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The deck of a topological space 𝑋 is the set 𝒟(𝑋)  =  {[𝑋 − {𝑥}] ∶  𝑥 ∈  𝑋}, where 

[𝑍] denotes the homeomorphism class of 𝑍. A space 𝑋 is called (topologically) 

reconstructible if whenever 𝒟(𝑋) = 𝒟(𝑌 ), then 𝑋 is homeomorphic to 𝑌. In this 

paper, we prove the property that whether a almost discrete spaces have isolated 

point or not is reconstructible. We also prove that almost discrete spaces with 

isolated points and almost discrete spaces without isolated points but having at 

least one finite point open set, 𝑛 −open set topological spaces are reconstructible. 
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1. Introduction 

A vertex-deleted subgraph or card G − v of a graph G is obtained by deleting the vertex v and 

all edges incident with v. The collection of all cards of G is called the deck of G and it is 

denoted by 𝒟(G). A graph H is a reconstruction of G if H has the same deck as G. A graph is 

said to be reconstructible if it is isomorphic to all its reconstructions. A parameter p defined 

on graphs is reconstructible if, for any graph G, it takes the same value on every reconstruction 

of G. The graph reconstruction conjecture, posed by Kelly and Ulam [13] in 1941, asserts that 

every graph G on n (≥  3) vertices is reconstructible. More precisely, if G and H are finite 

graphs with at least three vertices such that 𝒟(H) = 𝒟(G), then G and H are isomorphic. For 

a reconstructible graph G, Harary and Plantholt [8] defined the reconstruction number of a 

graph G, denoted by rn(G), to be the minimum number of cards which can only belong to the 

deck of G and not to the deck of any other graph H, H ≇ G, these cards thus uniquely identifying 

G. 

In 2016, Pitz and Suabedissen [12] have introduced the concept of reconstruction in 

topological spaces as follows. For a topological space X, the one-point deleted subspace X −
{x} is called a card of X and it is denoted by Xx. The set 𝒟(X) = {[Xx] ∶  x ∈ X} of subspaces 

of X is called the deck of X, where[Xx] denotes the homeomorphism class of the card Xx. Given 

topological spaces X and Z, we say that Z is a reconstruction of X if their decks agree. A 

topological space X is said to be reconstructible if the only reconstructions of it are the spaces 
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homeomorphic to X. Formally, a space X is reconstructible if 𝒟(X) = 𝒟(Z) implies X ≅ Z and 

a property P of topological spaces is reconstructible if 𝒟(X) = 𝒟(Z) implies ”X has P if and 

only if Z has P”. A space X is weakly reconstructible if it is reconstructible from the collection 

of all the cards of X, that is, it is reconstructible from the collection {Xx ∶  x ∈ X}. 

Gartside et al. [6, 7, 12] have proved that the space of real numbers, the space of rational 

numbers, the space of irrational numbers, every compact Hausdorff space that has a card with 

a maximal finite compactification, and every Hausdorff continuum X with weight ω(X) < |X| 
are reconstructible. In their papers, they also proved certain properties of a space, namely all 

hereditary separation axioms and all cardinal invariants are reconstructible. Manvel et al. [11] 

have done similar work in 1991 itself and they have reconstructed all finite sequences from 

their subsequences. Recently, Jini and Monikandan [1] have reconstructed most of the finite 

topological spaces. 

On the other side, Pitz and Suabedissen [12] have shown that the Cantor set is not 

reconstructible. They have also proved some properties of a space are not reconstructible, 

which include connectedness, compactness, lindelofness, countable compactness and pseudo 

compactness. 

By the order of a topological space (X, τ) , we mean the number of elements in the set (that is, 

|X|). By the size of the topological space, we mean the number of open sets in the space (that 

is, |τ|). Terms not defined here are taken as in [5]. 

In this paper, we show the property that whether almost discrete spaces having isolated points 

or not, almost discrete spaces with isolated points, almost discrete spaces without isolated 

points but containing a finite point open set and n -open set topological spaces are 

reconstructible. 

Almost Discrete Space 

A space X is almost discrete if every open set is closed in X. That is, X has only clopen sets. In 

this chapter, we prove that the almost discrete property and almost discrete spaces with a finite 

open set are reconstructible as below. 

Lemma 1. A space X is almost discrete if and only if every card of X is almost discrete. Thus, 

the almost discrete property is reconstructible. 

Proof. Necessity is obvious. For sufficiency, assume that all the cards of X are almost discrete 

but X is not. Then X contains an open set that is not closed. Among these open sets, choose 

one, say U such that |U| is minimum. Two cases arise depending on the cardinality of U. 

Case 1. |U| ≥ 2. 

Now, there exists a point x ∈ U such that X − U ⊆ Xx and hence X − U is not open in Xx as in 

(i) below. Thus, Xx is a card containing the open set U − {x} and the non-open set X −  U, 
where X − U = X − (U − {x}). That is, U − {x} is open but not closed in Xx (since |U| ≥ 2, the 

existence of the set U − {x} is guaranteed), contradicting our assumption. 

(i) If X − U were open in Xx, then either X − U or (X − U) ∪ {x} would be open in X. Therefore 

(X − U) ∪ {x} would be open in X and so ((X − U) ∪ {x}) ∩ U = {x} would be open in X. 
Since U is of minimum order (≥ 2) among all open sets that are not closed in X, it follows that 
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{x} would be a closed set in X. Therefore {x} would be a clopen set in X and so Xx would be 

open in X. Hence Xx ∩ ((X − U) ∪ {x} = X − U would be open in X, giving a contradiction. 

Case 2. |U| = 1. 

         Let U = {s}, where s ∈ X. Then {s} is open in X but X − U = Xs is not open in X. 

Consider a card Xy, where y ∈ Xs. We proceed by two subcases. 

Case 2.1. The set X − {s, y} is not open in X. 

Now {s} is open but not closed in Xy. That is, {s} is open in Xy but Xy − {s} = X − {s, y} is not 

open in Xy as otherwise either Xs or X − {s, y} is open in X and thus Xy is not an almost discrete 

card, a contradiction. 

Case 2.2. The set X − {s, y} is open in X. 

Now Xy = (X − {s, y}) ∪ {s} is open in X but Xyis not closed in X (as otherwise, {y} is open in 

X and hence Xs = (X − {s, y}) ∪ {y}, is open in X, a contradiction). Therefore {y} is not open 

in X. Let V = X − {s, y}. Then |V | ≠ φ. Clearly, V ∪ {s} is open in X and V ∪ {y} is not open 

in X, since V ∪ {y} =  Xs. Now consider the card Xt, t ∈ V. Then {s} is open but not closed in 

Xtas in (ii) below. Therefore Xt is not an almost discrete card of X, a contradiction. 

(ii) If {s} is closed in Xt, then X − {s, t} is open in  Xt. Therefore  Xs  or X − {s, t} is open in 

X. Since  Xs is not open in X, X − {s, t} = (V − {t}) ∪ {y} is open in X. Therefore V ∪ {y}, where 

V ∪ {y} = ((V − {t}) ∪ {y}) ∪ V, is open in X, giving a contradiction. 

Lemma 2. Let X be an almost discrete space with |𝒟(X)| ≥ 2. Then the property that whether 

X has an isolated point or not is reconstructible. 

Proof. If 𝒟(X) has a card (say Xz ) containing two isolated points (say x, y ), then {x}, {y} or 

{z} must be an isolated point of the given space X.  So, we assume that every card has at most 

one isolated point and we proceed by three cases as below.  

Case 1. Every card of X has exactly one isolated point. 

Assume, to the contrary, that X has no isolated point. Since every card in 𝒟(X) has an isolated 

point, every isolated point in the card must be contained in a 2 −point open set of X. Also an 

isolated point in a card Xz and an isolated point in a card non-homeomorphic to Xz would not 

be in the same 2 −point open set of X. If there exists a point not contained in any 2 −point 

open set of X, then the card corresponding to that point has no isolated point, a contradiction 

to our assumption in Case 1. Otherwise, all the cards of X are homeomorphic and |𝒟(X)|  =
 1, again a contradiction.  

Case 2. At least two cards have no isolated point. 

Now X has no isolated point (as otherwise, every card Xx, where x is a non-isolated point, 

would contain at least one isolated point, a contradiction). 

Case 3. Exactly one card has no isolated point. 

First we assume that |𝒟(X)|  =  2. If the card with no isolated point does not contain 2 −point 

open sets, then X has an isolated point. Otherwise, since the other card in 𝒟(X) has an isolated 
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point, X has at least one 2 −point open set. Now the two cards Xx and Xy, where {x, y} is the 

2 −point open set, are homeomorphic. Therefore, the card without isolated point must contain 

a 2 −point open set, which is a contradiction. Suppose the card with no isolated point contains 

2 −point open sets. Then we shall prove that X has no isolated point. Suppose, if possible, X 

has an isolated point, say x. Then clearly every card other than Xx contains the isolated point 

corresponding to x. Now, by our assumption, we have a card without isolated point; let it be 

the same Xx. Since X is almost discrete and {x} is open in X, Xx is also open in X. Therefore, 

every open set of Xxs also open in X. Thus τx  contains at least one 2 −point open set and it 

does not contain the point x; let it be {a, b}. Hence the card Xa must contain at least the two 

points x and b as isolated points, which is a contradiction. 

Now, consider the case that |𝒟(X)|  ≥  3. Let X c =  {φ, {a}, . . . , Xc} and Xd =  {φ, {b}, . . . , Xd} 

be two non-homeomorphic cards with isolated points. Suppose X has no isolated point. Then 

{a, c} and {b,d} are open in X. Two more subcases arise here as below. 

(i). {a, c} and {b, d} are equal in τX. 

(ii). {a, c} and {b, d} are disjoint. 

Suppose that (i) holds. Then as c ≠ d, we have c = b and a = d. Since X  has no isolated point, 

{a, c}  ⊆  U, for every U with a ∈ U or c ∈ U.  But in this case Xa  and Xc  are  homeomorphic 

by the mapping f ∶  Xa−→  Xc defined by f(W −  {a}) = W − {c} for all W ∈  τX. That is, 

Xa  =  Xd and Xc are homeomorphic cards of X, which is a contradiction. 

Suppose (ii) holds. Now a, b, c, d are pairwise distinct points of X. Since {a, c} and {b, d} are in 

τX, it follows that {a, b, c, d} and hence the complement X −  {a, b, c, d} are in τX. Now we 

consider the card, say Xe, with no isolated point. Clearly e ∈  V for some V ∈ τX and |V |  ≥
 3 , since X and Xe have no isolated point. Suppose any point of X, say t, together with the 

open set {a, c} or {b, d} form an open set of order three. Then {a, c, t} or {b, d, t}, say {a, c, t}  ∈
 τX. Therefore (X − {a, c})  ∩ {a, c, t}  =  {t}  ∈  τX, which is a contradiction to our 

assumption. Hence there exists no open set W of order 3 containing {a, c} in X. If there exists 

a 3-point open set A containing the point e, then A does not contain the points a, b, c and d. 

Therefore no 2-point open set of X contained in any 3-point open set of X. If V − {e}  ∈  τX, 

then (X − (V − {e}))  ∩  V =  {e}  ∈  τX, giving a contradiction. Otherwise, that is, V −
 {e} is not open in X. From the above arguments, we conclude τX  =
 {φ, {a, c}, {b, d}, {a, b, c, d}, V, . . . , X}. 

    If τX contains no other two point open sets, then the cards Xa, Xb, Xc and Xd are 

homeomorphic. Suppose X has some other 2-point open set. Then they are mutually disjoint, 

since X has no isolated point. Since no 2-point open set contained in 3-point open sets, all the 

cards Xz, where z is in a 2-point open set, are homeomorphic. Therefore, exactly one card in 

𝒟(X) has an isolated point, giving a contradiction and completing the proof.   

A topological space X is an n -open set topological space if there exist pairwise disjoint open 

sets U1, U2, . . . , Um, where |Ui|  =  n ≥  2, for i =  1 to m such that  ⋃ Ui
m
i=1 = X  and X has 

no non-empty open set of order fewer than n. 

Lemma 3. A space (X, τ) is an n -open set topology if and only if every card Xx of X has exactly 

one (n − 1) -point open set, say U, and the union of all disjoint n-point open sets equal Xx  −  U 
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and |𝒟(X)|  =  1. 

Proof. Necessity: Since  ⋃ Ui
m
i=1 = X and |Ui|  =  n ≥  2, for all i =  1 to m, every card must 

contain a (n−1) -point open set. Suppose, to the contrary, that Xx has two (n−1) -point open 

sets, say U1, U2. If U1 or U2 is open in X , then we have an (n − 1) -point open set in X, which 

is a contradiction. If both U1 and U2are not open in X, then U1 ∪ {x}  and U2 ∪  {x} are open 

in X and hence {x} is open in X, again a contradiction. Since  ⋃ Ui
m
i=1 = X every x ∈  X is 

contained in exactly one Ui and so every card  Xx  must contain a unique open set of order n −
1 and all other n -point open sets not containing a point x of X are open in  Xx. Hence the union 

of n -point open sets of  Xx is equal to  Xx  − (Ui  − {x}) and Ui  − {x} is not contained in any 

other Uj, j ≠  i. Now a mapping f defined from a card Xx into a card Xy by  

f(U) = {
U                            if  U ∈  τXx

 ;  y ∉  U

(U − {y}) ∪  {x}  if U ∈   τXx ;  y ∈  U 
 

 is clearly a homeomorphism and hence |𝒟(X)|  =  1. 

Sufficiency: Suppose X has an open set of order less than n. Then there exists a card containing 

an open set of order fewer than n − 1, giving a contradiction. Therefore the order of an open 

set in X must be at least n. By hypothesis, every card has a unique (n − 1) -point open set. 

Since n is the minimum order of an open set in X, any (n − 1) -point open set in the cards is 

not open in X. Therefore the (n − 1) -point open set along with the deleted point forms an n-

point open set in X. Now the n -point open sets of X are pairwise disjoint and  ⋃ Ui
m
i=1 = X , 

since Xx = ⋃ Uj − (Ui − {x})m
j=1 , where i ≠  j.                                 

By Lemma 3, it is clear that whether the unknown topology is an n -open set topology or not 

can be reconstructed from the given deck. Suppose that the unknown topology on X is an n -

open set topology. Then any card Xx contains an (n −  1) -point open set, say U, that is, not 

open in X. Consequently, U ∪  {x} must be open in X. Also all the n -point open sets are open 

in X. Hence τX  =  {V ∶  V ∈  τXx
, V ∩ U =  φ} ∪ {V ∪ {x}: V ∈ τXx

, V ∩ U ≠  φ}, which is 

clearly the required n -open set topology on X. This is concluded in the next theorem. 

Lemma 4. Every n -open set topological space is reconstructible. 

Lemma 5. Let X be a space endowed with a topology other than the 2 -open set topology and 

let | 𝒟 (X)|  =  1. Then X has an isolated point if and only if the card has an isolated point. 

Proof. If X has an isolated point (say x), then x must be an isolated point of every card except 

Xx. Since |𝒟(X)|  =  1, the card Xx also contains an isolated point. Conversely, the only 

topology on X yielding isolated points to all the cards but not to X is the 2 -open set topology. 

Therefore, by hypothesis, X has an isolated point.      

Every n -open set topology on X is an almost discrete topology. For, any open set U is a union 

of n-point open sets. Also the union of the remaining n -point open sets clearly equals Uc, since 

⋃ Ui
m
i=1 = X. Therefore U is closed. 

Theorem 6. Any almost discrete space with an isolated point is reconstructible. 

Proof. By Lemmas 1, 2 and 5, we can assume that X is almost discrete with an isolated point, 

say x. Now the card Xx is open in X and X ≅  Xx  ⊕  {x}.                     
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Lemma 7. Let X be an almost discrete space without isolated point. Then X has an open set of 

order n, where 2 ≤  n <  ∞ and n is minimum if and only if there exists a card containing a 

unique (n −  1) -point open set and no card contains an open set of order fewer than n −  1. 

Proof. Necessity: If X has an open set of order n, then at least n cards have an open set of order 

n −  1. Therefore at least one card in 𝒟(X), say Xy, must contain an open set of order n −  1. 

Suppose, to the contrary, that Xy contains two distinct (n −  1) -point open sets, say U1 and 

U2. If U1 or U2 is open in X, then we have an (n −  1) -point open set in X, a contradiction. 

Otherwise, U1 ∪  {y} and U2 ∪ {y} are open in X and so {y} is open in X, again a contradiction. 

Hence the (n −  1) -point open set is unique in Xy. If any card would contain an open set of 

order fewer than n −  1, then the space X would contain an open set of order fewer than n, a 

contradiction. 

Sufficiency: If X would contain an (n −  1) -point open set, then totally n −  1 cards would 

contain an (n − 2) −point open set and hence 𝒟(X) would contain a card having an (n −
2) −point open set, giving a contradiction and completing the proof.    

Theorem 8. Any almost discrete space X without isolated point is reconstructible if X has a 

finite open set. 

Proof. Let the minimum order of an open set in X be n. Then, by Lemma 7, there exists a 

card, say Xx, containing a unique (n –  1)-point open set, say U, such that no card in 

𝒟(X)contains an open set of order fewer than n –  1. Now τXx
 =  {φ, U, U1, U2, … , Xx}. Since 

U is not open in X, U ∪ {x} must be open in X. Also all n −point open sets of Xx are open in 

X. Thus, τX =  {V ∶  V ∈  τXx
, V ∩  U =  φ}  ∪  {V ∪  {x} ∶  V ∈  τXx

, V ∩  U ≠ τ(Xx) φ} is 

the desired topology on X. 
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