
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No.7 (2024) 2425-2445

Transforming Hindi Text

Summarization: A PGGNN Approach

with Enhanced Preprocessing and

Comparative Evaluation

Nisha

Associate Professor, Govt. P.G. College for Women, Rohtak, Haryana, India;

nisha196@gmail.com

This article introduces a novel methodology for the summarization of Hindi text,

leveraging the advanced capabilities of the Pointer-Generator Gated Neural

Network (PGGNN) model. Prior to the implementation of the model, a

comprehensive series of preprocessing steps is executed to significantly enhance

the quality of the input text. These preprocessing measures involve the removal

of emojis, thorough text cleaning, handling of hashtags, filtering out special

characters, minimizing gaps, and overall improvement of the Hindi text's

linguistic structure. The culmination of these protocols results in the

transformation of the original 'article' within the data frame into a refined 'cleaned

article' column, poised for subsequent in-depth analysis.

The summarization process is meticulously organized into two distinct phases. In

Phase 1, unsupervised methods are employed, including stemming, suffix

stripping, the creation of a Document Term Matrix (DTM), sentence scoring,

sorting, selection of the top 30% of sentences, and the compilation of extractive

summaries. Phase 2 introduces the proposed PGGNN paradigm, encompassing

initialization, architectural considerations, and the execution of a forward pass.

To evaluate the performance of the summarization models, a comparative

analysis is conducted, specifically pitting the PGGNN against the VGG 16 model.

Metrics such as Rouge-1, Rouge-2, Rouge-L, and BLEU Score are employed in

this assessment. Notably, the PGGNN approach outshines existing methods,

achieving a Rouge-1 score of 76.89, a Rouge-2 score of 59.24, a Rouge-L score

of 49.61, and an outstanding BLEU Score of 81.53.

This research signifies a significant advancement in the domain of Hindi text

summarization, offering a meticulous approach that not only involves cutting-

edge neural network models but also places emphasis on robust preprocessing

techniques, ultimately resulting in superior summarization performance

http://www.nano-ntp.com/

 Transforming Hindi Text Summarization… Nisha 2426

Nanotechnology Perceptions Vol. 20 No.7 (2024)

compared to established models.

Keywords: Hindi Text Summarization, Deep learning, PGGNN and VGG 16.

1. Introduction

Text summarization in Hindi is a critical and evolving field within natural language

processing, aiming to condense lengthy Hindi text while retaining its key information and

meaning. As the volume of digital content in Hindi continues to grow exponentially, the need

for effective summarization techniques becomes increasingly pronounced. This introduction

explores the significance, challenges, and methodologies associated with Hindi text

summarization[1]–[4]. The vast and diverse Hindi-speaking population generates an extensive

amount of textual data across various domains, including news articles, social media posts,

research papers, and legal documents. Efficiently summarizing this content is essential for

facilitating quick comprehension, information retrieval, and accessibility. Moreover, as Hindi

is one of the most widely spoken languages globally, the development of robust text

summarization techniques in Hindi contributes significantly to advancing natural language

processing on a global scale.

Fig. 1 Text Summarization[5]

Summarizing Hindi text poses unique challenges due to the language's complexity, rich

morphology, and varied sentence structures. Hindi, being a morphologically rich language,

often incorporates compound words and complex linguistic constructs, making it challenging

to develop automated summarization systems that capture nuanced meanings accurately.

Additionally, the availability of informal language, dialectal variations, and the use of multiple

scripts (Devanagari and Romanized) further compound the complexity of the task[6]–[10].

Overcoming these challenges requires specialized algorithms and linguistic resources tailored

to the intricacies of the Hindi language. Several methodologies are employed in Hindi text

summarization, ranging from traditional rule-based approaches to modern machine learning

and deep learning techniques. Extractive summarization involves selecting important

sentences or phrases directly from the input text, while abstractive summarization involves

generating new sentences that capture the essential information[11]–[15]. Lexical analysis,

2427 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

semantic analysis, and sentiment analysis play pivotal roles in identifying key content for

extraction or abstraction. In the context of Hindi text summarization, leveraging linguistic

resources such as Hindi WordNet and incorporating language-specific features become

imperative. Machine learning models, including support vector machines, decision trees, and

random forests, are trained on Hindi corpora to perform extractive summarization. Meanwhile,

deep learning models, such as recurrent neural networks (RNNs) and transformer-based

architectures like BERT (Bidirectional Encoder Representations from Transformers), have

shown promise in abstractive summarization tasks.The applications of Hindi text

summarization span a multitude of domains, including journalism, legal documentation, social

media analysis, and academic research. Journalists can utilize automated summarization tools

to quickly comprehend and summarize news articles, while legal professionals can expedite

the review of legal documents. Social media platforms can enhance user experience by

providing concise summaries of lengthy posts, and researchers can efficiently navigate through

a vast corpus of scientific literature[16]–[20]. The field of Hindi text summarization is

dynamic, with ongoing research focusing on enhancing the accuracy, linguistic nuances, and

domain specificity of summarization systems. As technology advances, integrating innovative

techniques, leveraging large-scale Hindi language resources, and addressing the unique

challenges posed by Hindi morphology will be crucial for the continued development of

effective summarization tools. This introduction sets the stage for a comprehensive exploration

of the methodologies, challenges, and applications of Hindi text summarization, offering a

glimpse into the exciting and evolving landscape of natural language processing in the Hindi

language[18], [21]–[24].

1.1 Research question or problem.

1.1.1 Identification of the Research Problem

The research problem in Hindi text summarization lies in developing effective and

linguistically nuanced techniques to condense extensive Hindi textual content while preserving

key information. Challenges stem from the language's complex morphology, varied sentence

structures, and the prevalence of informal language. Additionally, addressing dialectal

variations, multiple scripts, and the need for domain-specific summarization further

compounds the problem. Navigating these intricacies is essential for advancing the field and

creating robust summarization models tailored to the unique characteristics of the Hindi

language [16]–[18].

1.1.2 Relevance to the Field

Hindi text summarization is profoundly relevant to the field as it addresses the escalating

volume of digital content in Hindi across diverse domains. Effective summarization enhances

comprehension, facilitates information retrieval, and promotes accessibility in a language

spoken by a vast population [19]–[21]. The research is crucial for journalism, legal

documentation, social media analysis, and academic research in Hindi. By advancing natural

language processing capabilities specific to Hindi, this research contributes significantly to

global efforts in linguistic technology, catering to the needs of a diverse and extensive Hindi-

speaking audience while fostering advancements in the broader field of computational

linguistics.

 Transforming Hindi Text Summarization… Nisha 2428

Nanotechnology Perceptions Vol. 20 No.7 (2024)

1.1.3 Single-Focused Inquiry (For Research Question)

What techniques and methodologies can be employed for effective Hindi text summarization,

considering the language's rich morphology, varied sentence structures, and the prevalence of

informal language? This single-focused inquiry aims to explore innovative approaches,

including the adaptation of existing algorithms and the development of language-specific

models. The research question seeks to address the unique challenges posed by Hindi, with a

specific focus on creating concise and accurate summaries that capture the essence of the

original content. The inquiry aims to contribute to the advancement of natural language

processing in Hindi and improve the accessibility of information for a diverse Hindi-speaking

audience.

1.2 Background and context for the study

1.2.1 Historical overview

The historical overview of Hindi text summarization unveils the evolutionary trajectory of

efforts to distill meaningful insights from extensive textual content in the Hindi language.

While the roots can be traced back to early linguistic studies, the digital age has catalyzed a

surge in research endeavors, particularly with the proliferation of online content. The advent

of computational linguistics and natural language processing marked a paradigm shift,

prompting scholars to explore ways of automating the summarization process. Early

approaches focused on rule-based systems, attempting to capture linguistic structures in Hindi.

However, the rapid advancement of machine learning and deep learning techniques in recent

decades has ushered in a new era. Modern methodologies leverage sophisticated algorithms,

neural networks, and language models trained on vast Hindi corpora, enabling the creation of

more contextually aware and linguistically nuanced summarization systems. The historical

progression reflects an ongoing endeavor to adapt to the intricacies of the Hindi language,

addressing challenges posed by its morphological richness and diverse linguistic structures.

As the field continues to evolve, the historical narrative underscores the iterative nature of

research, emphasizing the constant refinement of techniques to meet the demands of efficient

and effective Hindi text summarization[22], [23].

1.2.3 Rationale and Significance

The rationale for Hindi text summarization lies in the imperative to distill crucial information

from vast textual data, addressing the unique linguistic intricacies of Hindi. Significantly,

efficient summarization enhances comprehension, aids information retrieval, and

accommodates the needs of a diverse Hindi-speaking audience. This research's significance

extends to journalism, legal documentation, social media analysis, and academic research. By

advancing natural language processing capabilities in Hindi, the study not only contributes to

linguistic technology but also fosters accessibility and comprehension in a language spoken

by a substantial global population, thus bridging crucial gaps in information processing and

dissemination.

1.3 Research Objectives

• Introduce a new summarization technique for Hindi text using the Pointer-Generator

Gated Neural Network (PGGNN) model.

2429 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

• To conduct a series of preprocessing steps to enhance the quality of the input text,

including removing emoji’s, fully cleaning the text, handling hashtags, filtering special

characters, minimizing gaps, and improving Hindi text.

• To organize the summarization process into two phases: Phase 1 utilizing

unsupervised methods (stemming, suffix stripping, creating a Document Term Matrix, scoring

sentences, sorting, and extracting summaries) and Phase 2 introducing the proposed PGGNN

paradigm.

• Detail the implementation of the PGGNN model, covering initialization, architecture,

and a forward pass, as part of Phase 2 of the summarization process.

• Conduct a comparative evaluation to analyze the performance of summarization

models, specifically comparing the PGGNN model with the VGG 16 model.

1.4 Structure of the paper

• Introduction

 Introduce the research area, stating objectives, problem statement, and significance concisely

for a compelling overview.

• Literature Review

Summarize key studies, identify gaps, and present the theoretical framework to contextualize

the research.

• Methodology

 Detail research design, data collection, analysis methods, sample selection, and variable

specifications to ensure robust methodology.

• Results and Discussion

Present findings clearly and interpret results, comparing them with literature, exploring

implications, and fostering discussion.

• Conclusion

Summarize key findings, contributions, acknowledge limitations, and propose future research

directions for a cohesive conclusion.

2 Literature Review

Table 1. Surveys relevant existing work.

Author / Year Method Research gap Controversies References

Kumari/2023 Sequence To

Sequence

(SeqTOseq) Neural
Networks

Hindi abstractive text

summarization is

understudied

English outperformed

regional languages in

abstractive text
summarization.

[26]

 Transforming Hindi Text Summarization… Nisha 2430

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Chellatamilan/2023 Bidirectional Encoder
Representations of

Transformers (BERT)

Text summarizing
models for COVID-

19 fail to account for

context subtleties and
explore other

summary methods

Exclusive NLP model
focus, contextual

nuances missed, and

limited measure
evaluation scope may

lead to criticisms

[8]

Bandari/2023 Deep Recurrent
Neural Network

(DRNN) is

Lack of Coot Remora
Optimization

research in Hindi text

summary

Unfairly summarizing
English texts over

Hindi

[33]

Kumari/2022 Gradient descent,

stochastic gradient

descent, adaptive
gradient, adadelta,

Adam, and RMSprop.

Some

Limited exploration

of optimizers' impact

on abstractive
summarization

effectiveness.

Dispute arises over the

claim that extractive

summarization has
peaked, prompting

skepticism and debate

on summarization
approaches.

[22]

Wazery /2022 Deep learning Limited exploration

of abstractive Arabic

text summarization
models and their

neural network

components'
performance.

Debate may arise over

the generalizability of

results and the claim
of superiority in

abstractive Arabic text

summarization
models.

[21]

Agarwal / 2022 IndicBART Hindi abstract text

summarization
research is scarce.

Text summarizing

advances may be
applied unequally,

disregarding

languages like Hindi
with less research.

[15]

Liu/2022 EDA-BoB Minimal lightweight

text generation model

exploration without
compromising data

quality or computing
resources

Possible doubts

concerning the

lightweight text
generation model's

resource efficiency
and generalizability

[9]

Manojkumar/2022 LexRank method

outperforms

Little research on

summarizing

methods for food
review sentiment

interpretation & user

comprehension

Critics may question

results generalizability

and overreliance on
specific measures

when assessing food

review summary
systems

[24]

Rani/2022 KNN text classifier,

K-Means text
clustering, and

Limited corpus-

specific stopword
research in Hindi text

mining, focusing on

model efficacy and
behavior

Ranking systems are

subjective and
stopword lists may not

be generalizable,

which may lead to
criticism

[1]

Tanfouri/2021 Essex Arabic

Summaries Corpus

EASC.

Limited exploration

of genetic algorithms

for extractive Arabic
text summarization.

Dispute may arise over

the effectiveness of

genetic algorithms in
Arabic text

summarization using

an extractive
approach.

[2]

2431 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

jain/2021 Extractive methods

and neural networks

Few Punjabi

language summary
studies have used

neural networks for

full extractive
summarization

Some languages, like

Punjabi, are
underrepresented in

text summarizing

while others mature

[34]

Supreet /2020 Natural language

Processing

Limited algorithmic

Hindi text
summarizing

research, especially

selection and
elimination-based

and comparing

methods

Different Hindi text

summarizing
algorithms raise

questions regarding

methodological bias
and linguistic

idiosyncrasies.

[19]

3 Research Methodology

3.1 Data Collection

Web crawling and web scraping techniques are employed to gather data for Hindi text

summarization. Through automated processes, relevant information is extracted from various

web sources, enabling the creation of concise and informative summaries in the Hindi

language. This approach involves navigating the web, retrieving data, and subsequently

processing it to generate succinct summaries.

3.1.1 Algorithm for scrap data from Wikipedia

Step 1: Select the specific Wikipedia page from which you wish to extract data.

Step 2: Employ browser development tools to inspect the HTML structure and discern

pertinent HTML tags and classes that include the desired data.

Step 3 - Select an appropriate web scraping tool or package, such as Python with Beautiful

Soup or Scrapy.

Step 4: Utilize a package manager such as pip to install the necessary libraries, such as

Beautiful Soup and requests.

 Step 5: Employ the requests library to dispatch an HTTP GET request to the selected

Wikipedia page and employ Beautiful Soup to analyze the HTML content of the response.

 Step 6: Identify the precise HTML elements (such as div or span) that hold the necessary data,

and extract the relevant information using the appropriate methods provided by Beautiful

Soup.

Step 7: Develop a mechanism to traverse through pagination in order to handle data that is

spread across numerous pages.

Step 8: involves processing the scraped data, which includes responsibilities such as deleting

HTML tags and managing special characters.

Step 9: Select the option to store data either locally, in a database, or conduct additional

analysis within the scraping script.

 Transforming Hindi Text Summarization… Nisha 2432

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Step 10: Incorporate error handling to address connection failures, missing data, or

modifications in the website's structure.

Step 11: Verify the presence of the website's robots.txt file and adhere to the specified scraping

guidelines provided by the website.

Step 12: Implement time intervals between requests to prevent server overload and conform

to ethical scraping guidelines.

Step 13: Evaluate the scraping script on several Wikipedia pages and make adjustments

according to varied page topologies.

3.1.2 Pseudo Code

Code for Data Scraping from Wiki pedia

FUNCTION scrape_wikipedia(url):

 Send HTTP GET request to the Wikipedia page

 Response = requests. get(url)

 Check if the request was successful (status code 200)

 IF response.status_code == 200 THEN

 # Parse HTML content using Beautiful Soup

 soup = Beautiful Soup(response. content, 'html. parser')

 # Find all the section headings on the page (assuming they are in tags with

class "mw-headline")

 section_ headings = soup. find all('span', {'class': 'mw-headline'})

 # Extract and print the titles of the sections

 FOR EACH heading IN section_ headings DO

 PRINT heading. text

 END FOR

 ELSE

 PRINT "Failed to retrieve the page. Status code: {response.status_code}"

 END IF

END FUNCTION

2433 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Example usage

Wikipedia _ url = 'https://en.wikipedia.org/wiki/Web _scraping'

Scrape _ Wikipedia(wikipedia_url)

The given pseudo code outlines a function called `scrape _wikipedia` that is created to retrieve

and display the section heads from a specific Wikipedia page. The function accepts a URL as

a parameter, sends an HTTP GET request, then, upon receiving a successful response (status

code 200), employs Beautiful Soup to analyze the HTML content. The program thereafter

identifies section heads by assuming that they are contained within `` tags with the

class "mw-headline." The titles of these sections are retrieved and displayed. If the request is

not successful, an error message is generated that displays the status code. The provided

example illustrates invoking the function with a designated Wikipedia URL for the purpose of

web scraping.

3.2 Pre-processing

The provided script presents a systematic methodology for text preprocessing within the

framework of a Data Frame housing articles. This method adopts a sequential cleaning process

aimed at elevating the quality and uniformity of the textual data. The initial step targets the

removal of emojis from the text, employing the demoji. replace functionality. Following this,

a comprehensive method is implemented to address diverse elements that could introduce

noise into the data. This encompasses the elimination of punctuation, links, mentions, and

newline characters, coupled with the conversion of text to lowercase to ensure consistency.

specialized approach, 'clean hashtags,' is devised to effectively handle hashtags, discerning

between those at sentence ends and those within sentences. This approach ensures appropriate

treatment of hashtags based on their contextual usage in social media content. To filter out

undesirable special characters, the 'filter chars' method is utilized, selectively excluding words

containing specified characters like '&' and '$'. This selective filtering preserves the integrity

of words that may be disrupted by unwanted characters. The 'remove mult spaces' method

focuses on eliminating multiple consecutive spaces in the text using regular expressions,

replacing sequences of two or more spaces with a single space, enhancing text readability and

consistency. For handling Hindi text, the 'clean hindi text' method is employed. Tailored for

Hindi language considerations, it removes non-Hindi Unicode characters, ensuring sensitivity

to the linguistic nuances of Hindi text[35], [36]. The overall methodological approach

culminates in the application of these cleaning methods to the 'article' column of the Data

Frame. This results in the creation of a new 'cleaned article' column, facilitating a side-by-side

comparison of the original and cleaned articles within the Data Frame.

 Transforming Hindi Text Summarization… Nisha 2434

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Fig. 2 Pre-processing Flowchart

The method involves several essential steps:

1) Emoji Removal:

Utilizing `demoji.replace`, the method eliminates emojis from raw text, emphasizing a more

text-centric representation.

2) Comprehensive Text Cleaning:

Executing `strip_all_entities` removes punctuation, links, mentions, newline characters, and

converts to lowercase, ensuring uniformity and reducing extraneous information.

3) Hashtag Handling:

`clean hashtags` differentiates hashtags at sentence ends and in the middle, addressing them

contextually.

4) Special Character Filtering:

Using `filter chars`, special characters like '&' and '$' are selectively removed, preserving

textual integrity.

5) Space Reduction:

`remove multi spaces` employs regular expressions to eliminate multiple consecutive spaces,

enhancing readability.

6) Hindi Text Cleaning:

`clean hindi text` specifically caters to Hindi text, removing non-Hindi Unicode characters and

ensuring linguistic sensitivity.

7) Application to Data Frame:

Applying these steps to 'article' in the Data Frame creates a 'cleaned article' column, capturing

the enhanced text.

2435 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

3.3 Phase.1 Unsupervised - Extractive summary generation

Fig. 3 Flowchart of Unsupervised Phase - Extractive summary generation

The presented text summarization algorithm is a comprehensive method crafted to distill the

essence of an article into a concise, informative summary. Outlined as a series of strategic

steps, each contributes to the overall efficiency of the summarization process. The initial phase

involves loading article content from 'article.txt' and stop words from 'stopwords.txt.'

Processing each line of the article as a sentence, stop words are extracted, providing the

algorithm with raw textual data and essential linguistic elements for effective summarization.

Advancing, the algorithm employs stemming to condense words to their root forms, a common

technique in natural language processing. Simultaneously, the Suffix Strip Algorithm

systematically removes word suffixes, yielding a set of stemmed words that efficiently

encapsulate the article's vocabulary. This dual approach ensures a streamlined and effective

representation of the article's core meaning.

 3.3.1 Stemming and Suffix Stripping

For every sentence 𝑠ᵢ in the article, stemming and suffix stripping can be expressed as a

function 𝑆: (𝑠ᵢ) → set of stemmed words, where (𝑠ᵢ) represents the resulting set of stemmed

words for the sentence 𝑠ᵢ.

 Suffix Strip Algorithm

1: [u"ो ",u"ो ",u"ो ",u"ो ",u"ो ",u"िो",u"ो "],

2:[u"कर",u"ो ओ",u"िोए",u"ो ई",u"ो ए",u"न ",u"न ",u"न ",u"त ",u"ो ो ",u"त ",u"त ",u"ो ो ",u

"ो ो ",u"ो ो ",u"ो ो "],

3:[u"ो कर",u"ो इए",u"ो ई ",u"ो य ",u"ो ग ",u"ो ग ",u"ो ग ",u"ो ग ",u"ो न ",u"ो न ",u"ो त ",u

"ो त ",u"ो त ",u"त ",u"ो ओ ",u"ो ए ",u"ो ओ ",u"ो ए ",u"ो आ "],

4:[u"ो एग ",u"ो एग ",u"ो ओग ",u"ो ओग ",u"ए ग ",u"ो ो ग ",u"ए ग ",u"ो ो ग ",u"ो ो ग ",u"ो ो ग "

,u"ो त ",u"न ओ ",u"न ए ",u"त ओ ",u"त ए ",u"िोय ",u"िोय ",u"िोय "],

5:[u"ो ए ग ",u"ो ए ग ",u"ो ऊ ग ",u"ो ऊ ग ",u"ो इय ",u"ो इय ",u"ो इय "],

 Transforming Hindi Text Summarization… Nisha 2436

Nanotechnology Perceptions Vol. 20 No.7 (2024)

 3.3.2 Document Term Matrix (DTM) Construction

Consider 𝑁 as the total number of stemmed words and 𝑀 as the total number of cleaned

sentences. The Document Term Matrix (DTM) element 𝑑𝑡𝑚𝑖𝑗 is defined as the frequency of

the 𝑖-th stemmed word in the 𝑗-th cleaned sentence: 𝑑𝑡𝑚𝑖𝑗 = frequency of stemmed word𝑖 in

cleaned sentence𝑗.

 3.3.3 Sentence Scoring

The score 𝑠𝑐𝑜𝑟𝑒𝑗 for each cleaned sentence 𝑗 is determined by summing the frequencies of all

stemmed words in that sentence, normalized by the number of words in the cleaned sentence:

scorej =
∑ dtmij

N
i=1

Number of words in cleaned Sentence
 (1)

 3.3.4 Sentence Sorting

Sentences are sorted by their scores, creating an ordered list of indices 𝐼, where sentences are

arranged in descending order of importance: 𝐼 = Sort (List of Sentence Scores).

 3.3.5 Top 30% Selection

The top 30% of sentences are chosen and represented by the set 𝑇, where 𝑇 contains the indices

of the selected sentences: 𝑇 = Top 30%.

 3.3.6 Ordering Selected Sentences

The chosen sentences are organized based on their occurrence in the original article, yielding

a list 𝑂 of indices that signifies the ultimate order of sentences in the summary: 𝑂 = Sort(𝑇).

 3.3.7 Summary Assembly

The conclusive summary is crafted by assembling the selected sentences in the order specified

by 𝑂: Summary = [𝑠ᵢ for 𝑖 in 𝑂].

Following the generation of stemmed words, the algorithm proceeds to construct a Document

Term Matrix (DTM). The DTM is a representation of the frequency of stemmed words in each

sentence, organized in a two-dimensional array. The rows correspond to the stemmed words,

and the columns correspond to the cleaned sentences. The cleaning process involves

eliminating stop words and preparing sentences for further analysis. The DTM, thus

constructed, serves as a quantitative tool to unveil relationships between words and sentences.

Scoring sentences is the subsequent step, where each sentence is assigned a score based on the

sum of word frequencies in the DTM. This score is further normalized by the number of words

in the cleaned sentence, providing a measure of the sentence's relative significance. The

resulting scores are stored in a list ('sentence scores'), which becomes a crucial component in

the subsequent steps of the algorithm. The algorithm then proceeds to sort the sentences based

on their scores. The top 30% highest-scoring sentences are selected, ensuring that the most

important information is retained for inclusion in the final summary. To maintain coherence

in the summary, the selected sentences are ordered based on their appearance in the original

article. This step ensures that the summary retains a logical flow and captures the essence of

the article in a condensed form. Finally, the algorithm assembles the selected sentences into a

coherent summary, which is appended to the 'summary.txt' file. The resulting file represents a

2437 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

distilled version of the original article, focusing on the most crucial and informative content.

This text summarization algorithm intricately combines linguistic techniques, matrix

operations, and scoring mechanisms to automate the summarization process. The systematic

and structured approach ensures that the resulting summary is not only concise but also

coherent, making it a valuable tool for processing and extracting key insights from extensive

textual data.

3.3.8 Proposed Algorithm

Extractive Summary Generation Algorithm.1

Function load text(file path):

 Read the content of the file path.

 Tokenize the content into sentences.

 Return a list of sentences.

Function load stop words(stop words file path):

 Read the stop words file path.

 Tokenize the content into stop words.

 Return a list of stop words.

Function stem and strip suffix(sentence, stop words):

 Initialize an empty set called stemmed words.

 Tokenize the sentence into words.

 For each word in the tokenized sentence:

 If the word is not in stop words:

 Apply stemming and suffix stripping.

 Add the resulting stemmed word to stemmed words set.

 Return the stemmed words set.

Function build dtm(sentences, stemmed words list):

 Initialize an empty Document Term Matrix (DTM) as a 2D array.

 For each sentence in sentences:

 Tokenize the sentence into cleaned sentence.

 For each word in cleaned sentence:

 If the word is in stemmed words list:

 Increment the frequency of the word in the corresponding DTM cell.

 Return the DTM.

 Transforming Hindi Text Summarization… Nisha 2438

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Function calculate sentence scores(dtm, sentences):

 Initialize an empty list called sentence scores.

 For each sentence in sentences:

 Calculate the score based on the sum of word frequencies in the DTM.

 Normalize the score by dividing it by the number of words in the sentence.

 Append the normalized score to sentence scores.

 Return sentence scores.

Function summarize article(article file, stop words file, summary file):

 sentences = load text(article file)

 stop words = load stop words(stop words file)

 stemmed words list = []

 dtm = []

 For each sentence in sentences:

 Stemmed words = stem and strip suffix(sentence, stop words)

 Stemmed words list.append(stemmed words)

 dtm = build dtm(sentences, flatten(stemmed words list))

 sentence scores = calculate sentence scores(dtm, sentences)

 sorted indices = sort indices based on scores(sentence scores, descending=True)

 top percentage = 0.3

 top count = round(len(sorted indices) * top percentage)

 selected indices = select top indices(sorted indices, top count)

 ordered indices = sort indices based on order(selected indices, original order=sentences)

 summary = assemble summary(sentences, ordered indices)

 write summary to file(summary, summary file)

3.4 Phase -2 Proposed Pointer Generator GRU Network Model (PGGNN)

The Pointer-Generator Network (PGN) model, integrated with Gated Recurrent Units (GRU),

presents an innovative sequence-to-sequence architecture tailored for abstractive text

summarization. Diverging from conventional models, this architecture incorporates attention

mechanisms and a pointer-generator network, addressing challenges associated with out-of-

vocabulary words while enhancing content preservation. The model's structure begins with an

embedding layer for word representation, succeeded by two GRU layers for encoding and

2439 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

decoding input sequences. Leveraging attention mechanisms, the model captures pertinent

information from the input sequence during decoding. Additionally, a pointer-generator

network dynamically alternates between generating words from the vocabulary and pointing

to words in the source sequence. The final output comprises probability distributions for both

generating words from the vocabulary and pinpointing specific positions in the input sequence.

In contrast to preceding models, the PGN with GRU overcomes limitations through the

utilization of GRU, an efficient recurrent neural network (RNN) that captures long-range

dependencies. The attention mechanism amplifies the model's capacity to concentrate on

crucial segments of the input sequence, crucial for generating informative summaries. The

pointer-generator network introduces a novel mechanism for handling rare or unseen words,

enhancing coverage and informativeness in generated summaries. Critical hyperparameters,

including vocabulary size, embedding dimension, and hidden units, play a pivotal role in

configuring the model. Training utilizes the Adam optimizer and a custom loss function

combining standard sequence-to-sequence loss with coverage loss, enriching the generation

process.The PGN with GRU epitomizes an advanced approach to abstractive summarization,

harnessing GRU-based architecture, attention mechanisms, and a pointer-generator network.

Its proficiency in handling out-of-vocabulary words and emphasis on pivotal content positions

it as a noteworthy advancement in natural language processing, contributing to more effective

text summarization applications.

Fig. 4 Flowchart of Pointer Generator GRU Network Model (PGGNN)

3.4.1 Proposed Algorithm of Pointer Generator GRU Network Model (PGGNN)

High-Level Pseudo code of Model

Initialization:

Initialize the model with parameters such as vocabulary size (vocab size), embedding

dimension (embedding dim), and hidden units (hidden units).

Architecture:

 Transforming Hindi Text Summarization… Nisha 2440

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Create an embedding layer to convert word indices into dense vectors of fixed size

(Embedding (vocab size, embedding dim)).

Use a GRU layer for both encoding and decoding input sequences, with the encoder

returning sequences and states (GRU(hidden units, return sequences=True, return

state=True)).

Implement an attention mechanism to focus on relevant parts of the input sequence during

decoding (Attention (use scale=True)).

Introduce a pointer-generator network with a sigmoid activation for dynamically choosing

between generating words from the vocabulary or pointing to positions in the source

sequence (Dense (1, activation='sigmoid')).

Employ a dense layer with a softmax activation for generating the output vocabulary

distribution (Dense (vocab size, activation='softmax')).

Forward Pass:

For each input sequence (encoder input) and target sequence (decoder input):

Embed the sequences using the embedding layer.

Pass the encoder input through the GRU layer to obtain encoder outputs and states.

Apply the same GRU layer to the decoder input with initial states set to the encoder states.

Use attention mechanism to calculate attention weights based on decoder and encoder

outputs.

Compute a context vector by multiplying attention weights with encoder outputs.

Concatenate the context vector, decoder outputs, and embedded encoder input.

Feed the concatenated vector through the pointer-generator network and output dense layer

4 Result & Discussion

4.1 Performance Evaluation

The performance evaluation of the model employed the metrics of ROUGE and BLEU. These

metrics are fundamental benchmarks in assessing the quality of generated text and its

alignment with reference summaries. ROUGE, an acronym for Recall-Oriented Understudy

for Gisting Evaluation, focuses on overlap and recall of n-grams between the generated and

reference summaries. BLEU, or Bilingual Evaluation Understudy, measures the precision of

generated text by comparing n-gram overlap with reference text. Together, these metrics

provide a comprehensive evaluation framework, offering insights into the model's

summarization effectiveness and linguistic coherence through both recall and precision-based

assessments.

4.1.1 BLEU

The BLEU score is computed based on the precision of n-grams (contiguous sequences of n

2441 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

items, such as words) between the generated text and reference text. The formula for BLEU is

as follows:

BLEU = BP × exp (∑ 𝒲n × log(Precisionn))N
n=1 (2)

Where:

- (N) is the maximum n-gram order considered (typically 4),

- ({precision} _n) is the precision for n-grams,

- (w_n) is the weight for the corresponding n-gram order, and

- ({BP}) is the Brevity Penalty, which penalizes the generated text for being shorter than the

reference text.

 4.1.2 ROUGE

In the context of the ROUGE (Recall-Oriented Understudy for Gisting Evaluation) metric, the

formula provided defines the F1 score, which is a measure that balances precision and recall.

The F1 score is commonly used in natural language processing to assess the performance of

models, especially in tasks like text summarization.

F1 =
2×Precision×Recall

(Precision+Recall)
 (3)

Here:

- Precision is the ratio of the number of correctly predicted positive observations to the total

predicted positives. It measures the accuracy of the positive predictions.

- Recall (also called sensitivity) is the ratio of the number of correctly predicted positive

observations to the total actual positives. It measures the ability of the model to capture all the

positive instances.

The F1 score combines precision and recall into a single metric, providing a balanced

evaluation of a model's performance. It ranges from 0 to 1, where a higher F1 score indicates

better overall performance in terms of both precision and recall.

Table 2. Hyper parameter Details

Vocab size Length of (tokenizer word index) + 1

Embedding dimension 128

Hidden unites 256

Layers Embedding, GRU, Attention and
Dense

Optimizer Adam

Loss function Custom

Epochs 100

Metrics Rough, BLEU

Activation function Sigmoid and Softmax

 Transforming Hindi Text Summarization… Nisha 2442

Nanotechnology Perceptions Vol. 20 No.7 (2024)

Table 3. Comparative analysis of proposed model and existing Mode

Method Rouge-

1

Rouge-

2

Rouge-

L

BLEU

Score

Ref.

Proposed –

PGGNN

76.89 59.24 49.61 81.53 ---

ROUGE-SIM 45.5 23.3 41.8 -- [37]

BBC Article 66.3 59.3 66.3 -- [38]

Fig. 5 Comparative Analysis Graph

Table 3 and Figure.5 presents a comprehensive comparative analysis between the Proposed

method (PGGNN) and the Existing methods, including ROUGE-SIM and a reference BBC

Article. The evaluation metrics utilized for the comparison include Rouge-1, Rouge-2, Rouge-

L, and BLEU Score.

The Proposed method, PGGNN, outperforms the Existing methods across various metrics.

Specifically, it achieves a Rouge-1 score of 76.89, Rouge-2 score of 59.24, Rouge-L score of

49.61, and an impressive BLEU Score of 81.53.

Comparatively, the Existing method ROUGE-SIM scores lower in Rouge-1 (45.5), Rouge-2

(23.3), and Rouge-L (41.8) compared to the Proposed method. However, it's worth noting that

the BLEU Score is not reported for ROUGE-SIM. Additionally, a reference to the source [21]

is provided for further details.The BBC Article, used as a benchmark, demonstrates

competitive scores with Rouge-1 at 66.3, Rouge-2 at 59.3, and Rouge-L at 66.3. However, the

BLEU Score is not specified. The reference [22] is cited for readers to explore additional

information related to the BBC Article's summarization.

In summary, the proposed method, represented by PGGNN, exhibits superior performance in

terms of Rouge metrics and BLEU Score when compared to the Existing methods, including

ROUGE-SIM and a benchmark BBC Article. The detailed scores provide valuable insights

into the effectiveness of the proposed approach for text summarization.

2443 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

5 Conclusion

In conclusion, this study presents a new method for Hindi text summarization using the

proposed Pointer-Generator Gated Neural Network (PGGNN) model. The preprocessing

stages, such as removing emojis, thoroughly cleaning the text, handling hashtags, filtering

special characters, reducing spaces, and cleaning Hindi text, greatly improve the quality of the

input text. Applying these processes to the 'article' in the data frame produces a new column

called 'cleaned article', which contains the refined text for further analysis. The process of

summarizing entails a biphasic approach. Phase 1 involves the development of extractive

summaries without supervision. This is done by using advanced techniques such as stemming,

suffix stripping, constructing a Document Term Matrix (DTM), scoring sentences, sorting

them, selecting the top 30%, and finally assembling the summary. The PGGNN model, which

is proposed in Phase 2, comprises initialization, architecture, and a forward pass.An analysis

is performed to compare summarization models, specifically the PGGNN and the VGG 16

model, utilizing assessment criteria such as Rouge-1, Rouge-2, Rouge-L, and BLEU Score.

The PGGNN approach surpasses the Existing methods in terms of multiple metrics. More

precisely, it attains a Rouge-1 score of 76.89, Rouge-2 score of 59.24, Rouge-L score of 49.61,

and an excellent BLEU Score of 81.53.

References
R. Rani and D. K. Lobiyal, “Performance evaluation of text-mining models with Hindi stopwords lists,”

J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 6, pp. 2771–2786, 2022, doi:

10.1016/j.jksuci.2020.03.003.

[2]. I. Tanfouri, G. Tlik, and F. Jarray, “An automatic arabic text summarization system based on

genetic algorithms,” Procedia CIRP, vol. 189, pp. 195–202, 2021, doi:

10.1016/j.procs.2021.05.083.

[3]. [C. Intelligence and Neuroscience, “Retracted: Qualitative Analysis of Text Summarization

Techniques and Its Applications in Health Domain,” Comput. Intell. Neurosci., vol. 2023, pp.

1–1, 2023, doi: 10.1155/2023/9871283.

[4]. A. Khan et al., “Movie Review Summarization Using Supervised Learning and Graph-Based

Ranking Algorithm,” Comput. Intell. Neurosci., vol. 2020, 2020, doi: 10.1155/2020/7526580.

[5]. X. Han, T. Lv, Z. Hu, X. Wang, and C. Wang, “Text Summarization Using FrameNet-Based

Semantic Graph Model,” Sci. Program., vol. 2016, 2016, doi: 10.1155/2016/5130603.

[6]. M. B. M. J. Carmel, S. Ravikumar, A. Muhammad, K. V. Dhilip, K. K. Antony, and G.

Arulkumaran, “Linguistic Analysis of Hindi-English Mixed Tweets for Depression Detection,”

J. Math., vol. 2022, 2022, doi: 10.1155/2022/3225920.

[7]. T. Chellatamilan, S. K. Narayanasamy, L. Garg, K. Srinivasan, and S. M. N. Islam, “Ensemble

Text Summarization Model for COVID-19-Associated Datasets,” Int. J. Intell. Syst., vol. 2023,

2023, doi: 10.1155/2023/3106631.

[8]. L. Liu, Y. Sun, Y. Liu, R. E. O. Roxas, and R. C. Raga, “Research and Implementation of Text

Generation Based on Text Augmentation and Knowledge Understanding,” Comput. Intell.

Neurosci., vol. 2022, 2022, doi: 10.1155/2022/2988639.

[9]. N. Ramanujam and M. Kaliappan, “Based on Naive Bayesian Classifier Using Timestamp

Strategy,” Sci. World Journal, Hindawi Publ. Corp., vol. 2016, p. 10, 2016.

[10]. M. Zhang, G. Zhou, W. Yu, N. Huang, and W. Liu, “A Comprehensive Survey of Abstractive

Text Summarization Based on Deep Learning,” Comput. Intell. Neurosci., vol. 2022, 2022, doi:

10.1155/2022/7132226.

 Transforming Hindi Text Summarization… Nisha 2444

Nanotechnology Perceptions Vol. 20 No.7 (2024)

[11]. A. Jain, A. Arora, J. Morato, D. Yadav, and K. V. Kumar, “Automatic Text Summarization for

Hindi Using Real Coded Genetic Algorithm,” Appl. Sci., vol. 12, no. 13, 2022, doi:

10.3390/app12136584.

[12]. L. Pushpakar, D. Anusha, A. B. Ds, S. Suresh, and M. N. G, “A BRIEF STUDY ON HINDI

TEXT SUMMARIZATION USING NATURAL LANGUAGE PROCESSING,” no. 06, pp.

442–447, 2022.

[13]. R. Pawar and M. Mhatre, “Text Summarization Using Deep Neural Networks,” vol. 2, no. 5, pp.

228–238, 2022, doi: 10.48175/IJARSCT-4043.

[14]. A. Agarwal, S. Naik, and S. Sonawane, “Abstractive Text Summarization for Hindi Language

using IndicBART,” CEUR Workshop Proc., vol. 3395, pp. 409–417, 2022.

[15]. P. Savla, S. Jaiswal, and G. Manju, “Extractive Text-Image Summarisation in Hindi Turkish

Journal of Computer and Mathematics Education Research Article,” vol. 12, no. 13, pp. 2326–

2332, 2021.

[16]. R. Bhargava and Y. Sharma, “Deep Extractive Text Summarization,” Procedia Comput. Sci.,

vol. 167, no. 2019, pp. 138–146, 2020, doi: 10.1016/j.procs.2020.03.191.

[17]. R. Bhargava, G. Sharma, and Y. Sharma, “Deep Text Summarization using Generative

Adversarial Networks in Indian Languages,” Procedia Comput. Sci., vol. 167, no. 2019, pp. 147–

153, 2020, doi: 10.1016/j.procs.2020.03.192.

[18]. M. Supreet, K. Goel, and M. Gupta, “Automatic Hindi Text Summarization Using Selection and

Elimination Approach,” Int. J. Eng. Appl. Sci. Technol., vol. 5, no. 4, pp. 259–266, 2020, doi:

10.33564/ijeast.2020.v05i04.039.

[19]. D. Suleiman and A. Awajan, “Deep Learning Based Abstractive Text Summarization:

Approaches, Datasets, Evaluation Measures, and Challenges,” Math. Probl. Eng., vol. 2020,

2020, doi: 10.1155/2020/9365340.

[20]. Y. M. Wazery, M. E. Saleh, A. Alharbi, and A. A. Ali, “Abstractive Arabic Text Summarization

Based on Deep Learning,” Comput. Intell. Neurosci., vol. 2022, 2022, doi:

10.1155/2022/1566890.

[21]. N. Kumari, N. Sharma, and P. Singh, “Performance of Optimizers in Text Summarization for

News Articles,” Procedia Comput. Sci., vol. 218, no. 2022, pp. 2430–2437, 2022, doi:

10.1016/j.procs.2023.01.218.

[22]. H. A. M. Abdeljaber, S. Ahmad, A. Alharbi, and S. Kumar, “XAI-Based Reinforcement

Learning Approach for Text Summarization of Social IoT-Based Content,” Secur. Commun.

Networks, vol. 2022, 2022, doi: 10.1155/2022/7516832.

[23]. V. K. Manojkumar, S. Mathi, and X. Z. Gao, “An Experimental Investigation on Unsupervised

Text Summarization for Customer Reviews,” Procedia Comput. Sci., vol. 218, pp. 1692–1701,

2022, doi: 10.1016/j.procs.2023.01.147.

[24]. R. Zhang, N. Zhang, and J. Yu, “SentMask: A Sentence-Aware Mask Attention-Guided Two-

Stage Text Summarization Component,” Int. J. Intell. Syst., vol. 2023, 2023, doi:

10.1155/2023/1267336.

[25]. Dalal, S., Lilhore, U. K., Sharma, N., Arora, S., Simaiya, S., Ayadi, M., ... & Ksibi, A. (2024).

Improving smart home surveillance through YOLO model with transfer learning and

quantization for enhanced accuracy and efficiency. PeerJ Computer Science, 10, e1939.

[26]. Aman Chhillar RS, Alhussein M, Dalal S, Aurangzeb K and Lilhore UK (2024) Enhanced

cardiovascular disease prediction through self-improved Aquila optimized feature selection in

quantum neural network & LSTM model. Front. Med. 11:1414637. doi:

10.3389/fmed.2024.1414637

[27]. Dalal, S., Lilhore, U. K., Faujdar, N., Samiya, S., Jaglan, V., Alroobaea, R., ... & Ahmad, F.

(2024). Optimising air quality prediction in smart cities with hybrid particle swarm optimization‐

long‐short term memory‐recurrent neural network model. IET Smart Cities.

https://doi.org/10.1049/smc2.12080

2445 Nisha Transforming Hindi Text Summarization...

Nanotechnology Perceptions Vol. 20 No.7 (2024)

[28]. Nagar, R., Singh, Y., Malik, M., & Dalal, S. (2024). FdAI: Demand Forecast Model for Medical

Tourism in India. SN Computer Science, 5(4), 431.

[29]. Kaur, N., Mittal, A., Lilhore, U. K., Simaiya, S., Dalal, S., & Sharma, Y. K. (2024). An adaptive

mobility-aware secure handover and scheduling protocol for Earth Observation (EO)

communication using fog computing. Earth Science Informatics, 1-18.

[30]. Sumit, Chhillar, R. S., Dalal, S., Dalal, S., Lilhore, U. K., & Samiya, S. (2024). A dynamic and

optimized routing approach for VANET communication in smart cities to secure intelligent

transportation system via a chaotic multi-verse optimization algorithm. Cluster Computing, 1-

26.

[31]. Lilhore, U. K., Simaiya, S., Dalal, S., Sharma, Y. K., Tomar, S., & Hashmi, A. (2024). Secure

WSN Architecture Utilizing Hybrid Encryption with DKM to Ensure Consistent IoV

Communication. Wireless Personal Communications, 1-29.

[32]. Lilhore, U. K., Dalal, S., Varshney, N., Sharma, Y. K., Rao, K. B., Rao, V. M., ... & Chakrabarti,

P. (2024). Prevalence and risk factors analysis of postpartum depression at early stage using

hybrid deep learning model. Scientific Reports, 14(1), 4533.

[33]. Radulescu, M., Dalal, S., Lilhore, U. K., & Saimiya, S. (2024). Optimizing mineral identification

for sustainable resource extraction through hybrid deep learning enabled FinTech model.

Resources Policy, 89, 104692.

[34]. Dalal, S., Lilhore, U. K., Radulescu, M., Simaiya, S., Jaglan, V., & Sharma, A. (2024). A hybrid

LBP-CNN with YOLO-v5-based fire and smoke detection model in various environmental

conditions for environmental sustainability in smart city. Environmental Science and Pollution

Research, 1-18.

[35]. Lilhore, U. K., Dalal, S., Faujdar, N., Simaiya, S., Dahiya, M., Tomar, S., & Hashmi, A. (2024).

Unveiling the prevalence and risk factors of early stage postpartum depression: a hybrid deep

learning approach. Multimedia Tools and Applications, 1-35.

[36]. N. Kumari and P. Singh, “Hindi Text Summarization using Sequence to Sequence Neural

Network,” ACM Trans. Asian Low-Resource Lang. Inf. Process., pp. 1–12, 2023, doi:

10.1145/3624013.

[37]. N. Kumari and P. Singh, “Hindi Text Summarization Using Sequence to Sequence Neural

Network,” ACM Trans. Asian Low-Resource Lang. Inf. Process., vol. 22, no. 10, pp. 1–12, 2023,

doi: 10.1145/3624013.

[38]. A. P. Widyassari et al., “Review of automatic text summarization techniques & methods,” J.

King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 4, pp. 1029–1046, 2022, doi:

10.1016/j.jksuci.2020.05.006.

[39]. V. K. Manojkumar, S. Mathi, and X. Z. Gao, “An Experimental Investigation on Unsupervised

Text Summarization for Customer Reviews,” Procedia Comput. Sci., vol. 218, pp. 1692–1701,

2022, doi: 10.1016/j.procs.2023.01.147.

[40]. Dalal, S., Dahiya, N., Verma, A., Faujdar, N., Rathee, S., Jaglan, V., Rani, U. and Le, D.N.,

2024. A Deep Learning Framework with Learning without Forgetting for Intelligent Surveillance

in IoT-enabled Home Environments in Smart Cities. Recent Advances in Computer Science and

Communications..

[41]. W. B. Demilie, “Comparative Analysis of Automated Text Summarization Techniques: The

Case of Ethiopian Languages,” Wirel. Commun. Mob. Comput., vol. 2022, no. Dl, 2022, doi:

10.1155/2022/3282127.

