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Accurately anticipating Surface Roughness (SR) throughout turning operations is a continuous 

difficulty for the machining industry, particularly under variable lubrication circumstances. 

Surface finish quality is sometimes subpar because of standard models' low responsiveness to 

changes in lubrication conditions and machining settings. The present research introduced a novel 

Artificial Fish Swarm-Intelligent Modified XGBoost (AFSI-MX) methodology to tackle this 

problem by combining the XGBoost technique's potent prediction powers with the collective 

thinking of fish swarm behavior. First, the dataset is collected to assess the suggested AFSI-MX 

technique in relation to SR prediction. This study is carried out using the AFSI-MX approach on 

the Matlab platform. The suggested AFSI-MX technique is effective in forecasting SR in turning 

procedures over variable lubrication, as demonstrated by expserimental findings. The suggested 

AFSI-MX technique outperforms conventional methods in comparison when it comes to 

managing the complexity and unpredictability present in machining situations  

 

Keywords: Turnin, Surface Roughness (SR), Machining Industry, Lubrication Conditions, 

Artificial Fish Swarm-Intelligent Modified Xgboost (AFSI-MX). 
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1. Introduction 

The enhancement of machining operations efficiency is crucial in contemporary 

manufacturing as it directly impacts cost-effectiveness, heightened productivity and 

improved product quality (Das et al 2022; Nguyen et al 2022; Huang et al 2023). The 

fundamental process of machining, known as turning, plays a crucial role in the formation of 

various materials, encompassing metals and composites. The surface roughness of the final 

product is a crucial determinant of the efficiency of turning operations. In industries that 

demand high levels of quality and precision, such as the aerospace, automotive and medical 

sectors, obtaining the necessary surface polish is of utmost importance (Tian et al 2022; 

Afzal et al 2022; Prashanth et al 2023). The phenomenon of surface roughness is a 

multifaceted process influenced by various factors, such as material properties, lubrication 

conditions, cutting settings and tool geometry (Wang et al 2022). The continuous prediction 

and control of roughness on the surface during turning operations provide significant 

challenges in scenarios involving dynamic lubrication. Traditional strategies for predicting 

surface roughness in machining settings struggle to account for the fluctuating nature of 

these parameters, leading to subpar results and increased production costs (Yao et al 2023).  

Ulas et al (2020) proposed a Wire Electrical Discharge Machining (WEDM) that was used to 

machine the aluminum alloy Al7075 with a variety of parameters to predict the surface 

roughness, which is important for material properties. Dubey et al (2022) presented to 

estimate the surface roughness and assess its consistency with expected values, 

namely“linear regression (LR)," “random forest (RF)" and “support vector machine (SVM)” 

be employed. Zeng et al (2023) presented the “convolutional neural networks (CNN)”, 

“gated recurrent units (GRU)” method as the main model for predicting the roughness of the 

surface. Pimenov et al (2018) proposed the application of “artificial intelligence (AI)” 

approaches for the real-time prediction of surface roughness variations.Karim et al (2018) 

presented an “Adaptive Neurofuzzy Inference System (ANFIS)” and an “Artificial Neural 

Network (ANN)" for the prediction of surface roughness in turning SiC-Al Alloy composite. 

Motta et al (2022) presented machine learning techniques, Random Forest (RF) and 

Gaussian Process Regression (GPR), for the prediction of surface roughness in cylindrical 

turning operations. Pelayo et al (2021) presented two methodologies: a geometric framework 

for characterizing the surfaces generated by barrel-end mills. The methodology relies on the 

simulation of tool-induced marks on the machined surface and the utilization of empirical 

models to forecast surface characteristics using cutting parameters. Steege et al (2023) 

proposed two machine learning algorithms, artificial neural network (ANN) and random 

forest (RF), which were examined to assess their effectiveness in predicting surface 

roughness Steege et al 2020). 

Rajesh et al (2022)proposed that a ML methodology known as the nonlinear autoregressive 

network (NRAX) model was utilized to develop prediction and logistic regression models 

for the dry turning process of Inconel 625. The Alajmi and Almeshal (2020)presented the 

ML technology employed in this approach is the "Adaptive Neuro-Fuzzy Inference System-

Quantum Particle Swarm Optimization (ANFIS-QPSO)" to forecast surface roughness 

measurements in the specific scenario of dry and cryogenic turning of stainless steel AISI 

304. Hu et al (2023) presented a suggest framework that combines Transfer Learning (TL) 

and Gaussian Process (GP) to improve the reliability of surface roughness prediction. Li et al 
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(2021) proposed the method “particle swarm optimization least squares support vector 

machine (PSO-LSSVM)” and it is designed to enable high-speed precision milling surface 

roughness prediction. The aim is to implement using artificial fish swarm-intelligent with 

modified xgboost (AFSI-MX) to improve the predictions of surface roughness. Our goal is to 

increase accuracy and efficiency by analyzing a dataset of metal matrix composites that were 

constructed using SiC as the support material and Al alloy as the lattice material, as 

demonstrated by better performance metrics (ARE and RMSE) compared to current 

techniques. 

 

2. Materials and Methods 

This research proposed to predict Surface Roughness Prediction in Turning Processes with 

Dynamic Lubricationusing an Artificial Fish Swarm Algorithm With Modified Xgboost 

(AFSI-MX). 

2.1 Dataset  

The dataset was gathered in Karim et al (2018). Metal matrix composites were constructed 

using SiC as the support material and Al alloy as the lattice material. Al-6061-based Metal 

Matrix Composite (MMC) consists of 98% of aluminium, 0.8% of magnesium, 0.50 percent 

iron, 0.2% of zinc, 0.2 percent chromium and 0.2% of copper. Furthermore, it includes 10% 

aluminium 6061 and 90% of silicon carbide (SiC). 

2.2 Machining parameters 

2.2.1 Speed 

The variability in spindle speed has a direct influence on the workpiece's roughness on the 

surface. Titanium alloys exhibit favorable machinability characteristics when subjected to 

high cutting speeds, whereas softer materials like aluminum are best processed at lower 

cutting rates. In contrast to various other aspects, the speed and feed of the machining 

process exhibit interdependence. When operating at low speeds and high feed rates, it is 

possible to achieve higher surface roughness values, resulting in a greater surface polish. 

This can be accomplished by using low feed rates and high speeds. Nevertheless, the pace at 

which material is removed is quite low in the second case. The adjustment of speed on a 

machine is contingent upon the cutting tool employed for the cutting process. Tools that are 

designed for softer materials are meant to achieve a high-quality surface finish when rotated 

at modest rates. When employing tools equipped with carbide materials that possess higher 

hardness or increased speed capabilities, it is possible to alter the operating speeds to achieve 

superior surface quality. 

2.2.2 Feed 

The advancement of the length tool in the cutting direction is determined by the feed, which 

is measured in millimeters per revolution of the spindle. The role of feed is of utmost 

importance in establishing the surface quality of the machined product. The relationship 

between feed and speed is elucidated in the preceding discussion. There's a chance that 

applying excessive feed at a slow speed will cut the machine's surface threads. It is not 

recommended to use low feeds while working at high speeds, as this leads to a large fall in 
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the “Material Removal Rate (MRR)," which is undesirable. 

2.2.3 Depth of the cut 

The surface roughness is affected by the cutting depth when the operation involves 

substantial cutting depths. The poor surface quality is a consequence of increased strain at 

the interface due to the significant cut depth, which is caused by the contact area of the tool 

material. 

2.3 Materials properties 

2.3.1 Tensile strength and Yield strength 

The manufacturing of a given work is ascertained based on the workpiece's production and 

strength of tensile. When making a decision about the choice of tools and lubricants, it is 

imperative to consider these criteria. The cutting forces exerted and the amount of heat 

generated in the cutting zone can be estimated based on the material's strength. Considering 

the aforementioned factors, the heat conductivity qualities of both the tool and material are 

of interest, it is possible to ascertain the appropriate amount of cooling required and the 

specific cooling method to be utilized to achieve a desirable surface quality. 

The hardness of the workpiece:  

The hardness of the material has an impact on various other qualities. The machining 

properties, specifically the speed, are influenced by the hardness of the workpiece. It is 

generally advised to employ lower speeds when turning softer workpieces, as this tends to 

yield more favorable results. Higher speeds are recommended for turning harder workpieces, 

as this is more likely to ensure a superior surface quality. The hardness of the part has an 

impact on some attributes of the tool, including the tool's hardness and nose radius. In order 

to achieve cutting, it is essential for the tool to possess greater toughness than the workpiece. 

Additionally, the utilization of blunt tools is necessary to ensure the anticipation of a superior 

surface quality. 

2.4 Tool properties 

2.4.1 Tool coating and rack angle 

The thermal ability to absorb the cutting region is determined by the coating used on a tool. 

The tool's coating exhibits significant heat absorption in the cutting zone, reflecting the 

surface roughness caused by heat-induced material loss. The rake angle plays a crucial role 

in the formation of the chip and serves to reduce the probability of built-up edge formation, 

which in turn contributes to the generation of surface roughness. 

2.4.2 Tool hardness 

The hardness of a tool has an indirect impact on the surface roughness of a material, which is 

mediated by many processing characteristics like speed, feed rate and the hardness of the 

substance are worked on. It is imperative that the crushing force of the device surpasses that 

of the workpiece. When engaging in turning activities, high-speed tools, typically hard tools, 

are utilized to enable turning operations at elevated speeds. Typically, the utilization of 

robust tools is observed for the purpose of machining materials like titanium alloys and 

hardened steel. 
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2.4.3 Tool nose radius 

The feed rate for machining is influenced by the tool. The utilization of a blunt tool and the 

allocation of substantial resources give rise to disharmony. The occurrence of rubbing or 

sliding during the machining process can be attributed to the large radius and feed rate. 

Based on the conducted research investigating the relationship involving feed rate and nose 

radius, it is observed that to eradicate chat markings, it is advised to restrict the rate of feed 

to no over fifty percent of the nose circumference. The region where the tool and workpiece 

make contact, which offers valuable information regarding the heat generation and removal 

rate, is determined by the nose radius. 

2.5 Cooling system 

Heat is produced by the friction between the tool and the workpiece. Ignoring the heat 

created might have numerous negative effects on the workpiece's surface quality. For your 

investigation, below are a few different refrigeration systems.  

2.5.1 Dry 

Dry turning is a machining technique characterized by the absence of coolant in the cutting 

process. The “Surface Roughness (SR)” measurements of the end product exhibit higher 

values when compared to processes employing alternative cooling techniques. Significant 

amounts of thermal energy are generated as well as absorbed by the work-piece and the tool. 

The occurrence of tool malfunction or local welding at the interface of tool parts can be 

attributed to the temperature exceeding the melting point of the working component. In a dry 

lubricating system, the values of thermal conductivity are assumed to be 0 W/m^2K. 

2.5.2 Flooded cooling 

In the process of immersing a coolant in the workpiece to facilitate cooling is referred to as 

flooded lubrication in the context of turning operations. The coolant has the potential to 

exhibit homogeneity or exist as an emulsion of oil and water. Non-corrosive workpieces are 

cooled using water and the coolant's heat absorption capacities are communicated through 

emulsions. The heat conductivity of the coolant is a crucial factor in the process of heat 

absorption. This study investigates the thermal conductivity of two fundamental fluids and 

their weight ratio, which is contingent upon the composition of the mixture. In the absence of 

additional liquid substances containing nano particles, the analysis account is equal to the 

base fluid's thermal conductivity when there is a 1 blending ratio. 

2.5.3 Minimal Quantity of Lubricant (MQL) 

Reducing the amount of coolant needed to reduce the heat generated in the area of cutting is 

the primary goal of MQL. A key feature of MQL is the precise mist-like release of the 

coolant at the area of cutting, which is achieved by spraying small atomized particles from a 

nozzle under excessive pressure. Their ability to absorb heat is increased since they have 

been atomized into little molecules. At the same time, a significant amount of coolant is 

preserved since the workpiece does not submerge large volumes of coolant. To improve the 

absorption of heat in the cutting region, the refrigerant in the MQL tank can be mixed with 

various oils or nanoparticles. The weight combination, nano-partitions and the thermal 

properties of the base fluid are taken into account when predicting the surface roughness. 
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With the least amount of surface roughness possible, the cloth is twisted with the help of 

MQL to achieve the best surface quality. 

2.6 Surface Roughness Prediction 

In this research, we integrate the “artificial fish swarm algorithm (AFSA)” and modified 

XGboost (MX) for surface roughness prediction in turning processes with dynamic 

lubrication. 

2.7 Artificial fish swarm algorithm 

The implementation of the artificial fish swarm method is employed to optimize parameters 

in the prediction of surface roughness during dynamic lubrication. This approach attempts to 

enhance comprehension and regulation of frictional behavior, leading to increased 

performance and longevity of machinery as shown in Figure 1. 

AFSA is a swarm intelligence program that can solve optimization problems by mimicking 

the swarming, pursuing and preying actions of artificial fishes. Let 𝐖𝐣represent the current 

position of one artificial fish, 𝐖𝐮represent the viewpoint of one artificial fish at one time, 

visual represents the visual scope of each individual, 𝐖𝐚and 𝐖𝐛represent fishes inside the 

visual of𝐖𝐣, Step represent the largest step of artificial fish and 𝛅represent the fish swarm 

congestion factor. The following behaviors of fish swarms can be described. 

Behavior of swarms: Swarming activity is to be carried out if𝐞(𝐖𝐝) > 𝐞(𝐖𝐣), where 𝐖𝐝is 

the focal point inside the point 𝐖𝐣visual. Assume 𝐖𝐝to be𝐖𝐮. The fish at 𝐖𝐣 will move in 

the direction of point𝐖𝐝. 

Behavior of chasing: If the point (𝐝𝐞𝐧𝐨𝐭𝐞𝐝𝐛𝐲𝐖𝐦𝐚𝐱) that has the highest value for the 

objective function in the visual satisfies the condition𝐞(𝐖𝐦𝐚𝐱) > 𝐞(𝐖𝐣) and if the visuals of 

𝐖𝐣is not crowded, the chasing behavior is to be implemented. Let 𝐖𝐮be denoted as𝐖𝐦𝐚𝐱. 

The fish located at 𝐖𝐣will proceed to move one step closer to the 𝐖𝐦𝐚𝐱location. 

Behavior of Preying: The following circumstances are where preying behavior is used: 

𝐞(𝐖𝐝) < 𝐞(𝐖𝐣), 𝐞(𝐖𝐦𝐚𝐱) < 𝐞(𝐖𝐣)and the visual representation exhibits a lack of 

overcrowding.The visual representation exhibits a high level of crowding. 

In this context, a point 𝐖𝐢is randomly chosen from the visual representation of 𝐖𝐣. If the 

value of 𝐞(𝐖𝐢) > 𝐞(𝐖𝐣), the preying action is to be performed. Let 𝐖𝐢be denoted as 𝐖𝐮. 

The fish located at 𝐖𝐣will proceed by taking towards the point𝐖𝐢. On the other hand, the 

entity will transition to a random position inside its visual field. 

The optimal answer achieved in each iteration is denoted as the "board." Once the designated 

number of iterations has been completed, the search process is over and the outcome 

displayed on the "board" is considered to be the definitive solution. In the context of artificial 

preying fishes, the process of updating their position can be expressed as Eq. (1), 
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𝐖𝐧𝐞𝐱𝐭 = 𝐖𝐣 + 𝐫𝐚𝐧𝐝.
𝐬𝐭𝐞𝐩×(𝐖𝐢−𝐖𝐣)

𝐧𝐨𝐫𝐦 (𝐖𝐢−𝐖𝐣)
   (1) 

Where,𝐖𝐣the artificial fish’s present position, 𝐖𝐧𝐞𝐱𝐭is its next position and 𝐖𝐢is the position 

with the highest objective function value in terms of computational intelligence and 

neuroscience; In [−𝟏, 𝟏], rand represents a random number and norm(𝐖𝐢 − 𝐖𝐣)represents 

the separation between two position vectors. 

The position-updating for fish that artificially swarm can be expressed as Eq. (2-3), 

𝐖𝐧𝐞𝐱𝐭 = 𝐖𝐣 + 𝐫𝐚𝐧𝐝
𝐬𝐭𝐞𝐩×(𝐖𝐝−𝐖𝐣)

𝐧𝐨𝐫𝐦(𝐖𝐝−𝐖𝐣)
   (2) 

The position-updating might be formulated as follows for artificial chasing fish: 

𝐖𝐧𝐞𝐱𝐭 = 𝐖𝐣 + 𝐫𝐚𝐧𝐝
𝐬𝐭𝐞𝐩×(𝐖𝐦𝐚𝐱−𝐖𝐣)

𝐧𝐨𝐫𝐦(𝐖𝐦𝐚𝐱−𝐖𝐣)
  (3) 

 

Figure 1The flow chart of AFSI [Source: Author] 
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2.8 Modified XGBoost 

Modified XGBoost is used for predicting surface roughness in dynamic lubrication 

situations. It optimizes surface quality predictions by capturing complicated interactions and 

improving accuracy through the use of ensemble approaches.XGBoost, known as Extreme 

Gradient Boosting, was employed to produce an efficient model with quick computation 

times and good performance. To maximize the accuracy of future forecasts, the formula 

models the expected errors of decision trees using a combination technique. A value report 

on each feature's impact in predicting the final building performance score is part of the 

model's creation process. The impact of each attribute on the overall prediction of learning 

outcomes is indicated by this feature value. Decision trees are generated by XGBoost, which 

makes parallelization easier. The algorithm has the important property of distributed 

computing, which allows it to process large and complex models efficiently. The 

examination of extensive and varied datasets defines it as an out-core computing. This 

analytical technique is used to control resource use in an efficient manner. After every 

iteration, a new model must be incorporated to reduce errors. 

At iteration t, the goal of the XGBoost function is Eq. (4-8): 

𝐋(𝐭) =  ∑ 𝐋(𝐳𝐨𝐮𝐭𝐣
, 𝐳

𝐨𝐮𝐭𝐤
(𝐭−𝟏) + 𝐟𝐭(𝐱𝐤) + 𝐢(𝐡𝐭)𝐤=𝟏   (4) 

The variable 𝐲𝐨𝐮𝐭 h indicates a known true value from the training data. The combined 

component is indicated by𝐟(𝐱 + 𝐝𝐱), where x equals 𝐲 = 𝐒 𝐎𝐮𝐭𝟏𝐤
(𝐭−𝟏)

. Using the Taylor 

approximation is required. The simplest linear approximation of the function 𝐟(𝐱)is as 

follows: 

𝐟(𝐱) = 𝐟(𝐛) + 𝐟(𝐛(𝐱 − 𝐛)𝐝𝐱 = 𝐠𝐭(𝐳𝐤)   (5) 

The loss equation𝐊, represented as𝐟(𝐱), is assessed in this situation. The intended result from 

the previous operation 𝐭 − 𝟏is represented by the variable a and the additional learning that 

must be included in step 𝐬 is denoted by the variable𝐝𝐱. 

𝐟(𝐱) = 𝐟(𝐛) + 𝐟(𝐛)(𝐱 − 𝐛) + 𝟎. 𝟓𝐟′(𝐛)(𝐲 − 𝐛)^𝟐    (6) 

𝐋(𝐭) = ∑ [𝐋 (𝐳𝐨𝐮𝐭𝐣
, 𝐳

𝐨𝐮𝐭𝐢
(𝐭−𝟏)) + 𝐡𝐤𝐟𝐭(𝐱𝐢) + 𝟎. 𝟓𝐤𝐤𝐟𝐭 ^𝟐(𝐱𝐤)]𝐢=𝟏 + 𝐢(𝐟𝐭)   (7) 

The deleted objectives that must be minimized at step 𝐬 remain after the constant 

components have been removed. 

𝐋𝟏(𝐭) = ∑ [𝐡𝐢𝐟𝐭(𝐱𝐤) + 𝟎. 𝟓𝐤𝐤𝐟𝐭 ^𝟐(𝐱𝐤)] 𝐤=𝟏 + 𝐢(𝐟𝐭)                      (8) 

2.9 Hybrid of Artificial Fish Swarm-Intelligent with Modified Xgboost (AFSI-MX) 

The Artificial Fish Swarm-Intelligent (AFSI) and modified XGBoost are used to predict 

surface roughness in dynamic lubrication settings. The AFSI algorithm imitates foraging 

behavior in fish, enhancing its predictive accuracy. The XGBoost method, a gradient 

boosting technique, is known for its exceptional forecasting capabilities, capturing complex 

patterns and interdependencies. The hybrid methodology uses AFSI to improve 

hyperparameters of the XGBoost model, adjusting learning rates and tree depths to suit the 

surface roughness prediction in turning processes with dynamic lubricationchallenge. This 
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integration enhances the model's efficiency and precision, improving machine dependability 

and effectiveness in practical contexts. The algorithm for AFSI-MX is shown in algorithm 

(1). 

Algorithm 1: Pseudocode for AFSI-MX 

% Objective function for surface roughness prediction 

𝐨𝐛𝐣_𝐟𝐮𝐧 =  @(𝐩𝐚𝐫𝐚𝐦𝐬) 𝐬𝐮𝐫𝐟𝐚𝐜𝐞_𝐫𝐨𝐮𝐠𝐡𝐧𝐞𝐬𝐬_𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧(𝐩𝐚𝐫𝐚𝐦𝐬); 

% AFSA parameters 

𝐧𝐮𝐦_𝐚𝐠𝐞𝐧𝐭𝐬 =  𝟓𝟎;  𝐦𝐚𝐱_𝐢𝐭𝐞𝐫 =  𝟏𝟎𝟎; 

𝐥𝐛 =  [𝐥𝐨𝐰𝐞𝐫_𝐛𝐨𝐮𝐧𝐝_𝐩𝐚𝐫𝐚𝐦𝟏, 𝐥𝐨𝐰𝐞𝐫_𝐛𝐨𝐮𝐧𝐝_𝐩𝐚𝐫𝐚𝐦𝟐, . . . ]; 

𝐮𝐛 =  [𝐮𝐩𝐩𝐞𝐫_𝐛𝐨𝐮𝐧𝐝_𝐩𝐚𝐫𝐚𝐦𝟏, 𝐮𝐩𝐩𝐞𝐫_𝐛𝐨𝐮𝐧𝐝_𝐩𝐚𝐫𝐚𝐦𝟐, . . . ]; 

% Initialize AFSA agents 

𝐚𝐠𝐞𝐧𝐭𝐬 =  𝐬𝐭𝐫𝐮𝐜𝐭(′𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧′, [], ′𝐟𝐢𝐭𝐧𝐞𝐬𝐬′, []); 

𝐚𝐠𝐞𝐧𝐭𝐬 =  𝐫𝐞𝐩𝐞𝐚𝐭(𝐚𝐠𝐞𝐧𝐭𝐬, 𝐧𝐮𝐦_𝐚𝐠𝐞𝐧𝐭𝐬, 𝟏); 

[𝐚𝐠𝐞𝐧𝐭𝐬. 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧]  =  𝐝𝐞𝐚𝐥(𝐥𝐛 +  𝐫𝐚𝐧𝐝(𝟏, 𝐧𝐮𝐦𝐞𝐫𝐚𝐥(𝐥𝐛)) .∗  (𝐮𝐛 −  𝐥𝐛)); 

% AFSA optimization loop 

𝐟𝐨𝐫 𝐢𝐭𝐞𝐫 =  𝟏: 𝐦𝐚𝐱_𝐢𝐭𝐞𝐫 

    [agents.fitness] = arrayfun(@(a) obj_fun(a.position), agents); 

    [~, sorted_indices] = sort([agents.fitness]); 

𝐚𝐠𝐞𝐧𝐭𝐬 =  𝐚𝐠𝐞𝐧𝐭𝐬(𝐬𝐨𝐫𝐭𝐞𝐝_𝐢𝐧𝐝𝐢𝐜𝐞𝐬); 

𝐱𝐠𝐛𝐨𝐨𝐬𝐭_𝐩𝐚𝐫𝐚𝐦𝐬 =  𝐚𝐠𝐞𝐧𝐭𝐬(𝟏). 𝐩𝐨𝐬𝐢𝐭𝐢𝐨𝐧; 

𝐱𝐠𝐛𝐨𝐨𝐬𝐭_𝐦𝐨𝐝𝐞𝐥 =  𝐭𝐫𝐚𝐢𝐧_𝐱𝐠𝐛𝐨𝐨𝐬𝐭_𝐦𝐨𝐝𝐞𝐥(𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠_𝐝𝐚𝐭𝐚, 𝐱𝐠𝐛𝐨𝐨𝐬𝐭_𝐩𝐚𝐫𝐚𝐦𝐬); 

𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬 =  𝐩𝐫𝐞𝐝𝐢𝐜𝐭(𝐱𝐠𝐛𝐨𝐨𝐬𝐭_𝐦𝐨𝐝𝐞𝐥, 𝐭𝐞𝐬𝐭_𝐝𝐚𝐭𝐚); 

𝐦𝐬𝐞 =  𝐦𝐞𝐚𝐧_𝐬𝐪𝐮𝐚𝐫𝐞𝐝_𝐞𝐫𝐫𝐨𝐫(𝐩𝐫𝐞𝐝𝐢𝐜𝐭𝐢𝐨𝐧𝐬, 𝐭𝐫𝐮𝐞_𝐥𝐚𝐛𝐞𝐥𝐬); 

𝐟𝐩𝐫𝐢𝐧𝐭𝐟(′𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 %𝐝, 𝐌𝐒𝐄: %𝐟\𝐧′, 𝐢𝐭𝐞𝐫, 𝐦𝐬𝐞); 

𝐚𝐠𝐞𝐧𝐭𝐬 = 𝐮𝐩𝐝𝐚𝐭𝐞_𝐚𝐟𝐬𝐚(𝐚𝐠𝐞𝐧𝐭𝐬); 

𝐞𝐧𝐝 

 

3. Results and discussion 

The material has a yield strength that varies from 190 MPa to 1145 MPa. The material's 

tensile strength ranges from 235 MPa to 1354 MPa. The Brinell Hardness Number (BHN), 

which represents the hardness of the workpiece, varies from 245 to 920. 

The range of the tool rake angle is 3 to 20 degrees. The range of the tool nose radius is 0.3 
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mm to 2.3 mm. The material's basal thermal conductivity is between 0 and 0.9 W/m^2.K. 

The material's nano-thermal conductivity ranges from 0 to 0.3112 W/m^2.K. Some other 

characteristics are shown in Table 1. In Table 2, the experiment's data findings are displayed. 

Figure 2 displays the surface imperfection results. 

Table 1. Some other characteristics[Source: Author] 

Characteristics Ranges 

Speed (revolutions per minute) 236.74 - 3256.7 

Feed (revolution /mm) 0.05 - 0.6 

Tool Coating /× 

Depth of Cut (mm) 0.3-3 

Table 2. Result of Test Data  [Source: Author] 

Machining Parameters Workpiece properties Tool properties Cooling system 

speed feed 
Depth 

of cut 

Yiel

d 

Stre

ngth 

Tensile 

Strengt

h 

Har

dne

ss 

Coa

ting 

Hardne

ss 

Nose 

radius 

(mm) 

Rake 

angle 

Base 

T.C.(k) 

Nano 

T .C.(k) 

Weight 

ratio 

535.25 0.25 0.3 190 235 245 
 

850 0.6 20 0.9 0.201 10 

720.65 0.2 0.3 190 210 245 
 

850 0.6 20 0.9 0.201 10 

741.65 0.32 0.3 190 210 245 
 

850 0.5 20 0.9 0.201 10 

741.65 0.23 0.3 190 210 245 
 

850 0.5 20 0.9 0.201 10 

741.65 0.25 0.3 190 210 245 
 

850 0.5 20 0.9 0.201 10 

1684.66 0.24 2 489 485 300 × 760 0.5 8 0.2564 0.3112 43.44 

2168.75 0.05 2 489 485 300 × 760 0.5 8 0.2564 0.3112 43.44 

1896.66 0.3 2 489 485 300 × 760 0.5 8 0.2564 0.3112 43.44 

1845.36 0.24 2 489 485 300 × 760 0.5 8 0.2564 0.3112 43.44 

1896.77 0.17 2 560 745 456 
 

720 0.9 14 0.356 0.256 354 

1896.77 0.17 1 560 745 456 
 

720 0.9 14 0.356 0.256 354 

1893.77 0.2 2.6 560 745 456 
 

720 0.9 14 0.2356 0.256 354 

3256.7 0.2 2.6 384 490 456 × 720 0.5 10 0 0 0 

3256.7 0.24 2.6 384 490 456 × 720 0.5 10 0 0 0 

3256.7 0.3 2.6 384 490 456 × 720 0.5 10 0 0 0 
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756.51 0.35 1 
114

5 
895 920 × 901 0.7 11 0.25 0 0 

1856.33 0.43 0.5 
114

5 
895 920 × 901 0.3 11 0.25 0 0 

1647.33 0.43 0.7 
114

5 
895 920 × 901 0.3 11 0.25 0 0 

1675.33 0.43 1 
114

5 
895 920 × 920 0.3 11 0.25 0 0 

236.74 0.5 3 754 1354 365 
 

760 2.3 3 0 0 0 

 

 

Figure 2. Results of surface roughness (experimental and predicted)[Source: Author] 

We implemented our approach in Matlab (v 2021) on Windows 10 OS. The system is 

powered by an Intel Core i3 processor and it is equipped with a high-performance IRIS 

graphics card, providing robust capability for performing intensive machine learning tasks. 

Using metrics like ARE and RMSE, the suggested method (AFSI-MX) was evaluated in 

terms of performance against the current approaches, which include ("Particle Swarm 

Optimization - Least Squares Support Vector Machine (PSO-LSSVM)," "Support Vector 

Machine (SVM)," and "Response Surface Method (RSM)" (Li et al 2021)). 

The percentage difference between expected and actual values is measured by the “Absolute 

Relative Error (ARE)” in Surface Roughness Prediction in Turning Processes with Dynamic 

Lubrication, which indicates how accurate the predictive model performs. The results of 

ARE are shown in Figure 3 and Table 3. AFSI-MX obtains the value of 0.0299, then the 

current technique, such as PSO-LSSVM (0.0326), SVM (0.03861) and RSM (0.0365).The 

results show that the ARE of Surface Roughness Prediction in Turning Processes with 

Dynamic Lubrication is much lower than that of the existing method. 
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Figure 3. Result of ARE [Source: Author] 

Table 3. Results of ARE[Source: Author] 

Models ARE 

PSO-LSSVM  0.0326 

SVM 0.03861 

RSM 0.0365 

AFSI-MX [Proposed] 0.0299 

The degree of assumption strength is determined by calculating the "Root Mean Square 

Error (RMSE)" variances between the measured and anticipated surface roughness 

predictions. The difference between expected and actual surface roughness values in turning 

processes with dynamic lubrication is depicted by the Root Mean Square Error (RMSE) 

graph. The result of RMSE is shown in Figure 4 and Table 4. AFSI-MX obtains the value of 

0.0201, the current technique, such as PSO-LSSVM (0.0213), SVM (0.0267) and RSM 

(0.0325). The results show that the RMSE of Surface Roughness Prediction in Turning 

Processes with Dynamic Lubrication is lower than that of the existing method. 
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Figure 4. Comparison of RMSE[Source: Author] 

Table 4. Results of RMSE[Source: Author] 

Models RMSE 

PSO-LSSVM 0.0213 

SVM 0.0267 

RSM 0.0325 

AFSI-MX  [Proposed] 0.0201 

 

4. Conclusions 

To forecast the texture of machined surfaces, surface roughness prediction uses algorithms. 

It increases the accuracy and productivity of manufacturing by integrating elements such as 

material qualities, machining conditions and tool wear. An innovative method, the Artificial 

Fish Swarm-Intelligent Modified XGBoost (AFSI-MX), is presented in this paper. It 

combines the powerful predictive powers of modified XGBoost with the collective behavior 

of fish swarms. The AFSI-MX method is tested using Matlab-collected datasets to show how 

well it predicts SR in turning processes with different lubrication settings. The investigation 

evaluated the efficacy of the proposed AFSI-MX technique utilizing multiple criteria, such 

as ARE (0.0299) and RMSE (0.0201). According to the findings of the experiment, the 

suggested AFSI-MX approach is more adaptable and predictable in complicated machining 

environments than traditional methods. A significant factor in determining the model's 

efficacy could be the level of quality and accuracy of the training dataset. A small or 

unbalanced dataset can have an effect on how well the model performs in practical 

situations. Further studies need to concentrate on enhancing the model's durability by 

overcoming biases and data constraints. To improve the model's flexibility and effectiveness 

in many real-world circumstances, this involves increasing and diversifying the training 

dataset. 
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