) where σ∗ = {x ∈
V: ρ(x) > 0} and μ∗ = {(x, y) ∈ E: μ(x, y) > 0}. The fuzzy graph G = (σ, μ) is called trivial 

in this case |ρ ∗| = 1.    

Definition 2.2[4]: A path P of length n is a sequence of distinct nodes u0, u1, … , un such that 

μ(ui−1, ui) > 0, i = 1,2, … , n and the degree of membership of a weakest arc is defined as its 

strength. 

Definition 2.3[4]:  An edge is said to be strong if its weight is equal to the strength of 

connectedness of its end nodes.  Symbolically,  μ(u, v) ≥ CONNG−(u,v)(u, v). 

Definition 2.4[4]: The order and size of a fuzzy graph G(σ, μ) are defined by p = ∑ σ(u)u∈V  

and q = ∑ μ(u, v)uv∈E  respectively. 

Definition 2.5[6]:  Let G(σ, μ) be a fuzzy graph. The strong degree of a vertex v ∈ σ∗ is defined 

as the sum of membership values of all strong arcs incident at v and it is denoted by ds(v).  

Also, it is defined by ds(v) = ∑ μ(u, v)u∈Ns(v)  where Ns(v) denotes the set of all strong 

neighbors of v.  

Definition 2.6[6]: A fuzzy graph G(σ, μ) is connected if CONNG(u, v) > 0 where 

CoNNG(u, v) is strength of connectedness between two vertices u, v in G(σ, μ). 

Definition 2.7[6]: In a fuzzy graph G(σ, μ), strength of connectedness between two vertices 

u, v ∈ V(G) is maximum strength of  all paths between u, v in V(G).   

Definition 2.8[4]: A subset D of V is called a dominating set (DS) in G if for every v ∉ D there 

exist u ∈ D such that u dominates v. The minimum scalar cardinality taken over all dominating 

set is called domination number and is denoted by the symbol γ. The maximum scalar 

cardinality of a minimal dominating set is called upper domination number and is denoted by 

the symbol Γ. 

Definition 2.9[3]: A sub set D ⊆ V(G) of a fuzzy graphs G(σ, μ) is said to be equitable 

dominating set (EDS) if each v ∈ V − D, there exists a vertex u ∈ D such that  uv ∈ E(G) and 
|degs(u) − degs(v)| ≤ 1. 

Definition 2.10[3]: An equitable dominating set D ⊆ V of a fuzzy graph G = (σ, μ) is called 2 

– equitable dominating set if for every vertex v ∈ V − D there exist v ∈ D or v is equitable 

dominated by at least two vertices in D. 
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Definition 2.11[3]: Let D ⊆ V(G) of a fuzzy graph G is an equitable dominating set.  A set D ⊆
V(G) of a fuzzy graph G(σ, μ) is said to be connected equitable dominating set, if the induced 

subgraph 〈D〉 is connected. 

 

3. Main Results 

Connected 2- Equitable Domination in Fuzzy Graphs 

In this section discuss about connected 2- equitable dominating set and its number in fuzzy 

graphs. Bound and theorem related to connected 2- equitable domination number in fuzzy 

graphs are stated and proved. 

Definition 3.1:  

A 2-equitable dominating set D ⊆ V(G) of a fuzzy graph G(σ, μ) is said to be connected 2- 

equitable dominating set if the induced subgraph 〈D〉 is connected.  A connected 2 – equitable 

dominating set D is said to be minimal if no proper subset of D′ is a connected 2 – equitable 

dominating set.  The minimum scalar cardinality of a minimal connected 2 – equitable 

dominating set of G is called the connected 2 – equitable dominating number of G and is 

denoted by γc2eqd(G). The maximum scalar cardinality of a minimal connected  2 – equitable 

dominating set of G is called an upper connected 2 – equitable dominating number of G and is 

denoted by Γc2eqd(G). 

Note 3.1: The minimum connected 2 - equitable dominating set is denoted by γc2eqd-set. 

Example 3.1: Consider the fuzzy graph G(σ, μ). 

 

 

Figure: Connected 2-Equitable Dominating Set in a Fuzzy Graph 

From the fuzzy graph given in example 3.1, the followings are observed. 

1. The minimum connected 2- equitable dominating set is D1 = { v1, v2, v4, }, then  

γc2eqd(G) = 0.9. 

2. The upper connected 2- equitable dominating set is, D2 = { v2, v4, v5 },  then 

Γc2eqd(G) = 1.0 

Observation 3.1: For any connected fuzzy graphs G(σ, μ) 



863 T. Rabeeh Ahamed et al. Connected 2-Equitable Domination in Fuzzy Graphs                                           
 

Nanotechnology Perceptions Vol. 20 No.7 (2024) 

1. γ(G) ≤ γeqd(G) ≤ γ2eqd(G) ≤ γc2eqd(G)  

2. γc2eqd(G) ≤ Γc2eqd(G). 

3. Obviously any minimum connected  2-equitable dominating set is also minimal but 

the converse is not true. 

4. The complement of a connected 2-equitable dominating set is need not be connected. 

5. Supper set of a connected 2-equitable dominating set is also a connected 2-equitable 

dominating set. 

Proposition 3.1: For any fuzzy graph G with order p, then ∑vi,vj∈G

vi≠vj

 min (σ(vi), σ(vj)) ≤

γc2eqd(G) ≤ p.  

Proof: 

Let  D be a connected dominating set of a fuzzy graph G having atleast two vertices has 

minimum of V which is a sum of minimum value of vertices vi, vj ∈ D′, γc2eqd(G) ≤ p it is 

obviously true. 

Theorem 3.1: Let G be a fuzzy graphγc2eqd(G) = p iff the fuzzy graph G has adjacent to less 

than two vertices. 

Proof:  

Let G be a fuzzy graph, then γc2ed(G) = p then definition of fuzzy graph has all vertices in 

dominating set D. which shows that every vertex in G has adjacent to less than two vertices. 

Conversely, G be a fuzzy graph has adjacent to less than two vertices then every vertex is in 

regular dominating set. Which isγc2eqd(G) = p.  

Theorem 3.2: Let D is a minimal connected 2 - equitable dominating set, then V − S contains 

minimal connected 2 - equitable dominating set if every vertex of V in a fuzzy graph G adjacent 

to more than two vertices in V. 

Proof: 

Let D be a minimal connected 2 - equitable set of G suppose that V − D is not a connected  2 

- equitable dominating set, then there exists at least one vertex v ∈ D which is not an 2 

equitable adjacent to any vertex in V − D. Therefore V − D is connected 2 - equitable adjacent 

to at least two vertices in D then D − {v} is a connected 2 - equitable dominating set which is 

a contradiction. Hence every vertex in D must be equitable adjacent to at least two vertices in 

V − D. Hence V − D is an connected  2 - equitable dominating set which contains minimal 

connected  2 - equitable dominating set. 

Theorem 3.3: Let G be a connected fuzzy graph has no non - equitable edge and H is spanning 

subgraph of G then γc2eqd(G) ≤ γc2eqd(H).  

Proof: 

Let G be a connected fuzzy graph and H is the spanning subgraph of H. consider D is minimum 

connected 2 - equitable dominating set of G, D also a connected 2 - equitable dominate all the 

vertices in V(H) − D that is D is an connected 2 - equitable dominating set in H. Hence 
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γc2eqd(G) ≤ γc2eqd(H).  

Theorem 3.4: For any fuzzy graph G, γ2eqd + minσ(vi) ≤ γc2eqd(G), for vi ∉ D′. 

Proof: 

Let D be connected  2 - equitable dominating set with minimum cardinality γc2ed for any 

vertex vi ∈ D, D − {vi} is 2 - equitable dominating set. Hence γ2eqd + minσ(vi) ≤ γc2eqd(G). 

Theorem 3.5: Let G be a fuzzy graph without isolated vertices. Then γ(G) ⩽ γc2eqd(G)  

Proof:  

Every connected 2- equitable dominating set is a connected dominating set. Thus γ(G) ⩽ 

γc2eqd(G)  

Theorem 3.6 A connected  2 - equitable dominating set exists for any strong fuzzy graph G . 

Proof. 

Let G = (σ, μ) be a fuzzy graph. Suppose a strong fuzzy graph G has a connected  2- equitable 

dominating set, obviously it contains a 2 equitable dominating set D.  Therefore every strong 

fuzzy graph has an connected  2 - equitable dominating set and it exists for strong fuzzy graph. 

Theorem 3.7 For any fuzzy graph G γ2eqd(G) ≤ γ(G) ⩽  γc2eqd(G) (G). 

Proof. 

It is clear that every inverse 2- equitable dominating set is a 2-equitable dominating set.   we 

get γ2eqd(G) ≤ γc2eqd(G). 

Theorem 3.8 For a fuzzy graph G = (σ, μ) if γc2eqd is a minimum connected 2-equitable 

dominating set then V − D is a dominating set of a fuzzy graph G. 

Proof 

Let v be any vertex in D, D is a connected 2-equitable set in G . Since G has no isolated vertex 

v ∈ Ns(u).It is clearly every connected  2-equitable dominating set is a equitable dominating 

set such that v ∈ V − S.  Hence every vertex of D dominates some of the vertices in V − S.  
Therefore, V − D is a dominating set of fuzzy graph G. 

Theorem 3.9 

A connected2-equitable dominating set D of a fuzzy  graph G is minimal if and only if for 

every vertex u ∈ D one of the following conditions holds  

(i) there exists vertex v ∈ V − D such that Ns(v) ∩ D = {u}  

(ii) Ns(u) ∩ D = ∅  

Proof 

Suppose that D1 is a connected 2-equitable dominating set of a fuzzy graph G and (i) & (ii) 

not hold. Then for some vertex u ∈ D there exists v ∈ Ns(u) ∩ D. Therefore D − {u} is an 

equitable dominating set of G, a contradiction with the minimality of D. Conversely, let for 

every u ∈ D one of the conditions (i) or (ii) holds. Suppose that D1 is not minimal, there exists 
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u ∈ D1 such that D − {u} is an equitable dominating set of a fuzzy graph G. This means there 

exists v ∈ D − {u} which is equitable adjacent to u. Hence (ii) does not satisfy.  

Theorem 3.10 

For any fuzzy graph G without equitable isolated nodes, γ(G) ≤

min{γ(G), γ2ed(G), γc2eqd(G)} 

Proof 

Every connected 2-equitable dominating set is a connected dominating sets of G and every 

connected dominating set is dominating set, similarly every 2-equitable dominating set is 

dominating set. Hence γ(G) ≤ min{γ(G), γ2ed(G), γc2eqd(G)}.  

Definition 3.2   A subset D of V is a neighborhood connected 2- equitable dominating set 

(nc2eqd-set) of G if for every node v ∈ V − D there exists atleast two strong neighbors in  . 

The neighborhood connected 2- equitable domination number of a fuzzy graph G denoted by 

γnc2eqd(G) is the minimum cardinality of a nc2-eq dominating set of G.  A Set D is a minimal 

neighborhood connected 2- equitable dominating set of a fuzzy graph  , if for any vertex u ∈
D, D − {u} is not a neighborhood connected 2-equitable dominating set of the fuzzy graph G. 

Observation 3.2  For an fuzzy graph G(σ, μ) 

1. γeqd(G) ≤ γnceqd(G) ≤ γnc2eqd(G). 

2. γ2eqd(G) ≤ γnc2eqd(G). 

3. A supper set of a nc2ed-set is minimal. 

Theorem 3.11 Every neighborhood connected 2-equitable dominating set of a fuzzy graph G 

is a 

neighborhood connected equitable dominating set of a fuzzy graph G. 

Proof:  

Let D be a neighborhood connected 2- equitable dominating set of the fuzzy graph G. Then  

every node in V − D has atleast two strong neighbors in S. (i.e) for every node v ∈ V − D, 

there exist minimum two nodes in D and both dominate V.Every node in V − D is dominated 

by at least two nodes in D. Thus Dis a neighbourhood connected equitable dominating set of 

G. 

Theorem 3.12 If G is a fuzzy graph then  γnc2eqd(G) ≥ γnceqd(G). 

Proof 

By the previous theorem 3.11, every neighborhood connected 2-equitable dominating set of a 

fuzzy graph G is a neighborhood connected equitable dominating set of G. Thus every 

minimum nc2eqd-set of G is also  (nceqd)- set of G. Therefore γnc2eqd(G) ≥ γnceqd(G). 

Theorem 3.12 Every connected fuzzy graph G has minimum neighborhood connected 

equitable 
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2-dominating set Dthen V − D need not be a neighborhood connected 2-equitable dominating 

set of G. 

Proof:  

Let D be a neighborhood connected 2-equitable dominating set of G and let u ∈ V.   Suppose 
|NS(u)| = 1 then u belongs to every neighborhood connected 2-equitable dominating set of  . 

Thus v belongs to every minimum neighborhood connected 2 equitable dominating set of  . 

Then D − {u} has either no strong neighbor of u or only one strong neighbor of u. Thus D −
{u} does not have two strong neighbor for v. This implies that V − D is not a neighborhood 

connected 2-equitable dominating set of  .   Suppose every node in S has atleast two strong 

neighbors in V − D. Then every node in D has atleast two strong neighbors in V − D. Thus 

V − D is a neighborhood connected 2- equitable dominating set of G. Therefore V − D need 

not be a neighborhood connected 2-equitable dominating set of G. 

 

4. Conclusion 

In this article, an connected 2 - equitable dominating set, its number in fuzzy graphs are 

obtained.  Theorems related to an connected 2 - equitable dominating set and number in a 

fuzzy graph are stated and proved. Bounds and some points related an connected 2-equitable 

domination number are observed and discussed.     
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