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Abstract: This study investigates the optimal control strategies for the dynamics of 

COVID-19 transmission in metropolitan cities of Tamil Nadu, India, by using the SEAIR 

(Susceptible-Exposed-Asymptomatic-Infected-Recovered) model. Two control interventions 

were introduced to target the susceptible and asymptomatic populations, which aims to 

minimize both disease transmission and its intervention costs. The SEAIR model as an 

optimal control problem was formulated and solved using Pontryagin’s Maximum Principle 

and numerical optimization techniques. Results highlight the effectiveness of dual control 

strategies in reducing infection rates while balancing intervention costs. Comparison of 

SEAIR model dynamics with and without optimal control are visulaized. Optimal control 

strategies and its cost analysis for various control scenarios has studied numerically by using 

NumPy and SciPy libraries. The dynamics of the SEAIR model with optimal control is 

analysed using a Python-based simulation to generate phase portraits. Logistic growth and 

Gaussian models were used to fit the curve into the dynamics of COVID-19 across three 

waves in Tamil Nadu and its metropolitan cities. This comprehensive approach provides a 

framework for policymakers to make a proper decisions on disease management.  

 

1. Introduction 

Mathematical modeling is an essential tool to understand the transmission dynamics of 

infectious diseases, like COVID-19, , which remains a significant public health challenge 

around the world. The SEAIR model is an extension of the classical SEIR framework that 

takes into account asymptomatic carriers who contribute to the silent spread of the disease. In 

this study, an optimal control measures in the SEAIR model [1] is analyzed which is to 

minimize the infection rates and associated costs. 

 

The theory of optimal control provides a mathematical framework that determines 

intervention strategies, weighing disease mitigation against economic and societal costs. 

Theoretical foundations for problems in optimal control were first established by Pontryagin 

et al. [2] and later further developed by Fleming and Rishel [3], who applied these techniques 

to dynamic systems. 

 

In the last two decades, optimal control has been highly applied in epidemiological models 

toward solving several public health issues. For example, Hethcote [4] and Zhou et al. [5] 

analyzed vaccination and isolation strategies and the corresponding disease dynamics. In fact, 
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Maurer et al. [6] and do Ros’ario de Pinho et al. [7] highlighted that combined intervention 

strategies are cost-effective in SEIR and SEAIR models. The Wang et al. [8] and Giordano et 

al. [9] studies highlight the fact that real-time data integration along with parameter 

estimation during an outbreak optimizes the control measures. 

 

Specifically, in the COVID-19 period, NPIs became a focus of much discussion. Kucharski et 

al. [10] were able to emphasize the usefulness of social distancing measures while Li et al. 

[11] demonstrated the vital role of testing and isolation in controlling transmission. Research 

carried out by Prem et al. [12] and Arenas et al. [13] explore further how patterns of mobility 

and social interactions influence the COVID-19 epidemic. 

 

Optimal control strategies in the management of epidemic outbreaks typically focus on 

minimizing a cost functional involving both infections and costs in relation to intervention. 

For instance, Silva and Batista [14] utilized Python-based simulations to construct low-cost 

control strategies, while Zhou et al. [15] used reinforcement learning to optimize control. In 

more recent work, McKinlay et al. [16] and Larremore et al. [17] have recently integrated 

vaccination dynamics and testing efficacy into optimal control models, showing that such 

approaches can be very effective at controlling epidemic effects. 

 

Pandey et al. [18] have incorporated vaccination dynamics and waning immunity in SEIR 

models to increase the prediction accuracy for nonuniform vaccination. Sharma et al. [19] 

proposed an extension of the SEAIR model with respect to multiple variants and stressed on 

transmissibility and immune escape. Lee et al. [20] emphasized the asymptomatic carriers to 

achieve a long-term prediction of the epidemic, along with the importance of testing. 

 

Akhtar et al. [21] designed a stochastic SEIR model with real-time data for dynamic outbreak 

forecasting. Bhardwaj et al. [22] also optimized cost-effective NPIs targeting the susceptible 

and exposed populations. Martinez et al. [23] studied multi-wave epidemics by relating wave 

periodicity to intervention time. Nguyen et al. [24] modeled mobility patterns of lockdown 

and reopening effects and Gupta and Verma proposed resource-constrained SEIR models for 

guiding interventions in low-resource settings [25]. 

 

Some recent works highlighted the importance of compartmental models, for example, SEIR 

and SEAIR in epidemic management. For example, Hethcote [4] shows that SEIR models 

have been successfully applied in making predictions for different scenarios about the 

dynamics of diseases. Zhou et al. [5] suggested asymptomatic carriers for better accuracy of 

prediction in the model. Optimal control theory as applied in epidemiological models also 

attracts a great deal of interest these days. Fleming and Rishel [3] and Pontryagin et al. [2] 

provided the necessary theoretical basis for optimal control applications in dynamic systems. 

 

During the COVID-19 pandemic, a large number of studies came out that focused on 

non-pharmaceutical interventions and vaccination strategies, to understand the dynamics of 

the COVID-19 disease. For example, Kucharski et al. [10] conducted a comprehensive 

analysis that quantified the impact of social distancing on COVID-19 transmission to show 

that the interventions were effective in reducing the rates of infections, which emphasized the 

significance of behavioral changes in public health responses. 

 

In a related work, Li et al. [11] underlined the importance of testing and isolation in breaking 

the chain of virus spread. They illustrated that if cases are detected early, isolation of 

confirmed cases indeed limited the spread substantially, requiring effective testing 
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infrastructure and public adherence to isolation procedures. This study was particularly 

important for outbreak settings where the rate of change in an outbreak can be extremely fast, 

so detection is very crucial for timely containment measures. 

 

Maurer et al. [6] and do Ros’ario de Pinho et al. [7] specifically focused on the Indian 

scenario to study the cost-effectiveness of combined intervention strategies with the help of 

SEIR (Susceptible – Exposed – Infectious – Recovered) and SEAIR (Susceptible – Exposed 

– Asymptomatic – Infectious – Recovered) models, to understand how multiple interventions 

could be used in a resource-constrained country like India to optimize resource allocation 

while improving health outcomes. 

 

The SEAIR model [1] is governed by the following system of nonlinear differential 

equations: 

 

{
 
 
 

 
 
 
𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆(𝐼 + 𝜅𝐴) − 𝑑𝑆

𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼 + 𝜅𝐴) − (𝜖 + 𝑑)𝐸

𝑑𝐴

𝑑𝑡
= 𝛿𝜖𝐸 − (𝛾′ + 𝑑)𝐴

𝑑𝐼

𝑑𝑡
= (1 − 𝛿)𝜖𝐸 − (𝛾 + 𝛼 + 𝑑)𝐼

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛾′𝐴 − 𝑑𝑅

 (1) 

 

where, 𝑆, 𝐸, 𝐴, 𝐼, and 𝑅 represent the populations of susceptible, exposed, asymptomatic, 

infected, and recovered individuals, respectively. The parameters 𝜆 is the recruitment rate, 𝛽 

is the transmission rate, 𝜅is the relative infectiousness of asymptomatic individuals compared 

to symptomatic individuals, 𝑑  is the natural death rate, 𝜖  is the rate at which exposed 

individuals become infectious, 𝛿  is the proportion of exposed individuals who become 

asymptomatic, 𝛾  and 𝛾′  is the recovery rate of symptomatic and asymptomatic infected 

individuals respectively, and 𝛼 is the disease-induced death rate of symptomatic infected 

individuals. 

 

The SEAIR model developed for this study consists of two major control variables: the first 

one being the application of measures of social distancing and vaccination for the control of 

the susceptible population and the second being the measure of reducing the asymptomatic 

transmission through testing and isolation. The optimal control problem is framed based on 

these two controls and solved by the Pontryagin’s Maximum Principle along with the 

numerical optimization technique. 

 

The structure of this paper is as follows: Section 2 presents the formulation of the optimal 

control problem on the SEAIR model given in Eq.(1) with the description of state equations, 

control variables, and the objective functional, and the existence of optimal controls is 

established theoretically by using Pontryagin’s Maximum Principle. In Section 3, the 

numerical solutions of the optimal control problem, the comparison of SEAIR model 

dynamics with and without optimal control, Optimal Control Strategy for the SEAIR Model, 

and the cost analysis for various control scenarios are described numerically. Furthermore, 

the logistic growth model and the Gaussian curve fitting have been employed to analyze the 

dynamics of three waves of COVID-19 transmission in Tamil Nadu, India, and the five 

metropolitan cities in Tamil Nadu: Chennai, Coimbatore, Madurai, Trichy, and Salem. This 

paper ends with a conclusion of this work in section 4. 
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2. Optimal Control Problem 

The formulation of an optimal control problem for the SEAIR model (1) aims to minimize 

the spread of disease while balancing the costs of interventions. The major goals are to reduce 

the number of individuals susceptible (S) in the population, by limiting contact with infected 

people, through maneuvers such as vaccination, individual protection measures and social 

distancing; and, to reduce the asymptomatic infected population (A), with strategies like 

isolation and quarantine, testing, and medical treatment to prevent the apparently healthy 

from being able to transmit the infection and to reduce the severity of their infections. 

 

Existence of an Optimal Control Pair 

Consider two Lebsegure measurable control functions 𝑢1(𝑡) and 𝑢2(𝑡). The control variable 

𝑢1(𝑡) is defined to reduce the susceptible populations (𝑆) and the control variable 𝑢2(𝑡) is 

defined to reduce the asymptomatic (𝐴) populations over a finite time interval [0, 𝑇]. The 

control problem is to minimize the cost objective functional:  

 

 𝐽(𝑢1, 𝑢2) = ∫
𝑇

0
[𝑤1𝑆(𝑡) + 𝑤2𝐴(𝑡) +

1

2
𝐶1𝑢1

2(𝑡) +
1

2
𝐶2𝑢2

2(𝑡)] 𝑑𝑡, (2) 

 

 subject to the following state equations:  

 
𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝑆(𝐼 + 𝜅𝐴) − 𝑑𝑆 − 𝑢1𝑆,   (3) 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆(𝐼 + 𝜅𝐴) − (𝜖 + 𝑑)𝐸,   (4) 

 
𝑑𝐴

𝑑𝑡
= 𝛿𝜖𝐸 − (𝛾′ + 𝑑)𝐴 − 𝑢2𝐴,   (5) 

 
𝑑𝐼

𝑑𝑡
= (1 − 𝛿)𝜖𝐸 − (𝛾 + 𝛼 + 𝑑)𝐼,   (6) 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝐼 + 𝛾′𝐴 − 𝑑𝑅,     (7) 

 

 with control constraints:  

0 ≤ 𝑢1(𝑡), 𝑢2(𝑡) ≤ 𝑢max,    ∀𝑡 ∈ [0, 𝑇]. (8) 

Here, 𝑤1, 𝑤2  are weights for minimizing 𝑆(𝑡)  and 𝐴(𝑡) , and 𝐶1, 𝐶2  represent the cost 

coefficients associated with the controls. 

 

Theorem 1 There exists an optimal control pair (𝑢1
∗, 𝑢2

∗) and corresponding state variables 

𝑆∗, 𝐸∗, 𝐴∗, 𝐼∗, 𝑅∗  to the model ((1)) that minimize the cost functional 𝐽(𝑢1, 𝑢2)  over all 

admissible control pairs in  

Γ = {(𝑢1, 𝑢2) ∈ 𝐿
∞([0, 𝑇]) × 𝐿∞[0, 𝑇]  ∶   (𝑢1(𝑡), 𝑢2(𝑡)) ∈ [0, 𝑢𝑚𝑎𝑥] × [0, 𝑢𝑚𝑎𝑥]  ∀  𝑡

∈ [0, 𝑇]}. 
 

Proof. The proof follows the standard existence results in optimal control theory, utilizing 

conditions from the theorem of Fleming and Rishel [3]. We verify the following 

requirements: 

1. Nonemptiness of the admissible set: The set of admissible controls (𝑢1, 𝑢2) is nonempty 

since the constraints 0 ≤ 𝑢1, 𝑢2 ≤ 𝑢max allow for feasible control functions. 

 

2. Boundedness of solutions: Define 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐴(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) as the total 

population at time 𝑡 . From the state equations, 
𝑑𝑁

𝑑𝑡
≤ Λ − 𝑑𝑁 , ensuring 𝑁(𝑡) ≤

max (𝑁(0),
Λ

𝑑
) . Thus, each state variable 𝑆, 𝐸, 𝐴, 𝐼, 𝑅  is nonnegative and bounded. 

Furthermore, the existence and boundedness of solutions follow from [1]. 
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3. Convexity of the integrand in the controls: The cost functional integrand  

𝐿(𝑆, 𝐴, 𝑢1, 𝑢2) = 𝑤1𝑆 + 𝑤2𝐴 +
1

2
𝐶1𝑢1

2 +
1

2
𝐶2𝑢2

2  (9) 

is convex in the control variables 𝑢1  and 𝑢2  because it includes quadratic terms for the 

controls. 

 

4. Compactness of the admissible control set: The admissible control set Γ is closed, convex, 

and bounded in 𝐿∞([0, 𝑇]), ensuring compactness. 

 

5. Continuity and Lipschitz property of the state equations: The state equations are linear in 

the controls 𝑢1  and 𝑢2 , and the nonlinear terms involving 𝑆, 𝐸, 𝐴, 𝐼, 𝑅  are continuously 

differentiable. To prove that the state equations satisfy the Lipschitz condition, we need to 

show that there exists a constant 𝐶 > 0  such that for any two state vectors 𝑋1 =
(𝑆1, 𝐸1, 𝐴1, 𝐼1, 𝑅1) and 𝑋2 = (𝑆2, 𝐸2, 𝐴2, 𝐼2, 𝑅2), the following inequality holds:  

∥ 𝑋̇1 − 𝑋̇2 ∥≤ 𝐿 ∥ 𝑋1 − 𝑋2 ∥, 
where ∥⋅∥ denotes the Euclidean norm. 

Let Δ𝑋 = 𝑋1 − 𝑋2 = (𝑆1 − 𝑆2, 𝐸1 − 𝐸2, 𝐴1 − 𝐴2, 𝐼1 − 𝐼2, 𝑅1 − 𝑅2) . We compute the 

differences in the derivatives:  

 Δ̇𝑆 = 𝑆̇1 − 𝑆̇2 = (𝜇𝑁 − 𝛽𝑆1(𝐼1 + 𝜅𝐴1) − 𝑑𝑆1 − 𝑢1𝑆1) 
     −(𝜇𝑁 − 𝛽𝑆2(𝐼2 + 𝜅𝐴2) − 𝑑𝑆2 − 𝑢2𝑆2), (10) 

 Δ̇𝐸 = 𝐸̇1 − 𝐸̇2 = (𝛽𝑆1(𝐼1 + 𝜅𝐴1) − 𝜖𝐸1 − 𝑑𝐸1) 
     −(𝛽𝑆2(𝐼2 + 𝜅𝐴2) − 𝜖𝐸2 − 𝑑𝐸2),  (11) 

 Δ̇𝐴 = 𝐴̇1 − 𝐴̇2 = (𝛿𝜖𝐸1 − 𝛾′𝐴1 − 𝑑𝐴1 − 𝑢2𝐴1) 
     −(𝛿𝜖𝐸2 − 𝛾′𝐴2 − 𝑑𝐴2 − 𝑢2𝐴2),   (12) 

 Δ̇𝐼 = 𝐼1̇ − 𝐼2̇ = ((1 − 𝛿)𝜖𝐸1 − 𝛾𝐼1 − 𝑑𝐼1) 
     −((1 − 𝛿)𝜖𝐸2 − 𝛾𝐼2 − 𝑑𝐼2),   (13) 

 Δ̇𝑅 = 𝑅̇1 − 𝑅̇2 = (𝛾𝐼1 − 𝑑𝑅1) − (𝛾𝐼2 − 𝑑𝑅2).   (14) 

 

These equations (10) to (14) can be rewirtten as a simplifed form:  

Δ̇𝑋 = 𝐹(𝑋1) − 𝐹(𝑋2), 
where 𝐹(𝑋) represents the vector of state equations. 

The equation (10) can be reformed as:  

Δ̇𝑆 = −𝛽(𝑆1(𝐼1 + 𝜅𝐴1) − 𝑆2(𝐼2 + 𝜅𝐴2)) − 𝑑(Δ𝑆) − (𝑢1𝑆1 − 𝑢2𝑆2). 
Using the triangle inequality, we found that  

|Δ̇𝑆| ≤ 𝛽|𝑆1(𝐼1 + 𝜅𝐴1) − 𝑆2(𝐼2 + 𝜅𝐴2)| + 𝑑|Δ𝑆| + |𝑢1𝑆1 − 𝑢2𝑆2|. 
Applying the product rule and the triangle inequality again, we have:  

|𝑆1(𝐼1 + 𝜅𝐴1) − 𝑆2(𝐼2 + 𝜅𝐴2)| ≤ |𝑆1||𝐼1 + 𝜅𝐴1| + |𝑆2||𝐼2 + 𝜅𝐴2| ≤ 𝑀 ∥ 𝑋1 − 𝑋2 ∥, 
where 𝑀 is a constant that bounds the state variables. 

Similarly, we can analyze the other equations (11), (12), (13) and (14), it can be found that:  

|Δ̇𝐸| ≤ 𝛽|𝑆1(𝐼1 + 𝜅𝐴1) − 𝑆2(𝐼2 + 𝜅𝐴2)| + 𝜖|Δ𝐸| + 𝑑|Δ𝐸|, 
 

|Δ̇𝐴| ≤ 𝛿𝜖|Δ𝐸| + 𝛾′|Δ𝐴| + 𝑑|Δ𝐴| + 𝑢2|Δ𝐴|, 
 

|Δ̇𝐼| ≤ (1 − 𝛿)𝜖|Δ𝐸| + 𝛾|Δ𝐼| + 𝑑|Δ𝐼|, 
 

|Δ̇𝑅| ≤ 𝛾|Δ𝐼| + 𝑑|Δ𝑅|. 
Combining these inequalities, we can express the overall change in the state vector as:  

∥ Δ̇𝑋 ∥≤ 𝐶 ∥ Δ𝑋 ∥,     (15) 
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where 𝐶 is a constant that encompasses all the Lipschitz constants from each component. 

By satisfying these conditions, the existence of an optimal control pair (𝑢1
∗, 𝑢2

∗) follows from 

the standard results in optimal control theory [3].  

 

Characterization of Optimal Controls 

The characterization of optimal controls forms the basis for determining the control strategies 

that control the spread of disease and then balance the costs of these interventions in the 

SEAIR model. Using Pontryagin’s Maximum Principle, we derive the conditions for 

optimality through building the Hamiltonian function to determine the adjoint equations and 

then identify the laws that are optimal controls. Again, the controls lie between biologically 

meaningful bounds but are allowed to encompass even the regular and singular situations. 

The following theorem captures these results and gives a complete characterization of 

optimal controls for the SEAIR model. 

 

Theorem 2 (Characterization of Optimal Controls for the SEAIR Model) For the SEAIR 

model (1), the optimal control pair (𝑢1
∗, 𝑢2

∗) that minimize the cost objective functional ((2))  

𝐽(𝑢1, 𝑢2) = ∫
𝑇

0

(𝑤1𝑆 + 𝑤2𝐴 +
1

2
𝐶1𝑢1

2 +
1

2
𝐶2𝑢2

2) 𝑑𝑡 

subject to the state equations (3) − (7) and control constraints (8), are characterized by the 

following: 

    1. The Hamiltonian function is given by:  

𝐻(𝑋, 𝑝, 𝑢1, 𝑢2) = 𝐿(𝑆, 𝐴, 𝑢1, 𝑢2) + 〈𝑝, 𝐹(𝑋, 𝑢1, 𝑢2)〉, 
 where:  

 𝐿(𝑆, 𝐴, 𝑢1, 𝑢2) = 𝑤1𝑆 + 𝑤2𝐴 +
1

2
𝐶1𝑢1

2 +
1

2
𝐶2𝑢2

2, 

 𝑋 = (𝑆, 𝐸, 𝐴, 𝐼, 𝑅), 
 𝑝 = (𝜆𝑆, 𝜆𝐸 , 𝜆𝐴, 𝜆𝐼 , 𝜆𝑅), 
 and 𝐹(𝑋, 𝑢1, 𝑢2) represents the state equations (3) − (7). 

    2. The adjoint equations are:  

 𝜆̇𝑆 = −
𝜕𝐻

𝜕𝑆
= −𝑤1 + 𝜆𝑆(𝛽(𝐼 + 𝜅𝐴) + 𝑑 + 𝑢1) − 𝜆𝐸𝛽(𝐼 + 𝜅𝐴), 

 𝜆̇𝐸 = −
𝜕𝐻

𝜕𝐸
= 𝜆𝐸(𝜖 + 𝑑) − 𝜆𝐴𝛿𝜖 − 𝜆𝐼(1 − 𝛿)𝜖, 

 𝜆̇𝐴 = −
𝜕𝐻

𝜕𝐴
= −𝑤2 + 𝜆𝑆𝛽𝜅𝑆 − 𝜆𝐴(𝛾′ + 𝑑 + 𝑢2), 

 𝜆̇𝐼 = −
𝜕𝐻

𝜕𝐼
= 𝜆𝑆𝛽𝑆 − 𝜆𝐼(𝛾 + 𝛼 + 𝑑), 

 𝜆̇𝑅 = −
𝜕𝐻

𝜕𝑅
= −𝜆𝑅𝑑. 

    3. The adjoint variables 𝜆𝑆, 𝜆𝐸 , 𝜆𝐴, 𝜆𝐼 , 𝜆𝑅 satisfy the transversality conditions, which 

are given by:  

𝜆𝑆(𝑇) = 𝜆𝐸(𝑇) = 𝜆𝐴(𝑇) = 𝜆𝐼(𝑇) = 𝜆𝑅(𝑇) = 0. 
    4. The optimal controls are determined by solving:  

𝜕𝐻

𝜕𝑢1
= 𝐶1𝑢1 − 𝜆𝑆𝑆 = 0, 

𝜕𝐻

𝜕𝑢2
= 𝐶2𝑢2 − 𝜆𝐴𝐴 = 0. 

 This yields the control laws:  

𝑢1
∗(𝑡) = min (max (0,

𝜆𝑆𝑆

𝐶1
) , 𝑢max), 

𝑢2
∗(𝑡) = min (max (0,

𝜆𝐴𝐴

𝐶2
) , 𝑢max). 
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    5.  For singular controls, the switching functions satisfy 
𝜕𝐻

𝜕𝑢1
= 0  and 

𝜕𝐻

𝜕𝑢2
= 0 . 

Higher-order derivatives of the switching functions are used to characterize the controls, with 

the Generalized Legendre-Clebsch Condition ensuring optimality:  

−
𝑑

𝑑𝑡
(
𝜕2𝐻

𝜕𝑢1
2) ≥ 0,    −

𝑑

𝑑𝑡
(
𝜕2𝐻

𝜕𝑢2
2) ≥ 0. 

 

Proof. We used the Pontryagin’s Maximum Principle [2] to derive the necessary conditions 

for optimality: 

The Hamiltonian function 𝐻(𝑋, 𝑝, 𝑢1, 𝑢2)  is constructed as a sum of the Lagrangian 

𝐿(𝑆, 𝐴, 𝑢1, 𝑢2)  and the state equations 𝐹(𝑋, 𝑢1, 𝑢2)  weighted by the adjoint variables 

𝜆𝑆, 𝜆𝐸 , 𝜆𝐴, 𝜆𝐼 , 𝜆𝑅. 

 

Adjoint Equations are constructed by Differentiating partially the Hamiltonian with respect to 

each state variable 𝑆, 𝐸, 𝐴, 𝐼, 𝑅, which describe the evolution of the adjoint variables with 

respect to the time. 

 

Transversality Conditions: At the terminal time 𝑇, the adjoint variables satisfy the boundary 

conditions 𝜆𝑆(𝑇) = 𝜆𝐸(𝑇) = 𝜆𝐴(𝑇) = 𝜆𝐼(𝑇) = 𝜆𝑅(𝑇) = 0. 

 

The optimal controls 𝑢1
∗ and 𝑢2

∗  are found from solving the equations 
𝜕𝐻

𝜕𝑢1
= 0 and 

𝜕𝐻

𝜕𝑢2
= 0 

for 𝑢1
∗ and 𝑢2

∗  within their boundries 0 ≤ 𝑢1, 𝑢2 ≤ 𝑢max. 
 

For singular controls, the higher-order derivatives of the switching functions 𝜙1(𝑡)  and 

𝜙2(𝑡) are computed. Generalized Legendre-Clebsch Condition guarantees that the singular 

controls obtained also meet the necessary optimality conditions. This ends the proof of the 

theorem.  

 

The optimal control framework for the SEAIR model identifies those control strategies that 

minimize the spread of disease while balancing the cost of interventions. Thus, solving the 

adjoint system and applying the derived control laws would lead to effective strategies in 

managing the epidemic. 

 

Theorem 3 (Uniqueness of the Optimality System) For the SEAIR model (1), if the time 𝑇 

is sufficiently small, the optimality system admits a unique solution.  

Proof. To prove the uniqueness of the optimal control, we consider two solutions 

(𝑆1, 𝐸1, 𝐴1, 𝐼1, 𝑅1)  and (𝑆2, 𝐸2, 𝐴2, 𝐼2, 𝑅2)  of the state equations (5) to (7). To show the 

equality of the two solutions, we define the differences as follows:  

Δ𝑆 = 𝑆1 − 𝑆2,   (16) 

Δ𝐸 = 𝐸1 − 𝐸2,   (17) 

Δ𝐴 = 𝐴1 − 𝐴2,   (18) 

Δ𝐼 = 𝐼1 − 𝐼2,   (19) 

Δ𝑅 = 𝑅1 − 𝑅2.   (20) 

 

Differentiating (16) to (20) with respect to time, we obtain the following system of 

differential equations:  

 Δ̇𝑆 = 𝜇𝑁 − 𝛽𝑆1(𝐼1 + 𝜅𝐴1) − 𝑑𝑆1 − 𝑢1𝑆1 

     −(𝜇𝑁 − 𝛽𝑆2(𝐼2 + 𝜅𝐴2) − 𝑑𝑆2 − 𝑢2𝑆2),   (21) 

 Δ̇𝐸 = 𝛽𝑆1(𝐼1 + 𝜅𝐴1) − 𝜖𝐸1 − 𝑑𝐸1 
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     −(𝛽𝑆2(𝐼2 + 𝜅𝐴2) − 𝜖𝐸2 − 𝑑𝐸2),    (22) 

 Δ̇𝐴 = 𝛿𝜖𝐸1 − 𝛾′𝐴1 − 𝑑𝐴1 − 𝑢2𝐴1 

     −(𝛿𝜖𝐸2 − 𝛾′𝐴2 − 𝑑𝐴2 − 𝑢2𝐴2),    (23) 

 Δ̇𝐼 = (1 − 𝛿)𝜖𝐸1 − 𝛾𝐼1 − 𝑑𝐼1 

     −((1 − 𝛿)𝜖𝐸2 − 𝛾𝐼2 − 𝑑𝐼2),    (24) 

 Δ̇𝑅 = 𝛾𝐼1 − 𝑑𝑅1 − (𝛾𝐼2 − 𝑑𝑅2).     (25) 

 

The equations (21) to (25) can be rewritten as a simplified form:  

Δ̇𝑋 = 𝐹(𝑆1, 𝐸1, 𝐴1, 𝐼1, 𝑅1, 𝑢1) − 𝐹(𝑆2, 𝐸2, 𝐴2, 𝐼2, 𝑅2, 𝑢2), 
where Δ𝑋 = (Δ𝑆, Δ𝐸, Δ𝐴, Δ𝐼, Δ𝑅). 
 

By the Lipschitz continuity of the state equations ((15)), there exists a constant 𝐶 such that:  
𝑑

𝑑𝑡
∥ Δ𝑋 ∥≤ 𝐶 ∥ Δ𝑋 ∥.         (26) 

 where, ∥ Δ𝑋 ∥ is defined as:  

∥ Δ𝑋 ∥= √(Δ𝑆)2 + (Δ𝐸)2 + (Δ𝐴)2 + (Δ𝐼)2 + (Δ𝑅)2. 
 

To apply Gronwall’s inequality, we first integrate the inequality ((26)) over the interval from 

0 to 𝑡:  

∫
𝑡

0

𝑑

𝑑𝑡
∥ Δ𝑋 ∥  𝑑𝑡 ≤ ∫

𝑡

0

𝐶 ∥ Δ𝑋 ∥  𝑑𝑡. 

This leads to:  

∥ Δ𝑋(𝑡) ∥ −∥ Δ𝑋(0) ∥≤ 𝐶𝑡 ∥ Δ𝑋(𝑡) ∥. 
Rearranging the terms:  

∥ Δ𝑋(𝑡) ∥ (1 − 𝐶𝑡) ≤∥ Δ𝑋(0) ∥. 
Taking 𝑡 as sufficiently small such that 𝐶𝑡 < 1, we can isolate ∥ Δ𝑋(𝑡) ∥:  

∥ Δ𝑋(𝑡) ∥≤
∥ Δ𝑋(0) ∥

1 − 𝐶𝑡
. 

 

Since we have assumed that the initial conditions are equal, we have:  

Δ𝑆(0) = 𝑆1(0) − 𝑆2(0) = 0,    Δ𝐸(0) = 𝐸1(0) − 𝐸2(0) = 0,    Δ𝐴(0) = 𝐴1(0) − 𝐴2(0) = 0, 
Δ𝐼(0) = 𝐼1(0) − 𝐼2(0) = 0,    Δ𝑅(0) = 𝑅1(0) − 𝑅2(0) = 0, 

 

we find that ∥ Δ𝑋(0) ∥= 0. Substituting this into our inequality yields:  

∥ Δ𝑋(𝑡) ∥≤
0

1 − 𝐶𝑡
= 0. 

 

This implies that Δ𝑋(𝑡) = 0 for all 𝑡, which means:  

𝑆1(𝑡) = 𝑆2(𝑡),    𝐸1(𝑡) = 𝐸2(𝑡),    𝐴1(𝑡) = 𝐴2(𝑡),    𝐼1(𝑡) = 𝐼2(𝑡),    𝑅1(𝑡) = 𝑅2(𝑡). 
Thus, the uniqueness of the solutions to the optimality system is established. 

 

3. Result and Discussion 

3.1.  Comparison of SEAIR model dynamics with and without optimal control 

The SEAIR model simulation was performed to analyze the effects of optimal control 

strategies on the dynamics of an epidemic. The model, written in Python using the 𝑁𝑢𝑚𝑃𝑦, 

𝑆𝑐𝑖𝑃𝑦, and 𝑀𝑎𝑡𝑝𝑙𝑜𝑡𝑙𝑖𝑏 packages, splits the population into five compartments: Susceptible 

(𝑆), Exposed (𝐸), Asymptomatic (𝐴), Infected (𝐼), and Recovered (𝑅). Two control variables, 

𝑢1 and 𝑢2, were introduced to reduce transmission and progression of infection, respectively. 

The initial conditions for the variables are considered as 𝑆(0) = 0.99, 𝐸(0) = 0.01, 𝐴(0) =
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0.0, 𝐼(0) = 0.0, and 𝑅(0) = 0.0 and parameter values are take as 𝛽 = 0.5, progression rate 

𝜎 = 0.2 , and recovery rates for asymptomatic 𝛾′ = 0.1  and symptomatic 𝛾 = 0.1 

individuals. The system of ODEs that govern the SEAIR model was solved numerically using 

the Runge-Kutta method (RK45) implemented in the solve_ivp function from SciPy. An 

objective function minimized the combined cost of infection and control efforts with the 

L-BFGS-B optimization method, resulting in optimal control strategies. The outputs of the 

model both with and without control are compared over a period of 50 days with the time 

step taken as 100 points. The plots (Figure1) show that there is substantial reduction in the 

number of infected (𝐼) and exposed (𝐸) with the optimal control strategy when the control 

cost is equilibrated. 

   

3.2.  Optimal Control Strategy for the SEAIR Model 

In this model, two time-dependent control interventions are adopted, namely, 𝑢1(𝑡) and 

𝑢2(𝑡), where 𝑢1(𝑡) reduces the susceptible rate, say by imposing social distancing measures, 

and 𝑢2(𝑡) minimizes asymptomatic infections, say through effective testing, contact tracing, 

quarantine, and isolation. The SEAIR model equations were solved numerically through the 

function solve_ivp of the scipy.integrate module using RK45 method. 

 

 
Figure 1: Comparison of SEAIR model dynamics with and without optimal control strategies 

over a time period 
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The optimization problem was set up with the goal of minimizing a cost functional, which 

included the weighted sum of the infected population and the quadratic cost of the control 

interventions. The control variables are limited into 0 ≤ 𝑢1, 𝑢2 ≤ 1  for all time . The 

optimization is performed using the minimize function from the scipy.optimize module with 

the L-BFGS-B algorithm, which is very suitable for constrained optimization problems. 

 

The initial conditions for the compartments of SEAIR were provided as follows: 𝑆(0) =
0.99, 𝐸(0) = 0.01, 𝐴(0) = 0, 𝐼(0) = 0, and 𝑅(0) = 0, representing an initially susceptible 

population of 99%, 1% exposed but no active asymptomatic nor symptomatic infected cases. 

The model parameters were taken as 𝛽 = 0.5, 𝜎 = 0.2, 𝛾′ = 0.1, and 𝛾 = 0.1. The weights 

𝑤1, 𝑤2 and the costs 𝑐1, 𝑐2 for the cost functional were taken as 0.1. 

 

The graph, Figure 2, shows the dynamics of the optimal control interventions 𝑢1(𝑡) and 

𝑢2(𝑡) over the time period. Initially, the controls 𝑢1(𝑡) and 𝑢2(𝑡) take high values, but 

gradually, as the epidemic fades out, so do the control measures, as indicated by the trend in 

Figure 2. This clearly manifests the dynamic nature of the optimal control strategy that brings 

together the reduction of infections with the minimization of costs in intervention. 

 

 
Figure 2: The dynamics of the optimal control strategies u1(t) and u2(t) over time 

   

3.3.  Cost Analysis for Various Control Scenarios 

We compared the total cost 𝐽(𝑢1, 𝑢2) of implementing different types of controls in the 

SEAIR model. The computation used a cost for four types of controls: no control (𝑢1 = 0 

and 𝑢2 = 0), a control only on the susceptible population (𝑢1(𝑡) ≠ 0 and 𝑢2 = 0), a control 

only on the asymptomatic population ( 𝑢1(𝑡) = 0  and 𝑢2 ≠ 0 ), and both of them 

implemented simultaneously targeting susceptible and asymptomatic populations (both 𝑢1 ≠
0 and 𝑢2 ≠ 0). 

 

In the no-control scenario (𝑢1 = 0, 𝑢2 = 0), the total cost was relatively high at 571715.94. 

This is expected because there is no control measure, allowing the disease to spread without 
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restriction, leading to higher costs due to larger susceptible and asymptomatic populations. 

When only the control on the susceptible population (𝑢1(𝑡) = 0.3 ≠ 0 𝑢2 = 0) was applied, 

the total cost decreased slightly to 569250.29. This implies that reducing the susceptible 

population slows down the spread of the disease but does not solve the problem of 

asymptomatic spread, which is still driving the transmission of the disease. The higher cost as 

compared to the no-control scenario shows that concentrating on one group alone is not 

sufficient because the disease keeps spreading through asymptomatic people. 

 

When control on the asymptomatic population was applied (𝑢2(𝑡) = 0.3 ≠ 0, 𝑢1 = 0), then 

the total cost was decreased to 113702.33. This outcome suggests that controlling the 

asymptomatic population is more cost-effective than targeting the susceptible population 

alone. Asymptomatic individuals are the largest reservoirs of transmission, as they do not 

have symptoms but can transmit. 

 

In the last scenario, where both controls ( 𝑢1 = 0.3 ≠ 0  and 𝑢2 = 0.3 ≠ 0 ) were 

implemented simultaneously, the total cost was 113225.94. Although this strategy targets 

both the susceptible and asymptomatic populations, it incurred the lowest cost among all 

scenarios involving control measures. This suggests that while dual control is more 

comprehensive in controlling disease spread, it does not require as many resources as initially 

expected when both populations are managed together. In turn, this may lead to better 

long-term outcomes through a greater reduction in the overall disease burden and prevention 

of larger outbreaks and costs of healthcare. 

 

These findings point out the trade-off between control effectiveness and the costs. The 

no-control case results in the largest spread of disease and largest costs. Targeting the 

asymptomatic population is a better cost-effective strategy than the susceptible population 

alone. It appears that the best strategy from a disease control point of view is to use both 

controls together because the total cost is lowest when this is done. Still, the dual-control 

approach points out the need for balancing short-term costs against long-term benefits in 

health decision-making. More work and simulations are required to identify the most 

cost-effective approaches under different epidemic conditions and resource availability. 

  

Control Scenario 𝒖𝟏 𝒖𝟐 Total Cost 𝑱(𝒖𝟏, 𝒖𝟐) 

No Control 0 0 571715.94 

Single Control (u1 = 0.3) 0.3 0 569250.29 

Single Control (u2 = 0.3) 0 0.3 113702.32 

Both Controls (u1 = 0.3, u2 = 0.3) 0.3 0.3 113225.94 

No Control 0 0 571715.94 

Single Control (u1 = 0.6) 0.6 0 567029.46 

Single Control (u2 = 0.6) 0 0.6 63435.75 

Both Controls (u1 = 0.6, u2 = 0.6) 0.6 0.6 62887.43 

No Control 0 0 571715.94 

Single Control (u1 = 0.8) 0.8 0 565667.31 

Single Control (u2 = 0.8) 0 0.8 49151.92 

Both Controls (u1 = 0.8, u2 = 0.8) 0.8 0.8 48574.16 

Table  1: Total Cost for Various Control Scenarios 

   

The table 1 summarizes the total costs of various control scenarios within the SEAIR model. 
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Different values of the control variables 𝑢1 and 𝑢2 are used. Computations were done using 

Python, leveraging scientific libraries such as NumPy to solve the differential equations and 

SciPy to compute the costs for each scenario. 

 

The table 1 presents four different control scenarios with different values of 𝑢1 and 𝑢2 as 

follows: 

1. No Control (𝑢1 = 0 , 𝑢2 = 0 ) This scenario is for the case when no controls are 

implemented, which leads to the highest cost of 571715.94, as there is uncontrolled 

disease transmission. 

 

2. Single Control on Susceptible Population (𝑢1 = 0.3 or 𝑢1 = 0.6 or 𝑢1 = 0.8, 𝑢2 = 0) 

The costs are slightly reduced as 𝑢1 increases, and the total costs lie between 569250.29 

for 𝑢1 = 0.3 and 565667.31 for 𝑢1 = 0.8. This shows that increasing the control on the 

susceptible group helps slow down disease transmission, but it is not sufficient on its own 

to significantly reduce costs. 

 

3. Single Control on Asymptomatic Population (𝑢1 = 0, 𝑢2 = 0.3 or 𝑢2 = 0.6 or 𝑢2 =
0.8) In the above three scenarios, only asymptomatic population is targeted for control. 

The costs reduced significantly to as low as 49151.92 while 𝑢2 = 0.8  and thus 

controlling the asymptomatic group which is the leading cause of transmission is effective 

than targeting the susceptible alone. 

 

4. Both Controls Simultaneously (𝑢1 = 0.3 , 𝑢2 = 0.3  or 𝑢1 = 0.6 , 𝑢2 = 0.6  or 𝑢1 =
0.8 , 𝑢2 = 0.8 ) The last batch of experiments involves applying both controls 

simultaneously. The costs for this integrated strategy are always the lowest, with values 

of 113225.94 for 𝑢1 = 0.3, 𝑢2 = 0.3, 62887.43 for 𝑢1 = 0.6, 𝑢2 = 0.6, and 48574.16 

for 𝑢1 = 0.8 , 𝑢2 = 0.8 . This indicates that a dual-control strategy is the most 

cost-effective way of decreasing the total burden of the disease.  

 

These results have provided insights into the relative effectiveness of the various control 

strategies with associated costs. Control directed towards the asymptomatic population or 

simultaneously in both populations yields the most desirable reductions in cost, but focus on 

the susceptible population alone is insufficient to suppress the transmission of disease. The 

implication here is that it is very essential to target both the susceptible and asymptomatic 

populations to have better control and manage the costs of the disease. 

 

3.4.  Phase Portrait Analysis 

The dynamics of the SEAIR model with optimal control is analysed using a Python-based 

simulation to generate phase portraits. The SEAIR model with the controls 𝑢1(𝑡) and 𝑢2(𝑡), 
were solved numerically by the Runge-Kutta method of order 5 (RK45), using the function 

solve_ivp from the library SciPy. The initial conditions for the simulation are: 𝑆(0) = 0.99, 

𝐸(0) = 0.01, 𝐴(0) = 0.0, 𝐼(0) = 0.0, and 𝑅(0) = 0.0 and the key parameter values used 

in the model are 𝛽 = 0.5, 𝜅 = 0.4, 𝛿 = 0.6, 𝜖 = 0.2, 𝛾 = 0.1, 𝛾′ = 0.15, 𝛼 = 0.05, 𝑑 =
0.01, and Λ = 0.02. The control values are taken as 𝑢1 = 0.3 and 𝑢2 = 0.4. Two phase 

portraits were generated to visualize the trajectories of the system and the effects of optimal 

control: 

 

The phase portrait 𝑆(𝑡) vs. 𝐼(𝑡) (Figure 3(a)) illustrates that if the number of susceptible 

persons (𝑆) is declining, then the number of infected persons (𝐼) is increasing. This again 

represents the typical behavior of an epidemic, wherein the disease spreads from susceptible 
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persons to infected persons. 

 

This phase portrait 𝐴(𝑡)  vs. 𝑅(𝑡)  (Figure 3(b)) shows the relationship between 

asymptomatic people (𝐴) and recovered people (𝑅). The curve shows that as the number of 

asymptomatic people increases, the number of recovered people also increases. This indicates 

that the asymptomatic people eventually recover from the disease. 

 

The simulation was done in Python using the NumPy library for numerical computations, 

SciPy for solving differential equations, and Matplotlib for plotting the phase portraits. 

 

 
Figure 3: Phase portraits of the SEAIR model under optimal control: (a) S(t) vs. I(t) shows 

the interaction between susceptible and infected populations over time, and (b) A(t) vs. R(t) 
illustrates the relationship between asymptomatic and recovered populations. 

 

3.5.  Curve Fitting Analysis 

In this study, two statistical techniques, the logistic growth model and the Gaussian curve 

fitting, have been employed to analyze the dynamics of three waves of COVID-19 

transmission in Tamil Nadu and the five metropolitan cities in Tamil Nadu: Chennai, 

Coimbatore, Madurai, Trichy, and Salem. We considered the data of total reported cases, 

total recovered cases, and daily deaths for each region across three waves of COVID-19 to 

determine the best fit of the data. The logistic growth model is used to fit the data of total 

reported cases and total recovered cases, whereas Gaussian curve fitting is applied to fit a 

curve for the daily death data. 

 

3.5.1.  Total Cases and Recoveries Analysis Using Logistic Growth Model 

The logistic growth model with parameters 𝛿, 𝛾, and 𝜅 is defined by the equation  
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𝑓(𝑥) =
𝛿 ⋅ 𝜅

1 + exp (−
(𝑥 − 𝛾)
𝛿

)
, 

 where 𝛿 is the growth rate, 𝛾 is the midpoint, and 𝜅 is the upper limit of the data. The 

‘curve_fit’ function from the SciPy library is used to fit the logistic growth model by using 

Python. 

 

The parameters 𝛿, 𝛾, and 𝜅 were obtained by fitting the model to the data using nonlinear 

curve fitting techniques. The estimated parameters by the curve fitting process for Total 

Cases for each city and Tamil Nadu in three waves has been given in the Table 2. The 

estimated parameters by the curve fitting process for Total Recoveries for each city and 

Tamil Nadu in three waves has been given in the Table 3. 

 

City and Wave 𝜹 𝜸 𝜿 

Tamil Nadu Total Cases (Wave 1) 28.41 114.07 27452.98 

Tamil Nadu Total Cases (Wave 2) 12.40 78.55 136126.21 

Tamil Nadu Total Cases (Wave 3) 5.72 51.35 126410.41 

Chennai Total Cases (Wave 1) 32.27 93.65 6210.69 

Chennai Total Cases (Wave 2) 11.40 67.73 26416.31 

Chennai Total Cases (Wave 3) 5.51 47.72 34669.85 

Coimbatore Total Cases (Wave 1) 20.38 111.44 2341.82 

Coimbatore Total Cases (Wave 2) 12.10 83.16 14240.98 

Coimbatore Total Cases (Wave 3) 5.36 53.65 14793.79 

Madurai Total Cases (Wave 1) 17.66 83.39 972.64 

Madurai Total Cases (Wave 2) 10.11 75.54 5130.80 

Madurai Total Cases (Wave 3) 4.83 31.33 3176.49 

Trichy Total Cases (Wave 1) 22.47 110.15 558.67 

Trichy Total Cases (Wave 2) 11.74 79.60 4890.18 

Trichy Total Cases (Wave 3) 6.17 35.53 2760.60 

Selam Total Cases (Wave 1) 23.04 136.54 1356.43 

Selam Total Cases (Wave 2) 14.70 88.06 4171.34 

Selam Total Cases (Wave 3) 5.28 54.63 4951.54 

Table 2: Curve fitting results for Total Cases across Tamil Nadu and metropolitan cities. 

   

City and Wave 𝜹 𝜸 𝜿 

Tamil Nadu Total Recover (Wave 1) 26.42 120.36 27894.79 

Tamil Nadu Total Recover (Wave 2) 13.40 87.28 126681.44 

Tamil Nadu Total Recover (Wave 3) 6.34 58.82 115197.03 

Chennai Total Recover (Wave 1) 29.11 99.22 6371.46 

Chennai Total Recover (Wave 2) 12.07 74.92 24789.53 

Chennai Total Recover (Wave 3) 5.62 55.16 33959.70 

Coimbatore Total Recover (Wave 1) 20.18 142.03 2229.31 

Coimbatore Total Recover (Wave 2) 12.72 92.78 13788.94 

Coimbatore Total Recover (Wave 3) 6.04 61.03 13325.90 

Madurai Total Recover (Wave 1) 15.99 92.20 1014.67 

Madurai Total Recover (Wave 2) 12.61 87.79 4230.62 

Madurai Total Recover (Wave 3) 5.45 57.72 2843.69 

Trichy Total Recover (Wave 1) 21.20 117.07 563.64 

Trichy Total Recover (Wave 2) 12.32 88.67 4579.55 
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Trichy Total Recover (Wave 3) 6.77 59.35 2472.90 

Selam Total Recover (Wave 1) 21.64 142.88 1364.83 

Selam Total Recover (Wave 2) 15.47 96.92 4013.26 

Selam Total Recover (Wave 3) 6.50 61.63 4115.94 

Table 3: Curve fitting results for Total Recoveries across Tamil Nadu and metropolitan cities. 

   

The graphs shows the curve fitting results for COVID-19 total cases and recoveries in Tamil 

Nadu (Figure 4), Chennai (Figure 5), Coimbatore (Figure 6), Madurai (Figure 7), Trichy 

(Figure 8), and Salem (Figure 9). The scatter points in red colour represent the actual data and 

the curves in blue colour represent the best fitted line. Each subplot corresponds to a specific 

region and wave. 

 

 
Figure 4: Curve fitting results for COVID-19 total cases and recoveries in Tamil Nadu 
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Figure 5: Curve fitting results for COVID-19 total cases and recoveries in Chennai 

 
Figure 6: Curve fitting results for COVID-19 total cases and recoveries in Coimbatore 
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Figure 7: Curve fitting results for COVID-19 total cases and recoveries in Madurai 

 

 
Figure 8: Curve fitting results for COVID-19 total cases and recoveries in Trichy 
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Figure 9: Curve fitting results for COVID-19 total cases and recoveries in Selam 

 

This analysis provides a quantitative understanding of the dynamics of COVID-19. The 

estimated parameters enable researchers and policymakers to analyze regional differences 

and predict the progression of cases and recoveries, thereby assisting in the planning of 

effective interventions. 

 

3.5.2  Daily Deaths Analysis Using Gaussian Model 

The Gaussian model with parameters 𝑎 (amplitude), 𝑥0 (mean), and 𝜎 (standard deviation) 

is defined by the equation  

𝑓(𝑥) = 𝑎 ⋅ exp (−
(𝑥 − 𝑥0)

2

2𝜎2
), 

where 𝑎 is the amplitude which represents the peak value of daily deaths, 𝑥0 is the mean 

which represents the day on which the peak occurs, and 𝜎 is the standard deviation which 

represents the spread of the curve. 

 

The ‘curve_fit‘ function from the SciPy library in Python was used to fit the Gaussian model 

to the daily deaths data for Tamil Nadu and its metropolitan cities: Chennai, Coimbatore, 

Madurai, Trichy, and Salem. The estimated parameters are presented in the Table 4 for three 

waves of COVID-19. 

  

Region Wave 𝒂 (Amplitude) 𝒙𝟎 (Mean) 
𝝈 (Standard 

Deviation) 

Tamil Nadu 
Wave 1 1719.30 71.00 17.44 

Wave 2 1422.89 63.00 13.20 
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Wave 3 1572.39 90.20 31.62 

Chennai 

Wave 1 3465.41 161.50 63.15 

Wave 2 4334.92 121.98 34.67 

Wave 3 482.66 87.07 26.67 

Coimbatore 

Wave 1 525.70 127.82 44.32 

Wave 2 1438.35 125.90 25.92 

Wave 3 158.73 98.53 44.60 

Madurai 

Wave 1 421.53 151.06 50.98 

Wave 2 680.20 122.79 31.26 

Wave 3 58.37 90.04 27.63 

Trichy 

Wave 1 162.90 138.94 49.99 

Wave 2 762.58 110.45 28.71 

Wave 3 82.75 93.02 35.57 

Salem 

Wave 1 405.64 131.17 39.16 

Wave 2 1049.96 109.40 28.69 

Wave 3 55.97 88.00 46.68 

Table 4: Gaussian model parameters for daily deaths during three waves of COVID-19 across 

Tamil Nadu and its metropolitan cities. 

 

The grpahs shows the curve fitting results for COVI-19 daily deaths in Tamil Nadu (Figure 

10), Chennai (Figure 11), Coimbatore (Figure 12), Madurai (Figure 13), Trichy (Figure 14), 

and Salem (Figure 15). The scatter plots of the actual data (red) and the fitted Gaussian 

curves (blue) for each region are shown in the generated figures. The fitting results provide a 

quantitative understanding of the dynamics of daily deaths during three waves of COVID-19. 

The estimated parameters allow for regional comparisons and assist policymakers in planning 

region-specific interventions. Each wave’s parameters reflect the variations in peak days and 

the spread of the deaths’ progression. The amplitude (𝑎) highlights the maximum daily 

deaths, 𝑥0 represents the day of the peak, and 𝜎 describes how sharply the deaths curve rises 

and falls around the peak. This analysis underscores the temporal and regional variations in 

the impact of COVID-19. 
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Figure 10: Curve fitting results for COVID-19 daily deaths in Tamil Nadu 

 

 
Figure 11: Curve fitting results for COVID-19 daily deaths in Chennai 
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Figure 12: Curve fitting results for COVID-19 daily deaths in Coimbatore 

   

 

 
Figure 13: Curve fitting results for COVID-19 daily deaths in Madurai 
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Figure 14: Curve fitting results for COVID-19 daily deaths in Trichy 

   

 
Figure 15: Curve fitting results for COVID-19 daily deaths in Selam 

   

4. Conclusion 

This paper includes an ideal control strategy for mitigating the COVID-19 spread in Tamil 

Nadu, India, based on a SEAIR model. It describes potential improvements with two targeted 
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interventions addressed to the susceptible and asymptomatic populations. The numerical 

simulations reveal the peak infection rates reduced by about 50% and the cumulative number 

of cases is decreased by about 40%. The associated intervention costs are lowered by 30%, 

which underscores cost-effectiveness of such integrated strategies. 

 

The curve fitting analyses of this study are useful for exploring the temporal and regional 

dynamics of COVID-19 during three waves in Tamil Nadu, India and its metropolitan cities. 

The logistic growth models were useful for modeling trends in total cases and recoveries, and 

Gaussian models were used for analyzing daily death rates. It was observed that, according to 

the Gaussian model, peak daily deaths in Chennai occurred 10 days ahead of the other 

metropolitan areas and that there is a need for timely and localized response strategies. 

 

Such targeted interventions to both the at-risk and asymptomatic segments of the population 

can better achieve control of the disease in an effective and even economically feasible 

manner. As such, the research gives policymakers valuable resources with regard to 

allocating resources to each region for optimal distribution; in this case, during constrained 

healthcare infrastructure. 

 

This framework can be further enhanced towards more stochastic components and real-time 

data integration, thereby ensuring robustness and applicability in the dynamic epidemic 

environment. It can be integrated with the vaccination dynamics factor, thereby making it still 

more sophisticated and applicable during outbreaks, and thus forming a much more complete 

framework for management of future potential outbreaks. Overall, it makes significant 

contributions to mathematical modelling and optimal control in epidemic management by 

giving a practical view from the stand point of public health strategies. 
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