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This article introduces a novel methodology for the summarization of Hindi text, 

leveraging the advanced capabilities of the Pointer-Generator Gated Neural 

Network (PGGNN) model. Prior to the implementation of the model, a 

comprehensive series of preprocessing steps is executed to significantly enhance 

the quality of the input text. These preprocessing measures involve the removal 

of emojis, thorough text cleaning, handling of hashtags, filtering out special 

characters, minimizing gaps, and overall improvement of the Hindi text's 

linguistic structure. The culmination of these protocols results in the 

transformation of the original 'article' within the data frame into a refined 'cleaned 

article' column, poised for subsequent in-depth analysis. 

The summarization process is meticulously organized into two distinct phases. In 

Phase 1, unsupervised methods are employed, including stemming, suffix 

stripping, the creation of a Document Term Matrix (DTM), sentence scoring, 

sorting, selection of the top 30% of sentences, and the compilation of extractive 

summaries. Phase 2 introduces the proposed PGGNN paradigm, encompassing 

initialization, architectural considerations, and the execution of a forward pass. 

To evaluate the performance of the summarization models, a comparative 

analysis is conducted, specifically pitting the PGGNN against the VGG 16 model. 

Metrics such as Rouge-1, Rouge-2, Rouge-L, and BLEU Score are employed in 

this assessment. Notably, the PGGNN approach outshines existing methods, 

achieving a Rouge-1 score of 76.89, a Rouge-2 score of 59.24, a Rouge-L score 

of 49.61, and an outstanding BLEU Score of 81.53. 

This research signifies a significant advancement in the domain of Hindi text 

summarization, offering a meticulous approach that not only involves cutting-

edge neural network models but also places emphasis on robust preprocessing 

techniques, ultimately resulting in superior summarization performance 
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compared to established models.  
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1. Introduction 

Text summarization in Hindi is a critical and evolving field within natural language 

processing, aiming to condense lengthy Hindi text while retaining its key information and 

meaning. As the volume of digital content in Hindi continues to grow exponentially, the need 

for effective summarization techniques becomes increasingly pronounced. This introduction 

explores the significance, challenges, and methodologies associated with Hindi text 

summarization[1]–[4]. The vast and diverse Hindi-speaking population generates an extensive 

amount of textual data across various domains, including news articles, social media posts, 

research papers, and legal documents. Efficiently summarizing this content is essential for 

facilitating quick comprehension, information retrieval, and accessibility. Moreover, as Hindi 

is one of the most widely spoken languages globally, the development of robust text 

summarization techniques in Hindi contributes significantly to advancing natural language 

processing on a global scale. 

 

Fig. 1 Text Summarization[5] 

Summarizing Hindi text poses unique challenges due to the language's complexity, rich 

morphology, and varied sentence structures. Hindi, being a morphologically rich language, 

often incorporates compound words and complex linguistic constructs, making it challenging 

to develop automated summarization systems that capture nuanced meanings accurately. 

Additionally, the availability of informal language, dialectal variations, and the use of multiple 

scripts (Devanagari and Romanized) further compound the complexity of the task[6]–[10]. 

Overcoming these challenges requires specialized algorithms and linguistic resources tailored 

to the intricacies of the Hindi language. Several methodologies are employed in Hindi text 

summarization, ranging from traditional rule-based approaches to modern machine learning 

and deep learning techniques. Extractive summarization involves selecting important 

sentences or phrases directly from the input text, while abstractive summarization involves 

generating new sentences that capture the essential information[11]–[15]. Lexical analysis, 
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semantic analysis, and sentiment analysis play pivotal roles in identifying key content for 

extraction or abstraction. In the context of Hindi text summarization, leveraging linguistic 

resources such as Hindi WordNet and incorporating language-specific features become 

imperative. Machine learning models, including support vector machines, decision trees, and 

random forests, are trained on Hindi corpora to perform extractive summarization. Meanwhile, 

deep learning models, such as recurrent neural networks (RNNs) and transformer-based 

architectures like BERT (Bidirectional Encoder Representations from Transformers), have 

shown promise in abstractive summarization tasks.The applications of Hindi text 

summarization span a multitude of domains, including journalism, legal documentation, social 

media analysis, and academic research. Journalists can utilize automated summarization tools 

to quickly comprehend and summarize news articles, while legal professionals can expedite 

the review of legal documents. Social media platforms can enhance user experience by 

providing concise summaries of lengthy posts, and researchers can efficiently navigate through 

a vast corpus of scientific literature[16]–[20]. The field of Hindi text summarization is 

dynamic, with ongoing research focusing on enhancing the accuracy, linguistic nuances, and 

domain specificity of summarization systems. As technology advances, integrating innovative 

techniques, leveraging large-scale Hindi language resources, and addressing the unique 

challenges posed by Hindi morphology will be crucial for the continued development of 

effective summarization tools. This introduction sets the stage for a comprehensive exploration 

of the methodologies, challenges, and applications of Hindi text summarization, offering a 

glimpse into the exciting and evolving landscape of natural language processing in the Hindi 

language[18], [21]–[24]. 

1.1 Research question or problem. 

1.1.1 Identification of the Research Problem 

The research problem in Hindi text summarization lies in developing effective and 

linguistically nuanced techniques to condense extensive Hindi textual content while preserving 

key information. Challenges stem from the language's complex morphology, varied sentence 

structures, and the prevalence of informal language. Additionally, addressing dialectal 

variations, multiple scripts, and the need for domain-specific summarization further 

compounds the problem. Navigating these intricacies is essential for advancing the field and 

creating robust summarization models tailored to the unique characteristics of the Hindi 

language [16]–[18]. 

1.1.2 Relevance to the Field 

Hindi text summarization is profoundly relevant to the field as it addresses the escalating 

volume of digital content in Hindi across diverse domains. Effective summarization enhances 

comprehension, facilitates information retrieval, and promotes accessibility in a language 

spoken by a vast population [19]–[21]. The research is crucial for journalism, legal 

documentation, social media analysis, and academic research in Hindi. By advancing natural 

language processing capabilities specific to Hindi, this research contributes significantly to 

global efforts in linguistic technology, catering to the needs of a diverse and extensive Hindi-

speaking audience while fostering advancements in the broader field of computational 

linguistics. 
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1.1.3 Single-Focused Inquiry (For Research Question) 

What techniques and methodologies can be employed for effective Hindi text summarization, 

considering the language's rich morphology, varied sentence structures, and the prevalence of 

informal language? This single-focused inquiry aims to explore innovative approaches, 

including the adaptation of existing algorithms and the development of language-specific 

models. The research question seeks to address the unique challenges posed by Hindi, with a 

specific focus on creating concise and accurate summaries that capture the essence of the 

original content. The inquiry aims to contribute to the advancement of natural language 

processing in Hindi and improve the accessibility of information for a diverse Hindi-speaking 

audience. 

1.2 Background and context for the study 

1.2.1 Historical overview 

The historical overview of Hindi text summarization unveils the evolutionary trajectory of 

efforts to distill meaningful insights from extensive textual content in the Hindi language. 

While the roots can be traced back to early linguistic studies, the digital age has catalyzed a 

surge in research endeavors, particularly with the proliferation of online content. The advent 

of computational linguistics and natural language processing marked a paradigm shift, 

prompting scholars to explore ways of automating the summarization process. Early 

approaches focused on rule-based systems, attempting to capture linguistic structures in Hindi. 

However, the rapid advancement of machine learning and deep learning techniques in recent 

decades has ushered in a new era. Modern methodologies leverage sophisticated algorithms, 

neural networks, and language models trained on vast Hindi corpora, enabling the creation of 

more contextually aware and linguistically nuanced summarization systems. The historical 

progression reflects an ongoing endeavor to adapt to the intricacies of the Hindi language, 

addressing challenges posed by its morphological richness and diverse linguistic structures. 

As the field continues to evolve, the historical narrative underscores the iterative nature of 

research, emphasizing the constant refinement of techniques to meet the demands of efficient 

and effective Hindi text summarization[22], [23]. 

1.2.3 Rationale and Significance 

The rationale for Hindi text summarization lies in the imperative to distill crucial information 

from vast textual data, addressing the unique linguistic intricacies of Hindi. Significantly, 

efficient summarization enhances comprehension, aids information retrieval, and 

accommodates the needs of a diverse Hindi-speaking audience. This research's significance 

extends to journalism, legal documentation, social media analysis, and academic research. By 

advancing natural language processing capabilities in Hindi, the study not only contributes to 

linguistic technology but also fosters accessibility and comprehension in a language spoken 

by a substantial global population, thus bridging crucial gaps in information processing and 

dissemination. 

1.3 Research Objectives 

• Introduce a new summarization technique for Hindi text using the Pointer-Generator 

Gated Neural Network (PGGNN) model. 
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• To conduct a series of preprocessing steps to enhance the quality of the input text, 

including removing emoji’s, fully cleaning the text, handling hashtags, filtering special 

characters, minimizing gaps, and improving Hindi text. 

• To organize the summarization process into two phases: Phase 1 utilizing 

unsupervised methods (stemming, suffix stripping, creating a Document Term Matrix, scoring 

sentences, sorting, and extracting summaries) and Phase 2 introducing the proposed PGGNN 

paradigm. 

• Detail the implementation of the PGGNN model, covering initialization, architecture, 

and a forward pass, as part of Phase 2 of the summarization process. 

• Conduct a comparative evaluation to analyze the performance of summarization 

models, specifically comparing the PGGNN model with the VGG 16 model. 

1.4 Structure of the paper 

• Introduction 

 Introduce the research area, stating objectives, problem statement, and significance concisely 

for a compelling overview. 

• Literature Review 

Summarize key studies, identify gaps, and present the theoretical framework to contextualize 

the research. 

• Methodology 

 Detail research design, data collection, analysis methods, sample selection, and variable 

specifications to ensure robust methodology. 

• Results and Discussion 

Present findings clearly and interpret results, comparing them with literature, exploring 

implications, and fostering discussion. 

• Conclusion 

Summarize key findings, contributions, acknowledge limitations, and propose future research 

directions for a cohesive conclusion. 

 

2 Literature Review 

Table 1. Surveys relevant existing work. 

Author / Year Method Research gap Controversies References 

Kumari/2023 Sequence To 

Sequence 

(SeqTOseq) Neural 
Networks 

Hindi abstractive text 

summarization is 

understudied 

English outperformed 

regional languages in 

abstractive text 
summarization. 

[26] 
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Chellatamilan/2023 Bidirectional Encoder 
Representations of 

Transformers (BERT) 

Text summarizing 
models for COVID-

19 fail to account for 

context subtleties and 
explore other 

summary methods 

Exclusive NLP model 
focus, contextual 

nuances missed, and 

limited measure 
evaluation scope may 

lead to criticisms 

[8] 

Bandari/2023 Deep Recurrent 
Neural Network 

(DRNN) is 

Lack of Coot Remora 
Optimization 

research in Hindi text 

summary 

Unfairly summarizing 
English texts over 

Hindi 

[33] 

Kumari/2022 Gradient descent, 

stochastic gradient 

descent, adaptive 
gradient, adadelta, 

Adam, and RMSprop. 

Some 

Limited exploration 

of optimizers' impact 

on abstractive 
summarization 

effectiveness. 

Dispute arises over the 

claim that extractive 

summarization has 
peaked, prompting 

skepticism and debate 

on summarization 
approaches. 

[22] 

Wazery /2022 Deep learning Limited exploration 

of abstractive Arabic 

text summarization 
models and their 

neural network 

components' 
performance. 

Debate may arise over 

the generalizability of 

results and the claim 
of superiority in 

abstractive Arabic text 

summarization 
models. 

[21] 

Agarwal / 2022 IndicBART Hindi abstract text 

summarization 
research is scarce. 

Text summarizing 

advances may be 
applied unequally, 

disregarding 

languages like Hindi 
with less research. 

[15] 

Liu/2022 EDA-BoB Minimal lightweight 

text generation model 

exploration without 
compromising data 

quality or computing 
resources 

Possible doubts 

concerning the 

lightweight text 
generation model's 

resource efficiency 
and generalizability 

[9] 

Manojkumar/2022 LexRank method 

outperforms 

Little research on 

summarizing 

methods for food 
review sentiment 

interpretation & user 

comprehension 

Critics may question 

results generalizability 

and overreliance on 
specific measures 

when assessing food 

review summary 
systems 

[24] 

Rani/2022 KNN text classifier, 

K-Means text 
clustering, and 

Limited corpus-

specific stopword 
research in Hindi text 

mining, focusing on 

model efficacy and 
behavior 

Ranking systems are 

subjective and 
stopword lists may not 

be generalizable, 

which may lead to 
criticism 

[1] 

Tanfouri/2021 Essex Arabic 

Summaries Corpus 

EASC. 

Limited exploration 

of genetic algorithms 

for extractive Arabic 
text summarization. 

Dispute may arise over 

the effectiveness of 

genetic algorithms in 
Arabic text 

summarization using 

an extractive 
approach. 

[2] 
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jain/2021 Extractive methods 

and neural networks 

Few Punjabi 

language summary 
studies have used 

neural networks for 

full extractive 
summarization 

Some languages, like 

Punjabi, are 
underrepresented in 

text summarizing 

while others mature 

[34] 

Supreet /2020 Natural language 

Processing 

Limited algorithmic 

Hindi text 
summarizing 

research, especially 

selection and 
elimination-based 

and comparing 

methods 

Different Hindi text 

summarizing 
algorithms raise 

questions regarding 

methodological bias 
and linguistic 

idiosyncrasies. 

[19] 

 

3 Research Methodology 

3.1 Data Collection 

Web crawling and web scraping techniques are employed to gather data for Hindi text 

summarization. Through automated processes, relevant information is extracted from various 

web sources, enabling the creation of concise and informative summaries in the Hindi 

language. This approach involves navigating the web, retrieving data, and subsequently 

processing it to generate succinct summaries. 

3.1.1 Algorithm for scrap data from Wikipedia 

Step 1: Select the specific Wikipedia page from which you wish to extract data. 

Step 2: Employ browser development tools to inspect the HTML structure and discern 

pertinent HTML tags and classes that include the desired data. 

Step 3 - Select an appropriate web scraping tool or package, such as Python with Beautiful 

Soup or Scrapy. 

Step 4: Utilize a package manager such as pip to install the necessary libraries, such as 

Beautiful Soup and requests. 

 Step 5: Employ the requests library to dispatch an HTTP GET request to the selected 

Wikipedia page and employ Beautiful Soup to analyze the HTML content of the response. 

 Step 6: Identify the precise HTML elements (such as div or span) that hold the necessary data, 

and extract the relevant information using the appropriate methods provided by Beautiful 

Soup. 

Step 7: Develop a mechanism to traverse through pagination in order to handle data that is 

spread across numerous pages. 

Step 8: involves processing the scraped data, which includes responsibilities such as deleting 

HTML tags and managing special characters. 

Step 9: Select the option to store data either locally, in a database, or conduct additional 

analysis within the scraping script. 
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Step 10: Incorporate error handling to address connection failures, missing data, or 

modifications in the website's structure. 

Step 11: Verify the presence of the website's robots.txt file and adhere to the specified scraping 

guidelines provided by the website. 

Step 12: Implement time intervals between requests to prevent server overload and conform 

to ethical scraping guidelines. 

Step 13: Evaluate the scraping script on several Wikipedia pages and make adjustments 

according to varied page topologies. 

3.1.2 Pseudo Code 

Code for Data Scraping from Wiki pedia 

FUNCTION scrape_wikipedia(url): 

     Send HTTP GET request to the Wikipedia page 

    Response = requests. get(url) 

     

    Check if the request was successful (status code 200) 

    IF response.status_code == 200 THEN 

        # Parse HTML content using Beautiful Soup 

        soup = Beautiful Soup(response. content, 'html. parser') 

        

        # Find all the section headings on the page (assuming they are in <span> tags with 

class "mw-headline") 

        section_ headings = soup. find all('span', {'class': 'mw-headline'}) 

         

        # Extract and print the titles of the sections 

        FOR EACH heading IN section_ headings DO 

            PRINT heading. text 

        END FOR 

    ELSE 

        PRINT "Failed to retrieve the page. Status code: {response.status_code}" 

    END IF 

END FUNCTION 
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# Example usage 

Wikipedia _ url = 'https://en.wikipedia.org/wiki/Web _scraping' 

Scrape _ Wikipedia(wikipedia_url) 

The given pseudo code outlines a function called `scrape _wikipedia` that is created to retrieve 

and display the section heads from a specific Wikipedia page. The function accepts a URL as 

a parameter, sends an HTTP GET request, then, upon receiving a successful response (status 

code 200), employs Beautiful Soup to analyze the HTML content. The program thereafter 

identifies section heads by assuming that they are contained within `<span>` tags with the 

class "mw-headline." The titles of these sections are retrieved and displayed. If the request is 

not successful, an error message is generated that displays the status code. The provided 

example illustrates invoking the function with a designated Wikipedia URL for the purpose of 

web scraping. 

3.2 Pre-processing 

The provided script presents a systematic methodology for text preprocessing within the 

framework of a Data Frame housing articles. This method adopts a sequential cleaning process 

aimed at elevating the quality and uniformity of the textual data. The initial step targets the 

removal of emojis from the text, employing the demoji. replace functionality. Following this, 

a comprehensive method is implemented to address diverse elements that could introduce 

noise into the data. This encompasses the elimination of punctuation, links, mentions, and 

newline characters, coupled with the conversion of text to lowercase to ensure consistency. 

specialized approach, 'clean hashtags,' is devised to effectively handle hashtags, discerning 

between those at sentence ends and those within sentences. This approach ensures appropriate 

treatment of hashtags based on their contextual usage in social media content. To filter out 

undesirable special characters, the 'filter chars' method is utilized, selectively excluding words 

containing specified characters like '&' and '$'. This selective filtering preserves the integrity 

of words that may be disrupted by unwanted characters. The 'remove mult spaces' method 

focuses on eliminating multiple consecutive spaces in the text using regular expressions, 

replacing sequences of two or more spaces with a single space, enhancing text readability and 

consistency. For handling Hindi text, the 'clean hindi text' method is employed. Tailored for 

Hindi language considerations, it removes non-Hindi Unicode characters, ensuring sensitivity 

to the linguistic nuances of Hindi text[35], [36]. The overall methodological approach 

culminates in the application of these cleaning methods to the 'article' column of the Data 

Frame. This results in the creation of a new 'cleaned article' column, facilitating a side-by-side 

comparison of the original and cleaned articles within the Data Frame. 
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Fig. 2 Pre-processing Flowchart 

The method involves several essential steps: 

1) Emoji Removal: 

Utilizing `demoji.replace`, the method eliminates emojis from raw text, emphasizing a more 

text-centric representation. 

2) Comprehensive Text Cleaning: 

Executing `strip_all_entities` removes punctuation, links, mentions, newline characters, and 

converts to lowercase, ensuring uniformity and reducing extraneous information. 

3) Hashtag Handling: 

`clean hashtags` differentiates hashtags at sentence ends and in the middle, addressing them 

contextually. 

4) Special Character Filtering: 

Using `filter chars`, special characters like '&' and '$' are selectively removed, preserving 

textual integrity. 

5) Space Reduction: 

`remove multi spaces` employs regular expressions to eliminate multiple consecutive spaces, 

enhancing readability. 

6) Hindi Text Cleaning: 

`clean hindi text` specifically caters to Hindi text, removing non-Hindi Unicode characters and 

ensuring linguistic sensitivity. 

7) Application to Data Frame: 

Applying these steps to 'article' in the Data Frame creates a 'cleaned article' column, capturing 

the enhanced text. 
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3.3 Phase.1 Unsupervised  -  Extractive summary generation 

 

Fig. 3 Flowchart of Unsupervised Phase - Extractive summary generation 

The presented text summarization algorithm is a comprehensive method crafted to distill the 

essence of an article into a concise, informative summary. Outlined as a series of strategic 

steps, each contributes to the overall efficiency of the summarization process. The initial phase 

involves loading article content from 'article.txt' and stop words from 'stopwords.txt.' 

Processing each line of the article as a sentence, stop words are extracted, providing the 

algorithm with raw textual data and essential linguistic elements for effective summarization. 

Advancing, the algorithm employs stemming to condense words to their root forms, a common 

technique in natural language processing. Simultaneously, the Suffix Strip Algorithm 

systematically removes word suffixes, yielding a set of stemmed words that efficiently 

encapsulate the article's vocabulary. This dual approach ensures a streamlined and effective 

representation of the article's core meaning. 

     3.3.1 Stemming and Suffix Stripping 

For every sentence 𝑠ᵢ in the article, stemming and suffix stripping can be expressed as a 

function 𝑆: (𝑠ᵢ) → set of stemmed words, where (𝑠ᵢ) represents the resulting set of stemmed 

words for the sentence 𝑠ᵢ. 

   Suffix Strip Algorithm 

1: [u"ो ",u"ो ",u"ो ",u"ो ",u"ो ",u"िो",u"ो "], 

2:[u"कर",u"ो ओ",u"िोए",u"ो ई",u"ो ए",u"न ",u"न ",u"न ",u"त ",u"ो ो ",u"त ",u"त ",u"ो ो ",u

"ो ो ",u"ो ो ",u"ो ो "], 

3:[u"ो कर",u"ो इए",u"ो ई ",u"ो य ",u"ो ग ",u"ो ग ",u"ो ग ",u"ो ग ",u"ो न ",u"ो न ",u"ो त ",u

"ो त ",u"ो त ",u"त  ",u"ो ओ ",u"ो ए ",u"ो ओ ",u"ो ए ",u"ो आ "], 

4:[u"ो एग ",u"ो एग ",u"ो ओग ",u"ो ओग ",u"ए ग ",u"ो ो ग ",u"ए ग ",u"ो ो ग ",u"ो ो ग ",u"ो ो ग "

,u"ो त  ",u"न ओ ",u"न ए ",u"त ओ ",u"त ए ",u"िोय  ",u"िोय  ",u"िोय  "], 

5:[u"ो ए ग ",u"ो ए ग ",u"ो ऊ ग ",u"ो ऊ ग ",u"ो इय  ",u"ो इय  ",u"ो इय  "], 
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      3.3.2 Document Term Matrix (DTM) Construction 

Consider 𝑁 as the total number of stemmed words and 𝑀 as the total number of cleaned 

sentences. The Document Term Matrix (DTM) element 𝑑𝑡𝑚𝑖𝑗 is defined as the frequency of 

the 𝑖-th stemmed word in the 𝑗-th cleaned sentence: 𝑑𝑡𝑚𝑖𝑗 = frequency of stemmed word𝑖 in 

cleaned sentence𝑗. 

     3.3.3   Sentence Scoring 

The score 𝑠𝑐𝑜𝑟𝑒𝑗 for each cleaned sentence 𝑗 is determined by summing the frequencies of all 

stemmed words in that sentence, normalized by the number of words in the cleaned sentence: 

scorej =
∑ dtmij

N
i=1

Number of words in cleaned Sentence
    (1) 

    3.3.4 Sentence Sorting 

Sentences are sorted by their scores, creating an ordered list of indices 𝐼, where sentences are 

arranged in descending order of importance: 𝐼 = Sort (List of Sentence Scores). 

    3.3.5 Top 30% Selection 

The top 30% of sentences are chosen and represented by the set 𝑇, where 𝑇 contains the indices 

of the selected sentences: 𝑇 = Top 30%. 

   3.3.6 Ordering Selected Sentences 

The chosen sentences are organized based on their occurrence in the original article, yielding 

a list 𝑂 of indices that signifies the ultimate order of sentences in the summary: 𝑂 = Sort(𝑇). 

   3.3.7 Summary Assembly 

The conclusive summary is crafted by assembling the selected sentences in the order specified 

by 𝑂: Summary = [𝑠ᵢ for 𝑖 in 𝑂]. 

Following the generation of stemmed words, the algorithm proceeds to construct a Document 

Term Matrix (DTM). The DTM is a representation of the frequency of stemmed words in each 

sentence, organized in a two-dimensional array. The rows correspond to the stemmed words, 

and the columns correspond to the cleaned sentences. The cleaning process involves 

eliminating stop words and preparing sentences for further analysis. The DTM, thus 

constructed, serves as a quantitative tool to unveil relationships between words and sentences. 

Scoring sentences is the subsequent step, where each sentence is assigned a score based on the 

sum of word frequencies in the DTM. This score is further normalized by the number of words 

in the cleaned sentence, providing a measure of the sentence's relative significance. The 

resulting scores are stored in a list ('sentence scores'), which becomes a crucial component in 

the subsequent steps of the algorithm. The algorithm then proceeds to sort the sentences based 

on their scores. The top 30% highest-scoring sentences are selected, ensuring that the most 

important information is retained for inclusion in the final summary. To maintain coherence 

in the summary, the selected sentences are ordered based on their appearance in the original 

article. This step ensures that the summary retains a logical flow and captures the essence of 

the article in a condensed form. Finally, the algorithm assembles the selected sentences into a 

coherent summary, which is appended to the 'summary.txt' file. The resulting file represents a 
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distilled version of the original article, focusing on the most crucial and informative content. 

This text summarization algorithm intricately combines linguistic techniques, matrix 

operations, and scoring mechanisms to automate the summarization process. The systematic 

and structured approach ensures that the resulting summary is not only concise but also 

coherent, making it a valuable tool for processing and extracting key insights from extensive 

textual data. 

3.3.8 Proposed Algorithm 

Extractive Summary Generation Algorithm.1 

Function load text(file path): 

    Read the content of the file path. 

    Tokenize the content into sentences. 

    Return a list of sentences. 

Function load stop words(stop words file path): 

    Read the stop words file path. 

    Tokenize the content into stop words. 

    Return a list of stop words. 

Function stem and strip suffix(sentence, stop words): 

    Initialize an empty set called stemmed words. 

    Tokenize the sentence into words. 

    For each word in the tokenized sentence: 

        If the word is not in stop words: 

            Apply stemming and suffix stripping. 

            Add the resulting stemmed word to stemmed words set. 

    Return the stemmed words set. 

Function build dtm(sentences, stemmed words list): 

    Initialize an empty Document Term Matrix (DTM) as a 2D array. 

    For each sentence in sentences: 

        Tokenize the sentence into cleaned sentence. 

        For each word in cleaned sentence: 

            If the word is in stemmed words list: 

                Increment the frequency of the word in the corresponding DTM cell. 

    Return the DTM. 
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Function calculate sentence scores(dtm, sentences): 

    Initialize an empty list called sentence scores. 

    For each sentence in sentences: 

        Calculate the score based on the sum of word frequencies in the DTM. 

        Normalize the score by dividing it by the number of words in the sentence. 

        Append the normalized score to sentence scores. 

    Return sentence scores. 

Function summarize article(article file, stop words file, summary file): 

    sentences = load text(article file) 

    stop words = load stop words(stop words file) 

    stemmed words list = [] 

    dtm = [] 

    For each sentence in sentences: 

        Stemmed words = stem and strip suffix(sentence, stop words) 

        Stemmed words list.append(stemmed words) 

    dtm = build dtm(sentences, flatten(stemmed words list)) 

    sentence scores = calculate sentence scores(dtm, sentences) 

    sorted indices = sort indices based on scores(sentence scores, descending=True) 

    top percentage = 0.3 

    top count = round(len(sorted indices) * top percentage) 

    selected indices = select top indices(sorted indices, top count) 

    ordered indices = sort indices based on order(selected indices, original order=sentences) 

    summary = assemble summary(sentences, ordered indices) 

    write summary to file(summary, summary file) 

 

3.4 Phase -2 Proposed Pointer Generator GRU Network Model (PGGNN) 

The Pointer-Generator Network (PGN) model, integrated with Gated Recurrent Units (GRU), 

presents an innovative sequence-to-sequence architecture tailored for abstractive text 

summarization. Diverging from conventional models, this architecture incorporates attention 

mechanisms and a pointer-generator network, addressing challenges associated with out-of-

vocabulary words while enhancing content preservation. The model's structure begins with an 

embedding layer for word representation, succeeded by two GRU layers for encoding and 
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decoding input sequences. Leveraging attention mechanisms, the model captures pertinent 

information from the input sequence during decoding. Additionally, a pointer-generator 

network dynamically alternates between generating words from the vocabulary and pointing 

to words in the source sequence. The final output comprises probability distributions for both 

generating words from the vocabulary and pinpointing specific positions in the input sequence. 

In contrast to preceding models, the PGN with GRU overcomes limitations through the 

utilization of GRU, an efficient recurrent neural network (RNN) that captures long-range 

dependencies. The attention mechanism amplifies the model's capacity to concentrate on 

crucial segments of the input sequence, crucial for generating informative summaries. The 

pointer-generator network introduces a novel mechanism for handling rare or unseen words, 

enhancing coverage and informativeness in generated summaries. Critical hyperparameters, 

including vocabulary size, embedding dimension, and hidden units, play a pivotal role in 

configuring the model. Training utilizes the Adam optimizer and a custom loss function 

combining standard sequence-to-sequence loss with coverage loss, enriching the generation 

process.The PGN with GRU epitomizes an advanced approach to abstractive summarization, 

harnessing GRU-based architecture, attention mechanisms, and a pointer-generator network. 

Its proficiency in handling out-of-vocabulary words and emphasis on pivotal content positions 

it as a noteworthy advancement in natural language processing, contributing to more effective 

text summarization applications. 

 

Fig. 4 Flowchart of Pointer Generator GRU Network Model (PGGNN) 

3.4.1 Proposed Algorithm of Pointer Generator GRU Network Model (PGGNN) 

High-Level Pseudo code of Model 

 

Initialization: 

Initialize the model with parameters such as vocabulary size (vocab size), embedding 

dimension (embedding dim), and hidden units (hidden units). 

Architecture: 
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Create an embedding layer to convert word indices into dense vectors of fixed size 

(Embedding (vocab size, embedding dim)). 

Use a GRU layer for both encoding and decoding input sequences, with the encoder 

returning sequences and states (GRU(hidden units, return sequences=True, return 

state=True)). 

Implement an attention mechanism to focus on relevant parts of the input sequence during 

decoding (Attention (use scale=True)). 

Introduce a pointer-generator network with a sigmoid activation for dynamically choosing 

between generating words from the vocabulary or pointing to positions in the source 

sequence (Dense (1, activation='sigmoid')). 

Employ a dense layer with a softmax activation for generating the output vocabulary 

distribution (Dense (vocab size, activation='softmax')). 

Forward Pass: 

For each input sequence (encoder input) and target sequence (decoder input): 

Embed the sequences using the embedding layer. 

Pass the encoder input through the GRU layer to obtain encoder outputs and states. 

Apply the same GRU layer to the decoder input with initial states set to the encoder states. 

Use attention mechanism to calculate attention weights based on decoder and encoder 

outputs. 

Compute a context vector by multiplying attention weights with encoder outputs. 

Concatenate the context vector, decoder outputs, and embedded encoder input. 

Feed the concatenated vector through the pointer-generator network and output dense layer 

 

4 Result & Discussion 

4.1 Performance Evaluation 

The performance evaluation of the model employed the metrics of ROUGE and BLEU. These 

metrics are fundamental benchmarks in assessing the quality of generated text and its 

alignment with reference summaries. ROUGE, an acronym for Recall-Oriented Understudy 

for Gisting Evaluation, focuses on overlap and recall of n-grams between the generated and 

reference summaries. BLEU, or Bilingual Evaluation Understudy, measures the precision of 

generated text by comparing n-gram overlap with reference text. Together, these metrics 

provide a comprehensive evaluation framework, offering insights into the model's 

summarization effectiveness and linguistic coherence through both recall and precision-based 

assessments. 

4.1.1 BLEU  

The BLEU score is computed based on the precision of n-grams (contiguous sequences of n 
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items, such as words) between the generated text and reference text. The formula for BLEU is 

as follows: 

BLEU = BP × exp (∑ 𝒲n × log(Precisionn))N
n=1    (2) 

Where: 

- (N) is the maximum n-gram order considered (typically 4), 

- ({precision} _n) is the precision for n-grams, 

- (w_n) is the weight for the corresponding n-gram order, and 

- ({BP}) is the Brevity Penalty, which penalizes the generated text for being shorter than the 

reference text. 

     4.1.2    ROUGE 

In the context of the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric, the 

formula provided defines the F1 score, which is a measure that balances precision and recall. 

The F1 score is commonly used in natural language processing to assess the performance of 

models, especially in tasks like text summarization. 

F1 =
2×Precision×Recall

(Precision+Recall)
      (3) 

Here: 

- Precision is the ratio of the number of correctly predicted positive observations to the total 

predicted positives. It measures the accuracy of the positive predictions. 

- Recall (also called sensitivity) is the ratio of the number of correctly predicted positive 

observations to the total actual positives. It measures the ability of the model to capture all the 

positive instances. 

The F1 score combines precision and recall into a single metric, providing a balanced 

evaluation of a model's performance. It ranges from 0 to 1, where a higher F1 score indicates 

better overall performance in terms of both precision and recall. 

Table 2. Hyper parameter Details 

Vocab size Length of (tokenizer word index) + 1 

Embedding dimension 128 

Hidden unites 256 

Layers Embedding, GRU, Attention and 
Dense 

Optimizer Adam 

Loss function Custom 

Epochs 100 

Metrics Rough, BLEU 

Activation function Sigmoid and Softmax 
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Table 3. Comparative analysis of proposed model and existing Mode 

Method Rouge-

1 

Rouge-

2 

Rouge-

L 

BLEU 

Score 

Ref. 

Proposed – 

PGGNN 

76.89 59.24 49.61 81.53 --- 

ROUGE-SIM 45.5 23.3 41.8 -- [37] 

BBC Article 66.3 59.3 66.3 -- [38] 

 

Fig. 5 Comparative Analysis Graph 

Table 3 and Figure.5 presents a comprehensive comparative analysis between the Proposed 

method (PGGNN) and the Existing methods, including ROUGE-SIM and a reference BBC 

Article. The evaluation metrics utilized for the comparison include Rouge-1, Rouge-2, Rouge-

L, and BLEU Score. 

The Proposed method, PGGNN, outperforms the Existing methods across various metrics. 

Specifically, it achieves a Rouge-1 score of 76.89, Rouge-2 score of 59.24, Rouge-L score of 

49.61, and an impressive BLEU Score of 81.53.  

Comparatively, the Existing method ROUGE-SIM scores lower in Rouge-1 (45.5), Rouge-2 

(23.3), and Rouge-L (41.8) compared to the Proposed method. However, it's worth noting that 

the BLEU Score is not reported for ROUGE-SIM. Additionally, a reference to the source [21] 

is provided for further details.The BBC Article, used as a benchmark, demonstrates 

competitive scores with Rouge-1 at 66.3, Rouge-2 at 59.3, and Rouge-L at 66.3. However, the 

BLEU Score is not specified. The reference [22] is cited for readers to explore additional 

information related to the BBC Article's summarization. 

In summary, the proposed method, represented by PGGNN, exhibits superior performance in 

terms of Rouge metrics and BLEU Score when compared to the Existing methods, including 

ROUGE-SIM and a benchmark BBC Article. The detailed scores provide valuable insights 

into the effectiveness of the proposed approach for text summarization. 

 



2443 Nisha Transforming Hindi Text Summarization...                                                                                  
 

Nanotechnology Perceptions Vol. 20 No.7 (2024) 

5 Conclusion 

In conclusion, this study presents a new method for Hindi text summarization using the 

proposed Pointer-Generator Gated Neural Network (PGGNN) model. The preprocessing 

stages, such as removing emojis, thoroughly cleaning the text, handling hashtags, filtering 

special characters, reducing spaces, and cleaning Hindi text, greatly improve the quality of the 

input text. Applying these processes to the 'article' in the data frame produces a new column 

called 'cleaned article', which contains the refined text for further analysis. The process of 

summarizing entails a biphasic approach. Phase 1 involves the development of extractive 

summaries without supervision. This is done by using advanced techniques such as stemming, 

suffix stripping, constructing a Document Term Matrix (DTM), scoring sentences, sorting 

them, selecting the top 30%, and finally assembling the summary. The PGGNN model, which 

is proposed in Phase 2, comprises initialization, architecture, and a forward pass.An analysis 

is performed to compare summarization models, specifically the PGGNN and the VGG 16 

model, utilizing assessment criteria such as Rouge-1, Rouge-2, Rouge-L, and BLEU Score. 

The PGGNN approach surpasses the Existing methods in terms of multiple metrics. More 

precisely, it attains a Rouge-1 score of 76.89, Rouge-2 score of 59.24, Rouge-L score of 49.61, 

and an excellent BLEU Score of 81.53. 
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