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Energy Harvesting is an approach to boost throughput and extend the lifespan of 

a wireless sensor network used for mission-critical applications where Exceeding 

the delay limit can cause serious hazards and even threats to human life. These 

applications include health monitoring, industrial processes, forest fire detection, 

etc.This study proposed an adaptive duty algorithm that can decrease delay time 

by modifying its duty cycle based on predicted and residual energy.A Python 

framework-based Holt-Winter technique with the additive trend and additive 

seasonality was used to predict the solar forecast and pre-estimate duty cycle.The 

model's performance for January was evaluated using prediction horizons of one 

hour, six hours, twelve hours, and twenty-four hours, and Data from the NREL 

Solar Radiation Research Laboratory were used to validate the suggested work. 

Comparing the suggested method to the prior work, average duty cycles and 

residual battery levels increase by 6% and 20%, respectively. Furthermore, the 

suggested strategy ensures that the residual energy level will always be higher 

than 60%. 

Keywords: Energy Harvesting, Wireless sensor network, Mission critical 

applications, Solar forecast, Adaptive Duty cycle. 

 

 

1. Introduction 

The Wireless sensor network is a collection of nodes deployed in Remote areas to gather 

information and send it to Gateways or servers. These sensor nodes are made up of 

microcontrollers, batteries, and transceivers,and major sources of power consumption are 

sensing, data aggregation, transmission, and reception of data, of which transmission and 
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reception account for most of it.In Initial applications, WSNs were battery-powered and used 

primarily for environmental monitoring and military applications[1] where energy efficiency 

was the main criterion to enhance the lifetime of sensor nodes[2][3][4].The transceiver in 

WSN is a Major source of power consumption, so whenever sensor nodes try to communicate 

with each other in a channel, there will be power consumption due to idle listening, packet 

reception, transmission, overhearing, and even due to collision of data. So to communicate 

efficiently, MAC protocol is used, which increases energy efficiency by properly scheduling 

the ON-OFF time of each sensor node, which refers to the duty cycle [5][6][7]of the sensor 

node. The Reduce Duty cycle increases the Energy Efficiency of traditional WSNs, but it also 

increases the time delay which is not acceptable in mission-critical applications. Recently, to 

power sensor nodes, researchers started using an ambient source of energy due to the 

development of small Solar modules, piezoelectric modules, RF Energy harvesters, and 

Thermal Energy harvesters, which opened the way for WSNs use in mission-critical 

applications which decrease network Latency through Harvested Energy along with Energy 

efficiency.These applications include Industrial process monitoring, Health monitoring, flood 

monitoring, and volcanic eruptions requiring low Delay or High throughput with power 

management. 

In an Energy Harvesting Wireless sensor network(EHWSN) Energy efficiency is achieved by 

operating sensor nodes in Electrically Neutral Operation (ENO)[8] condition, which can be 

accomplished by operating sensor nodes in such a manner so that energy consumption is 

always lower than energy harvesting. To find the best ambient source of energy with high 

energy density and availability, scientists examined a variety of energy sources[9], including 

thermal, solar, and radiofrequency energy, and found that Solar energy was the most abundant 

and had the best energy density. Another advantage of solar energy is that we can predict the 

duty cycle of the next slots with the help of predicted forecast energy which also helps in the 

proper design of protocols based on it, but solar radiation varies with time and place[10], so 

proper Forecasting techniques are required to achieve this. The major contributions of this 

paper are (1) Better and Fast Forecasting Technique (2)Maximize Average Duty cycle (3) 

Increased Prediction Horizon (4) Increased Battery life. 

 

2. Background and Related Work 

In mission-critical applications[11][12], delay Time is reduced by increasing the Duty cycle, 

but in energy-harvesting wireless sensor nodes (EHWSN), Harvested energy is stochastic in 

nature and shows temporal and spatial variation, so it is very difficult to make the constant 

duty cycle for all sensor nodes. As a result, extensive prediction algorithms are necessary, 

which involve numerous criteria such as trend, season ability, and past data labeling to 

Forecast available energy in the next Time slots and predictthe Duty cycle based on it.The 

motivation of the research was to optimize the Duty cycle of the sensor node with respect to 

Predicted harvested energy and Available battery Power. The literature survey on related 

works was divided into three categories: (1)Type of storage (2) Prediction Techniques (3) 

Energy management based on duty cycling. 
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2.1. Type of Storage 

It's vital to know which storage technology to employ because, in this article, the Harvest-

Store-Use paradigm was used to power the node and charge the batteries. Several Energy 

storage technologies are available to implement the energy buffer like 

Supercapacitors,NiCd,and NiMH batteries. According to the survey it’s come to know 

supercapacitor[13] has high efficiency but suffers from leakage current problems and has low 

energy density. NiCd[14] suffers from memory effect problems and is made from toxic 

chemicals. Lithium-ion batteries have high energy density but need complex charging circuits 

and limited charge and Recharge cycles. In this survey NiMH[15] comes out to be a strong 

contender with High Energy density but suffers from limited Charge-discharge cycle 

problems, Which can be increased by either increasing the Battery capacity or by decreasing 

the range of charge and discharge limit. 

2.2. Prediction Techniques 

Initial solar energy prediction for wireless sensor node was made exponentially weighted 

moving average[8][16],but due to non-linearity, trends, and seasonality Prediction accuracy 

was poor.To increase the Forecasting Accuracy, later on, the Researcher also used machine 

learning and time series methods. However, for univariate models, the time series method can 

provide a comparable result while being many times quicker than ML techniques[17].Many 

statistical time series forecasting methods have been utilized in WSN, with Auto Regressive 

Moving Average(ARMA)[18], Auto Regressive Integrated Moving Average(ARIMA), and 

Seasonal Auto-Regressive Integrated Moving Average (SARIMA)[19][20]  and Holt's winter 

method[21].It was discovered, that to add seasonability into ARIMA, one needs to get p, d, 

and q parameters as well as P, D, Q, and M parameters. This is a laborious process, but one 

can also use the "pdarima" package in Python to automatically extract these parameters, albeit 

occasionally this method is also inaccurate. In this paper, the Holt winter technique with the 

damped additive trend and seasonability or triple Exponential approach was employed because 

it delivers quick and exact findings with minimal data irregularities and takes into account 

level, trend, and seasonality when forecasting data. 

2.3.Energy Management based on Duty Cycle Approach 

To save power, the microcontroller switches between sleep and active mode which is known 

as the Duty cycle of the Sensor Node. However, owing to the extended sleep time, there will 

be a decrease in received data packets or in other words, the quality of service. Because each 

node in an EHWSN wakes up or sleeps at a different time or has a variable duty cycle 

depending on the ENO situation, the major emphasis of researchers is to improve the average 

duty cycle of each node or to optimize the throughput. Low-duty cycles are not permitted in 

mission-critical applications or event-driven systems where the loss of a transmission packet 

has caused the entire operation to be impeded.Kansal et al.[8]Was the first to develop the term 

"Electrically Neutral Operation(ENO)" For an energy-harvested wireless sensor network, the 

power consumption at any one moment must be less than the harvested energy, and the WSN 

can have an indefinite lifetime as a result. The connection between the rate at which energy is 

gathered, consumed, and stored in the battery was given by Kansal et at.[22]. As a 

consequence, duty cycle optimization based on harvested energy prediction converges to duty 

cycle optimization based on actual energy. Finally, rather than the lifespan problem, which 
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was the only subject of research in battery power WSN, now this topic has centered on 

throughputoptimization. It was discovered that raising the duty cycle can reduce delays or 

improve throughput, and the minimum duty cycle value is set by the routing or MAC layer 

protocol's minimum delay requirement. Various research was conducted, to optimize the Duty 

cycle which was either battery-centric only or battery centric along with Predicted Harvested 

Energy[23][24].In the most recent study[25], the authors used machine learning to forecast 

and modify Duty cycles based on the data priorities in mission-critical applications, where 

average duty for all types of data was achieved at 57%.In the above survey, it was evident that 

an average duty cycle of less than 70%was achieved till date. 
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Figure 1. Proposed Model 

Table 1. Symbols and their description 
Variable  Description 

( )slotP i   Power consumption in ith Slot 

( )D i   Duty cycle in ithSlot 

sunD   Initial Duty cycle when ( ) ( )Harvested ConsumedP i P i  

DarkD  

maxD  

 Initial Duty cycle when ( ) ( )Harvested ConsumedP i P i  

Maximum Duty cycle 
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minD  

maxDE  

1 2,   

1 1 2, ,    

ThresoldB  

1  

Minimum Duty cycle 

Power consumption when 
max( )D i D=  

Upper and lower Thresold of battery 

Values depends upon ( )HarvestedP i  

 

Thresold level of battery 

Average Harvesting Power 

 

3. Proposed work 

To Maximize the Average, maximum, and minimum Duty cycle formission-critical 

applications of the sensor nodeconcerning predicted Harvested energy and available Residual 

Battery, Three algorithms were proposed. One For Prediction and two for maximizing Duty 

cycle parameters with respect to predicted Energy and Residual Battery.The proposed system's 

flow chart is shown in Figure 1 with various Phases occurring one after the other to accomplish 

the desired result, andTable 1 lists all of the symbols used in the system along with their 

descriptions. 

3.1. Solar Energy Forecasting 

In the first Phase to compare with previous research, Historical data were taken from the NREL 

Solar Radiation Research laboratory,and The year 2010 to 2015 data was taken as training, 

and the Year 2016 data was for testing and validating the model.It was trained and validated 

for the January month data of six years to check the effectiveness of the model in low 

irradiance.This study employed the exponential method, in which a recent observation was 

given a higher weight than an older one, and the weight decays exponentially. Holt winter 

method with a damped additive trend and additive seasonality was used in this paper. It is an 

algorithm that combines smoothing equations for the label, trend, and seasonability with the 

exponential equation, and the equation of each one is shown below[26]. 

 
( 1)

ˆ
t j t t j t t j m kO L B S+ + − += + +  (1) 

 1 1 1 4 1( ) (1 )( )t t t m t tL O S L B  − − −= − + − +  (2) 

 
2 1 2 4 1( ) (1 )t t t tB L L B   

− −= − + −  (3) 

 3 1 4 1 3( ) (1 )t t t t t mS O L B S  − − −= − − + −  (4) 

Where ˆ
t jO + =Predicted outputs after time t , 

tL =level estimates,
tB =trend estimates,

tS

=seasonal estimates and m Denotes the number of seasonsand
1 , 2

 , 
3 , 4 are smoothing 

parameters. When acquiring solar data over a long period, seasonal fluctuation is nearly 

constant, therefore the additive technique is preferred over the multiplicative method[26], 

which produces poor forecasts. Data was collected from 7:00 a.m. to 5:30 p.m. with night data 

being removed. 

3.2. Initial Duty Assignemnt 

In this Phase, The initial Assignment of the duty cycle of each slot was made based on 

Harvested energy.If ( ) ( )Harvested SlotP i P i then such slot termed as Dark slot 
DarkD  andif 

( ) ( )Harvested SlotP i P i then such slots termed as Sun slots 
SunD  whichwere specified in (5) & (6) 
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and adapted according toKansal et al.[8] 

 

( )

( ) 1
( ) (1 )

Harvested

Dark

Slot

Harvested

P i
D

P i
P i

 

 
 
 =
 

+ − 
 

 

(5) 

 ( )

( )

Harvested

Sun

Slot

P i
D

P i

 
=  
 

 
(6) 

3.3. Maximum Duty Cycle Assignment Using Total Harvested Energy
TotalE : 

This phase was very crucial, in this first total Forceated harvested Energyfor N slots and Power 

consumption 
maxDE  were calculated when

max( )D i D= ,and these values were calculated 

according to Equations (7) and (8). 

 
( ) ( )

N

Total Harvested

i

E P i i N=     
(7) 

 
max max max(1 )D Active SleepE D P D P=  + −   (8) 

After that start assigning 
maxD from the First slot till the condition 

max( )InitialD i D  met or 

maxTotal DE E .When there was no sufficient energy to assign 
maxD then ( ) ( )InitialD i D i= for all 

slots which may take value either 
SunD or 

DarkD . 

3.4. Maximum duty cycleassignment using residual battery level 

This phase employed the battery's leftover energy to boost the duty cycle of those slots having 

duty cycles lower than 
maxD .If ( ) ( )Harvested SlotP i P i then 

max( )D i D= and

Re Re 1( 1) ( )sidual sidualB i B i + = + ;else if 
Re 1( ) sidual ThresoldB i B + ,the Maximum Duty cycle 

maxD will 

be allocated and the Battery level will be 
Re Re 1( 1) ( )sidual sidualB i B i + = − ;else if

2 Re 1( )Thresold sidual ThresoldB B i B+   + ,the Minimum Duty cycle 
minD will be assigned and the 

Battery level will be 
Re Re 2( 1) ( )sidual sidualB i B i + = − ;else

Re 2( ) sidual ThresoldB i B + ,Duty cycle will 

be zero.The last occurrencewill never occur since the Residual Battery level was always 

greater than the Threshold value in our method.The values of 
1 ,

1 ,
2 ,

1 and 
2 calculated 

from  Equations (9),(10),(11),(12) & (13) 

 1 max(1 ) ( ) ( ( ) ( ) )Harevested Harvested SlotD P i P i P i  =  −  +  −  (9) 

 
1 max max(1 )Active SleepD P D P =  + −   (10) 

 
2 min min(1 )Active SleepD P D P =  + −   (11) 

 1 max max(1 ) ( ) ( ( ) ( ) )Harevested Slot HarvestedD P i D P i P i  =  −  −   −  (12) 

 2 min min(1 ) ( ) ( ( ) ( ) )Harevested Slot HarvestedD P i D P i P i  =  −  −   −  (13) 

In Equations (9),(12) & (13) first part represents Harvested Energy stored during the sleep 

period,but in Equations (12),and (13), the second part denotes the extra energy taken from the 
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Residual battery to increase the Duty cycle from ( )D i  to 
maxD ,and ( )D i to 

minD in active 

mode,and in Equation (9), the second part denotes the extra harvested energy stored during 

active mode when harvested energy is greater than consumed Energy. 

3.5. Adaptive Duty cycle based on Actual Harvested Energy 

In this Phase or algorithm, the Duty cycle is assigned based on Actual Harvested energy,if 

( ) ( )Actual SlotP i P i  and also if ( ) ( )P i Actual P i Harvested then 
maxD will be assigned from the 

current slot to the further slots, until enough energy is left. If the former condition isn’t satisfied 

then 
minD will be assigned from the current slots to the further slots, until enough energy is left. 

 

4. Simulation and Results 

The simulation was carried out in a Python environment to maximize the Average Duty cycle 

of the Sensor Node with theHelp of predicted Harvested energy and available Residual Battery 

for mission applications. For simulation, we assume a 100 mW solar panel, a value of 75% 

and 60% for 
maxD and 

minD  , a battery with a capacity of 600mAh,and a Threshold value of 

360mAh for Battery. The sensor node consumes 100 mW in the active state and 3 mW in the 

sleep state and sends packets every second. 

4.1. Result Analysis 

To check the effectiveness of the proposed model, we compared the previous model's duty 

cycle[15][25][15] and found that among them Amandeep et al.[15]Achieved the highest value 

of duty cycles(66.29%) so far. So proposed work compared the proposed model with 

Amandeep’s work in terms of Predicted Energy, average Duty cycle, and Residual energy, and 

presented in Table 2  

Table 2.The performance comparison with Amandeep et al.[15] 
Prediction 
Horizon 

RMSE RMSE[15] Accuracy Accuracy[1
5] 

DAvg DAvg[15] Blast 

(mAh) 

Blast[15] 

(mAh) 

1Hour 3.98 9.89 88.28 87.27 71.136 66.85 366.25 293 

6 Hour 2.82 9.87 89.39 89.09 70.68 66.22 375.54 292 

12 Hour 
24 Hour 

4.17 
4.47 

13.06 
7.09 

76.38 
69.48 

78.18 
89.09 

71.14 
71.14 

67.40 
64.70 

368.80 
366.45 

293 
294 

4.2. Result Analysis of Solar Prediction  

As shown in Table 2, the proposed model performs better in terms of RMSE and Accuracy 

over a 1 to 12-hour prediction horizon, but Accuracy deteriorates after that. Figure 2depicts 

the proposed work's and previous work's prediction results. The proposed forecast is based on 

a 100mW solar panel with an average harvesting power of 62.04 mW in January, and the labels 

"Predicted_GHI_1Hour" to "Predicted_GHI_24Hour" reflect prediction results for 1 to 24-

hour Forecasting. The proposed work prediction was from 7:00 a.m. to 5:30 p.m., whereas the 

previous one was from 7:30 a.m. to 4:30 p.m., so the forecasting horizon increased by 1:30 

hour in our situation. 
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(a) 

 
(b) 

Figure 2. Predicted solar Energy for different horizons (a) Proposed work (b)Aamandeep’s 

work 

4.3. Result analysis of sensor nodeduty cycle and residual battery energy 

The duty cycle was determined by the amount of energy collected as well as the available 

Residual Battery Energy. First, we attempted to assign a maximum duty cycle using Harvested 

Energy, and in the absence of solar energy, we used Residual Energy to keep the duty cycle 

between 75% and 60%, respectively. Average duty cycles of 71.136%, 70.68%, 71.14%, and 

71.14% were determined and displayed in Table 2 for 1,6,12, and 24 ahead predictions, and 

as shown in Figure 3 results were better than Amandeep's 66.85%,66.22%,67.40%, and 

64.70% for the same prediction horizon, and also maintain the values between the predefined 

maximum and minimum values. It was also observed from Figure 4 that average residual 

energy of 366.25mAh, 375.54mAh, 368.80mAh, and 366.45mAh remained in the battery for 

all prediction horizons and were better than the previous works value 293mAh, 292mAh, 

293mAh and 294mAh,and thesewere also above the predefine 60% Thresholdvalue.In Figure 

3, DC_1 to DC_24 refers Duty cycle, and in Figure 4 battery_capacity_1 to 

battery_capacity_24 refers to the residual battery level for the 1 to 24 Hour prediction horizon. 

 
(a) 

 
(b) 

Figure 3. Predicted Duty cycle comparisons for 20/01/16 (a) proposed work (b) 

Aamandeep’s work 
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(a) 

 
(b) 

Figure 4. Residual Battery level comparison for 20/01/16 (a) proposed work (b) 

Aamandeep’s work 

 

5. Conclusion 

The proposed work increased the average Duty cycle by 6% and the Residual battery level by 

20% as compared to previous works. To achieve this, solar Energy was predicted for different 

prediction horizons using the Holt winter method with a damped additive trend and additive 

seasonality, after this Duty cycle of the next slots was pre-estimated and maximized using 

Predicted harvested energy and Residual Battery. This approach improves the lifetime and 

Throughput of mission-critical applications by optimizing the minimum, maximum, and 

average duty cycle. The Adaptive Duty Cycle Approach re-adjusts these pre-estimated Duty 

cycles depending on Actual Solar measurements in each slot. The Python framework was used 

to validate the above results. In the future, proposed methodologies will be expanded from 

sensor node to network study by properly developing and optimizing MAC layer design for 

Energy Harvesting wireless sensor networks to boost network throughput. 
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