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Data-driven decision-making relies heavily on the quality and integrity of 

incoming data streams. While centralized data validation has been a mainstay, 

emerging paradigms in edge computing offer the potential to enforce data quality 

earlier in the data lifecycle. This paper introduces a multi-agent system (MAS) 

architecture, executed at the network edge, that automates data validation and 

quality grading during ingestion. By distributing intelligence among multiple 

agents embedded near data sources, the framework performs real-time checks on 

structural coherence, semantic consistency, and contextual reliability. Building 

on artificial intelligence (AI) principles, these agents classify incoming streams 

into standardized “bronze,” “silver,” and “gold” quality tiers, laying the 

foundation for more reliable data lakes and warehouses downstream. We present 

a conceptual model for edge-based data validation, analyze key challenges such 

as resource constraints, scalability, and agent coordination, and demonstrate the 

potential for improved data quality with minimal latency overhead.  

Finally, we discuss how an edge-based multi-agent paradigm can drive future 

developments in IoT ecosystems, industrial automation, and mission-critical 

domains seeking robust, near-real-time data vetting. 

Keywords:  Data Validation, Data Quality, Edge Intelligence, Multi-Agent 

Systems, Automated Ingestion, Bronze-Silver-Gold Classification, AI at the 
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1. Introduction 

Modern organizations increasingly depend on real-time data streams—from IoT sensors, 

electric vehicle modems, social media platforms, transactional systems, and other high-
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velocity sources—to drive decision-making (Hilbert, 2020; Jagadish et al., 2014). Yet, the 

quality of this data can vary wildly, affecting the reliability of analytics, machine learning 

(ML) pipelines downstream, and operational processes (Batini et al., 2009). Traditional data 

validation often occurs much after ingestion, within centralized data lakes or warehousing 

environments (Inmon, 2005; Kimball & Ross, 2013). However, such a post hoc approach can 

allow low-quality, incomplete, or erroneous data to propagate downstream—adding cost, 

slowing time to insight, and causing potential business risks due to inaccuracies (Zhu et al., 

2019). 

Advances in edge computing—the practice of placing compute resources and intelligence near 

the data source (Shi & Dustdar, 2016)—offer an opportunity to shift quality checks upstream. 

By executing data validation at or near the point of ingestion, organizations can filter, highlight 

or correct defective data before it becomes embedded in mission-critical systems 

(Satyanarayanan, 2017; Varghese & Simmhan, 2017). Meanwhile, breakthroughs in multi-

agent systems (MAS), where multiple autonomous entities coordinate to solve complex tasks 

(Weiss, 2013), enable decentralized control and distributed intelligence (Wooldridge, 2009). 

In tandem, these developments hint a new paradigm: edge-based multi-agent intelligence that 

automates data validation in real time, incrementally building trust in the incoming data 

streams. 

This paper proposes an integrated framework for automated data validation at ingestion using 

multi-agent systems deployed at the edge. Our approach is designed to:  

• Adapt to resource-constrained environments (e.g., embedded devices, industrial 

gateways) by employing lightweight AI models for real-time checks. 

• Coordinate among multiple agents that can parse diverse data formats and parquet 

files, handle dynamic workloads, and apply domain-specific rules. 

• Categorize data into bronze, silver, or gold tiers based on completeness, accuracy, 

consistency, and other quality dimensions (Olshannikova et al., 2020). 

• Provide immediate feedback for data producers, enabling quick fixes or corrections to 

upstream data sources. 

Section 2 reviews the relevant literature on data quality frameworks, edge computing, and 

multi-agent architectures. Section 3 outlines the conceptual model and layers for edge-based 

data validation. Section 4 explores the role of AI techniques in pattern recognition, anomaly 

detection, and rule-based inference. Section 5 delves into agent coordination mechanisms, 

resource constraints, and deployment considerations. Section 6 highlights use cases and 

potential benefits. Section 7 discusses open challenges, including privacy and integration 

issues, while Section 8 concludes with future directions. 

By establishing robust data validation at the edge, organizations stand to reduce data 

contamination, improve trust in analytics-driven business, and optimize storage and processing 

resources. The synergy of multi-agent intelligence and edge computing can drive a new era of 

proactive data quality management—empowering next-generation IoT, streaming analytics, 

and real-time control systems with data that is accurate, reliable, and promptly verified. 
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2. BACKGROUND AND RELATED WORK 

A. Data Quality and Validation 

Data quality research has long emphasized dimensions such as accuracy, completeness, 

timeliness, consistency, and relevance (Wand & Wang, 1996; Batini et al., 2009). Typical 

workflows involve post-ingestion cleaning in data warehouses, applying transformations like 

deduplication, type checks, referential integrity checks, and outlier removal (Kimball & Ross, 

2013). Though effective for batch-oriented systems, these methods often yield latency or 

overhead for real-time analytics (Cichy & Rass, 2020). 

Frameworks for grading data quality frequently adopt multi-level taxonomies—bronze for raw 

or unverified data, silver for partially curated data, and gold for thoroughly validated or 

integrated datasets (Lake & Quintero, 2020). While widely accepted in data engineering 

spheres, these tiered strategies typically require substantial offline, sometimes on-premises 

processing. This paper focuses on how to automate such categorization at the edge, reducing 

the pipeline burden in centralized systems including on cloud architecture.  

 

Fig 1. Distributed Edge Computing Paradigm 

B. Edge Computing Paradigms 

Edge computing aims to push computation and intelligence away from centralized clouds to 

geographically distributed edge devices (Satyanarayanan, 2017). This shift is motivated by 

latency sensitivities, bandwidth constraints, privacy requirements, and the need for 

independence in remote or mobile scenarios (Shi & Dustdar, 2016). Real-time analytics on the 

edge has been explored largely for video processing, sensor fusion, and local ML inference 

(Xu & Helal, 2018; Varghese & Simmhan, 2017). Data validation at the edge, however, 

remains relatively underexplored, often limited to basic range or null checks or incomplete 

rule-based scripts (Liu et al., 2022). Our approach extends beyond these simpler schemes by 

employing a multi-agent framework that can dynamically scale, handle and execute complex 

data validation logic. 
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Fig 2. Multi-Agent Systems Flow 

C. Multi-Agent Systems (MAS) 

A multi-agent system comprises multiple autonomous or semi-autonomous agents coming 

together to achieve common, overlapping or coordinated goals (Weiss, 2013). Agents can 

sense the environment, reason or learn from data, and act to fulfill their local objectives while 

coordinating via communication protocols (Wooldridge, 2009). MAS has been applied in 

robotics, supply chain optimization, and distributed sensor networks among many fields 

(Zambonelli et al., 2003). The concept of agent-based data management is gaining traction, 

particularly for contextual adaptation and real-time decision-making (Gou et al., 2013; 

Bravetti et al., 2021). 

Building on these principles, an MAS for data validation could partition the workload across 

specialized agents: one for structural validation to check on schema formats, another for 

semantic coherence to check on domain rules, and others for anomaly detection or metadata 

enrichment. This layered structure may allow parallel execution and robust fault tolerance at 

the edge. 

D. AI-Assisted Data Checks 

While rule-based validation remains common (e.g., regex or DSL-based checks), AI-based 

approaches can detect subtle patterns or anomalies (Aggarwal, 2015). Supervised models may 

classify records as acceptable or suspicious based on labeled examples, while unsupervised 

methods like clustering or autoencoders can flag outliers in streaming data (Chandola et al., 

2009; Para, 2024). With the edge’s resource constraints, however, model selection and 

optimization become critical (Zhang et al., 2019). Researchers have explored tiny ML or 

model compression techniques for on-device inference (Lane et al., 2015). Similarly, 

reinforcement learning can help agents adapt validation policies over time (Zhu et al., 2021). 

We integrate these methods into our architecture, ensuring performance viability in edge 

scenarios.  

In summary, the literature suggests that edge computing and multi-agent intelligence present 

a promising approach to tackling the challenges of data validation and quality grading at the 
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edge. This synergy not only preserves systemic performance but also contributes to higher-

quality data integrity. 

 

3. CONCEPTUAL MODEL AND ARCHITECTURE 

A. Overview 

We propose an Edge-Driven Multi-Agent Intelligence (EDMAI) framework that performs 

automated data validation on ingest streams. Figures 1 and 2 conceptually depict data flowing 

from IoT sensors or external APIs to an edge gateway, where multiple agents examine quality 

metrics in near real time. Data validated at the edge is then forwarded to downstream systems, 

tagged with quality metadata (bronze, silver, gold). 

Each agent operates semi-autonomously, focusing on specialized checks: schema adherence, 

domain constraints, semantic context, or anomaly detection (Para, 2024). The MAS 

environment includes communication channels for agent-to-agent messaging (Weiss, 2013). 

If an agent flags data as suspicious, it can query other agents or request user input. This 

distributed design ensures no single point of failure or bottleneck. 

B. Layered Components 

• Data Ingestion Layer: Responsible for interfacing with data sources, staging incoming 

records, and distributing them to agent modules. This layer may handle fundamental 

transformations or audits, such as format normalization. 

• Agent Coordination Layer: Orchestrates the lifecycle of individual agents (monitors 

registration, implements scheduling) and routes data among them. It is a driving service, which 

ensures dynamic discovery of specialized agents for tasks (e.g., a sensor agent vs. a transaction 

agent).  

• Validation/Quality Agent Layer: This layer of core intelligence, ensures reading from 

a local message bus or queue, applying their validations and checks in parallel. They produce 

a combined quality score or classification (e.g., bronze, silver, gold).  

• Feedback and Control Layer: Aggregates the outcomes from the validation layer, 

updates logs, triggers alerts where necessary, and escalates data for manual review if 

confidence is low. This layer also feeds user or domain expert corrections back into the agent 

knowledge base. 

C. Data Quality Tiers 

• Bronze: Data that passes foundational or structural checks but is incomplete or 

uncertain. 

• Silver: Data that meets additional semantic or domain rules, sufficiently reliable for 

certain analytics or operational usage. 

• Gold: Data thoroughly validated across all relevant criteria, comprising minimal 

anomalies, duplicates, or inconsistencies 

Agents cumulatively assign these tier labels, storing them in metadata for subsequent analysis 
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or processing. This immediate labeling enforces quality gating, ensures only “Gold” or higher-

tier data flows into mission-critical pipelines, and systematically organizes partial or 

questionable data for corrective actions. 

 

4. AI-DRIVEN DATA VALIDATION 

A. Rule-Based and Symbolic Checks 

At the edge, some validations remain well-served by direct domain-specific rules.  

• Schema Matches: Ensuring required fields, data types, permissible ranges (Kimball & 

Ross, 2013) 

• Constraint/Rule-based Satisfaction: For instance, date fields must follow ISO 

standards, numeric fields must be within known domain boundaries, or mandatory foreign key 

references must exist (Batini et al., 2009). 

• Regex Pattern Matches: For email addresses, phone numbers, or ID formats. 

Such rules can be stored in knowledge bases, triggered by specialized “schema agents” or 

“domain agents.” While these methods are quick or real-time, they do not detect subtle 

anomalies or emerging data drifts (Cichy & Rass, 2020). 

B. Anomaly Detection 

Anomaly detection leverages statistical or ML-based methods to flag unusual data points 

(Chandola et al., 2009; Aggarwal, 2015; Para, 2024). In the edge-driven MAS context, an 

“anomaly agent” may run a simplified isolation forest or local outlier factor algorithm. 

Alternatively, small neural autoencoders can learn typical data patterns and measure 

reconstruction error in real time (Zhang et al., 2019; Para, 2024). If the error exceeds a certain 

defined threshold, the agent marks the record as suspicious. 

Despite resource limitations, careful hyperparameter tuning or model compression can sustain 

near-real-time performance (Lane et al., 2015). The agent’s local memory can store recent 

samples, allowing incremental updates. Over time, drift detection modules identify if the data 

distribution shifts significantly requiring a retraining or recalibration step at that point (Zhu et 

al., 2021). 

C. Semantic and Contextual Checks 

In scenarios like smart agriculture, automotive, ecommerce or manufacturing, domain 

knowledge can be crucial. A “semantic agent” might cross-reference readings from the sensors 

or vehicle modems with environmental conditions or business logic (e.g., temperature must 

not exceed X if machine status is set to Y, electric vehicle charging cannot have readings 

reported when turned off) (Gou et al., 2013). Knowledge graphs or ontologies can aid in 

verifying relationships between entities or events (Bravetti et al., 2021). 

Contextual signals, such as time, location, or correlated sensor streams, allow the agent to 

interpret data within a broader situational scope. For instance, if an accelerometer reading 

spikes but no motion is recorded by a correlated camera sensor, a potential data inconsistency 

arises. Combining these signals requires advanced inference engines or well-designed and 
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simplified semantic reasoners tuned for edge devices (Wooldridge, 2009). 

D. Reinforcement Learning for Policy Adaptation 

Rather than a static set of rules maintained heuristically, some agents could leverage 

reinforcement learning (RL) to adapt validation policies. If a certain rule triggers false 

positives often, the RL-based agent adjusts threshold parameters to reduce them (Zhu et al., 

2021). The agent receives feedback signals from downstream systems or user interventions. 

Over time, it refines its detection strategy, balancing sensitivity (to catch errors) with 

specificity (to avoid any false alarms). RL is especially pertinent where data evolves 

unpredictably—e.g., dynamic IoT networks or markets (Aggarwal, 2015). 

 

Fig 3. Evolution of Data Streaming 

 

5. MULTI-AGENT COORDINATION & DEPLOYMENT 

A. Agent Roles and Hierarchies 

We propose the following arrangement of agents. 

• Ingestion Agents: Interface with data sources, perform quick syntax checks, route data 

to specialized validators. 

• Validation Agents: Focus on domain logic, anomalies, or semantic checks. Possibly 

multiple parallel validator agents exist for different data types or use cases. 

• Coordinator or Manager Agents: Facilitate workload distribution, aggregate results, 

resolve conflicts among validators, and assign final quality scores. 

• Supervisor Agents (optional): Oversee RL policy updates or domain rule 

modifications, handle user feedback, track performance metrics. 

B. Communications and Scalability 

The MAS can use publish-subscribe topics or message queues (e.g., MQTT, RabbitMQ) for 

asynchronous data exchange. Each validator agent subscribes to relevant data topics. If an 

agent classifies data as suspicious, it can publish an event, prompting other agents or 

requesting a manager or a coordinator to re-check or quarantine that record (Weiss, 2013). 
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Scalability arises from the ability to spin up additional validator agents or distribute them 

across multiple edge nodes. Agents can register or deregister with the manager dynamically, 

allowing ephemeral edge devices to join or leave the system (Zambonelli et al., 2003).  

C. Resource Constraints and Edge Deployment 

Edge devices typically have limited CPU, memory, and power budgets (Shi & Dustdar, 2016). 

Strategies to address these constraints include: 

• Model Compression: Pruning or quantization for neural-based anomaly detection 

(Lane et al., 2015). 

• Thin-Client Rule Engines: Minimizing overhead in symbolic checks. 

• Agent Migration: Offloading busier computations to a nearby fog node or micro-cloud 

when local resources become insufficient (Satyanarayanan, 2017). 

• Adaptive Frequencies: Adjusting the frequency of deep checks vs. basic checks to 

manage workloads (Zhang et al., 2019). 

Hence, an MAS at the edge must diligently orchestrate local computations and synergy with 

more powerful nodes to achieve an overall robust performance. 

 

6. CHALLENGES AND RESEARCH DIRECTIONS 

A. Privacy and Security 

Edge devices often operate in volatile environments. Ensuring data confidentiality during 

processing—especially if personally identifiable or sensitive data is validated—requires 

encryption, secure enclaves, or privacy-preserving computations (Acquisti et al., 2016). 

Agents must also authenticate themselves to avoid impersonation or any sort of malicious 

infiltration (Mosenia & Jha, 2017). 

B. Knowledge Assessment 

Domain rules, data schemas, and anomaly signatures can evolve over time. Agents must 

maintain up-to-date knowledge bases over time as well. Automatic or semi-automatic rule 

updates—potentially triggered by new domain knowledge or user feedback—are critical to 

keep validation consistent over time (Gou et al., 2013). Handling versioning and rollback also 

becomes a challenge (Zhu et al., 2021) 

C. Conflict Resolution 

Multiple validator agents might have a disagreement on a record’s quality rating. The system 

must define conflict resolution strategies—majority voting, confidence weighting, or a 

predefined hierarchical priority. If disagreements persist, the data might remain in a “gray 

zone” awaiting manual intervention or curation (Weiss, 2013). Designing stable consensus 

algorithms is nontrivial in dynamic, multi-agent contexts (Zambonelli et al., 2003). 

D. Complexity vs. Latency Trade-Off 

More computational or more sophisticated checks yield better detection but risk incurring too 
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much latency, especially at scale (Cichy & Rass, 2020). Striking a balance between thorough 

validation and real-time throughput is a key concern. Further research might explore dynamic 

validation that downgrades check under higher loads or selectively applies advanced methods 

only to suspicious data (Zhang et al., 2019). 

E. Standardization and Interoperability 

As edge computing environments expand, the lack of standard frameworks for agent 

deployment, rule specification, and data labeling complicates adoption (Bravetti et al., 2021). 

Industry consortia or open-source platforms could define common APIs and templates for 

multi-agent data validation. However, without consensus, prolonged fragmentation may 

restrict cross-domain synergy. 

 

7. CONCLUSION AND FUTURE OUTLOOK 

The necessity for real-time, automated data validation is rising in parallel with the growth of 

data-centric systems and IoT networks. This paper outlined how multi-agent intelligence at 

the edge can bring robust, context-aware validation logic closer to data sources, ensuring faster 

detection of errors or anomalies and higher fidelity in downstream analytics. By combining 

symbolic rules with AI-driven anomaly detection, a layered MAS can concurrently handle 

semantic, structural, and contextual checks—tagging data with “bronze,” “silver,” or “gold” 

tiers right at ingestion. 

We highlight several benefits: fewer data inaccuracies flowing into centralized data 

warehouses or lakes, lighter onus on big data pipelines, improved accuracy timeliness of 

insights, and “more-heightened-than-ever” trust in real-time applications. While edge-based 

systems confront unique resource, security, and scalability hurdles, the synergy between edge 

intelligence and multi-agent design provides a promising blueprint for future data quality and 

management solutions. 

Looking ahead, further research on integrated reinforcement learning for agent policy 

evolution, advanced privacy-preserving models for sensitive data, and standardized 

frameworks for agent-based data quality will further refine this paradigm. As industries 

embrace devices with sensors and pervasive IoT and real-time decision-making, edge 

intelligence for data validation could become an essential and a pioneering fixture—ensuring 

data integrity from the starting bytes ingested into the digital pipeline. By deploying robust, 

decentralized, and adaptive solutions, we inch closer to a future where erroneous or low-value 

data is systematically filtered out, quarantined and even corrected, leaving only consistent, 

contextualized, and higher-quality information to power next-generation data-driven 

enterprises. 
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