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The wireless sensor network has proven to be a useful instrument for providing farmers with 

accurate data on the condition of their crops. Although the FSPL, 2-Ray, COST235, and linear 

path loss regression curve fit model (LRCFM) give an explanation for the propagation of 2.4 GHz 

radio waves through vegetation, several substantial inconsistencies were discovered when applied 

to field experiments with plants greenhouses. This study uses artificial neural networks (ANNs) to 

make a prediction model that can be used to look at how tree growth affects path loss across a 

wide range of transceiver heights and operating parameters. The artificial neural networks were 

created using the experimental data. The neural network is trained using as input parameters the 

height and distance of the antennas of the transmitting and receiving nodes and, as a desired 

parameter, the amount of path losses (PL). Using the network weights, a new PL prediction 

formula was created. This formula predicts the amount of path losses more accurately, and the 

mean absolute relative deviation (AAPD) between our formula and the FSPL+COST235, 

2Ray+COST235, FSPL, 2Ray, and LRCFM correlations is 0.36%, 17%, 55.5%, 42.7%, 81.11%, 

and 5.454%, respectively.  

 

Keywords: propagation model, deep learning, neural network, precision agriculture, Wireless 
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1. Introduction 

The ZigBee protocol is one of the most promising WSN protocols. WSN has a wide 

application field starting with household, medical, industrial, and agricultural equipment. 

ZigBee is cost-effective and energy efficient as it operates according to the IEEE 802.15.4 

physical radio specification. There is a good chance that wireless network sensors could be 

used in agriculture by converted into smart greenhouses through the use of information 

technology and sensors, they can help boost agricultural productivity. (Andrianto, H. et al, 
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2020; Morais, R., et al. 2008)  

Many of the greenhouse's test points are outfitted with wireless nodes outfitted with various 

sensors, such as those for soil moisture, fertilization, irrigation, ambient temperature, and 

humidity, which feed the readings of these sensors into the greenhouse's monitoring and 

control system. The gaps between nodes, the growth of vegetation, and the terrain, as well as 

the altitude at which the transmitter and receiver are installed, all have an impact on the 

quality of communication between sub-nodes and the main node. 

The lack of precision in describing wireless networks necessitated a thorough investigation 

and analysis of the form of radio wave propagation in open and closed fields, as well as the 

use of a high-accuracy model for calculating wireless signal path losses. (Mestre, P., 2010) 

Most of the published works use the free-space path loss (FSPL) model and the two-Ray 

path loss model to figure out how much a path loss is in a wireless sensor network. (Alexis 

Barrios-Ulloa, A. et al., 2022, Balachander, D. et al., 2013; AlSayyari, A. et al., 2014; Otero, 

C.E. et al., 2014) 

The FSPL model implies that the transmitter and receiver communicate in direct line-of-

sight (LOS) that is neither obstructed nor reflected. However, radio signals are often 

reflected by things that are in the path of the signal or close to it.  The FSPL model provides 

a lower constraint on the route loss estimate, as given in Eq. (1): (Mao, G. et al. 2007) 

PLFSPL = −27.56 + 20 log(df)                                      (1) 

the distance d in meters between the transmitter and the receiver, and the frequency f in 

megahertz (MHz) of the wave. 

The 2-Ray model depicts a direct wave from the transmitter and a reflected wave from the 

earth's surface both making their way to the receiver. In the 2-Ray model, the ground is 

assumed to be flat, and the height of the antennas that transmit and receive the signal is much 

less than the distance between them. (Rappaport, T.S., 2002) 

Path loss may be calculated using the Plane Earth (PE) model rather than the FSPL model. 

This model incorporates the ground beam and LOS beam reflection effects provided by Eq. 

(2): 

PLPE(dB) = −20 log(hThR) + 40log⁡(d)                               (2) 

where d is the sender-to-receiver distance in meters and hT and hR are the respective heights 

in meters of the transmitter and reception antennas. 

Many empirical route loss models for different ways that WSNs can be set up in the real 

world have been put forward. Meng et al. (2009) describe a path loss model for how radio 

waves move through tropical forests. Balachander et al. (2013) used path loss measurements 

taken in farms and gardens to characterize experimental models. Correa et al. (2013) 

describe an experimental model that can be used as a guide for putting WSNs in vineyards. 

Al-Sayari et al. (2014a, b, c, d), the authors gave four route loss models for WSNs that are 

used in places with sandy terrain, dense trees, concrete surfaces, and artificial turf. 

Otero et al. (2014) also showed radio frequency measurements and an experimental pathway 

loss model for wireless sensor networks in environments with tall grass. Raheemah A. 
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(2016) made a unique linear path loss regression curve-fitting model (LRCFM) based on the 

regression method to figure out the overall path loss within the greenhouse.  

Cama-Pinto D. et al. (2023) suggest a method that uses machine learning to build an real 

time model of how radio waves weaken as they pass through vegetation. This model takes 

into account the height and distance between the WSN nodes' transceivers.  

On the other hand, discovered an article investigated how much attenuation trees create in 

wireless signal transmission (Li, P., et al. 2014), Another study looked at how the path loss 

model improved WSNs installed in mango greenhouses (Auda Raheemah, et al. 2016), 

Another study investigated the frequency of WSNs in tomato greenhouses for monitoring 

environmental factors as well as precision agriculture (Cama-Pinto, et al. 2019; Cama-Pinto, 

D. et al. 2020). Nevertheless, none of the data studied could be utilized to create RF 

propagation models based on the greenhouse prediction model, which is what this study 

performed. To figure out the accuracy of the new formula, its results were compared to a 

number of leaf model correlations, as shown in the paragraphs that follow. 

 

2. Total Path loss Models 

The overall path loss may be broken down into three parts: path loss due to wave extension, 

free space path loss, and obstacle path loss within the broadcast path, as shown in Eq. (3), 

where PLT denotes total path loss, PLf s denotes free space path loss, and PLv denotes 

obstacle path loss.  

PLT = PLfs + PLv                              (3) 

The density of tree leaves causes an increase in signal power losses. Researchers have now 

established methods to include these considerations via the implementation of empirical 

foliage modeling employ different leaf designs and operating frequencies to compute the 

additional loss. (Rappaport, Theodore S., 1996; Seybold, John S., 2005; COST 235, 1996; 

Al-Nuaimi M.O.; Stephens R.B.L., 1998)  

The modified Weissberger's exponential decay model, It is relevant if there are heavy trees in 

the way of the waves and is given by Eq. (4), is one of the most notable empirical models. 

PLw(dB) = 0.45 × f0.284 × d⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡m⁡ ≤ d < 14m                                       (4) 

where f is the wave's frequency in MHz and d is the distance between the sender and receiver 

in meters. (Seybold John S., 2005) 

The COST 235 model was introduced based on measurements taken at millimeter-wave 

frequencies throughout a small forest. Eq. (5) illustrates this: 

PLCOST235(dB) =
15.6d0.26

f0.009
                             (5) 

The COST 235 model was used in order to quantify the effect of trees in two different 

seasons, both with and without leaves. On COST 235 models, f is the wave's frequency in 

MHz and d is the distance between the sender and receiver in meters. 
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Different experiments were done with different transceiver heights to find out what effect 

tree density has on path loss.  To calculate the overall path loss in a greenhouse, a novel 

linear path loss regression curve-fitting model (LRCFM) Eq. (6) was developed using the 

regression approach. (Raheemah Auda, et al. 2016) 

PLLRCFM = 71 + 27log⁡(d)                               (6) 

Neural networks are excellent instruments for approximating nonlinear functions, and they 

are employed in a multitude of fields. Artificial neural networks are made up of tiny, linked 

processing units. Along the interconnection, data is transferred between these components. 

They discover the connection between inputs and outputs. An input, hidden, and, output 

layers are typical components of a network. (Mousavi Dehghani, et al. 2008, Alrubaie, Hiba, 

et al. 2023) 

The connection weight multiplies each entry. In the most basic scenario, biases and products 

are simply combined together before being transformed into a result and then an output using 

a transformation function. (Sözen, A., et al. 2005)  

The training phase of a neural network is crucial. Backpropagation is the most well-known 

training algorithm. Backpropagation neural networks have inputs and outputs, and in most 

applications, they have a single hidden layer. Backpropagation of gradient descent training 

methods is frequently too slow for real-world issues. Standard numerical optimization 

techniques are used in algorithms that are faster, such as Levenberg-Marquardt (LM), Quasi-

Newtonian (QN), and Conjugate Gradient (CG).  (Sözen, A., et al. 2009) 

The mean squared error (MSE) is a measure of learning error that is defined as follows: 

MSE =
∑ (DOi−NTi)

2m
i=1

m
                                             (7) 

Where DOi is the desired output of the training data, NTi is the network output of the training 

data, and m represents the quantity of data in the training dataset. (Gevrey, M., et al. 2003) 

Olden J. D. et al. (2004) investigated many methods for determining the importance of 

parameters in artificial neural networks using a simulation-based methodology. When it 

comes to identifying the relative relevance of parameters in artificial neural networks, the 

proposed connection weight strategy performs better than any previous approach. The 

connection weight technique combines the output of the hidden neuron's connection weight 

to the output neuron and the output of the input neuron's connection weight to the hidden 

neuron for all input parameters. When a parameter's connection weights add up to a large 

number, it becomes significant. 

 

3. ANN DETAILS AND DATA PREPARATION 

Artificial neural networks were employed in this study to forecast the amount of path loss in 

a wireless sensor network. To train the network, experimental data was extracted from the 

several paper (Raheemah A. etal. 2016, Cama-Pinto D. et al. 2019), where the input vectors 

of the network were the ground elevations of the transmitting and receiving nodes from the 

ground and the distance between them, and the output vector was the amount of path losses. 
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Table 1 summarizes these data ranges. Fig. (1) depicts the ANNs' design. During the tests 

conducted within the greenhouse, the height of the transceiver's omnidirectional antennas 

was (50, 100, 150, 200, 250, and 300) cm from the ground.  Fig. (2) shows the minimum and 

maximum ranges measured when the antenna heights of the transmitting and receiving nodes 

were 0.5 m and 1.5 m, respectively. 

 

Fig.1. The proposed architecture of ANNs. 

 

Fig.2. depicts the maximum coverage and signal strength between a transmitting and 

receiving node at various distances above ground. 
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Table 1: The experimental data ranges that were utilized to train the network. (Raheemah A. 

etal. 2016, Cama-Pinto D. et al. 2019) 

 PL (dB) 

H(m) 

 

D (m) 

0.5 1 1.5 2 2.5 3 

0 53.33 53.33 53.33 53.33 53.33 53.33 

3.5 69.5 72.5 87.98 71.65 66.66 63.33 

7.5 77.5 85.83 93.316 81 74.16 72.5 

11 81.454 94.98 98.314 92.9 78.32 73.32 

15 94.982 96.648 104.145 96.638 86.652 75.32 

18 99.347 96.648 103.312 94.982 89.318 79.988 

25 98.314 102.479 104.978 99.147 91.65 83.3 

The ANN has three layers and uses backpropagation to learn from the data it is given. In this 

study, The LM learning algorithm was used since it is more efficient and faster than other 

algorithms. The Pureline and Tan-Sigmoid functions were used for the input and output of 

the hidden layer, respectively. The MATLAB software was used to create a computer 

program (Matlab User's Handbook, 2020a)). During training, a hidden layer of ten neurons 

was employed to improve accuracy. The hidden layer's neurons have two responsibilities: 

adding up the weighted inputs they receive and passing that total on to either the output 

neurons or additional neurons in the same hidden layer through a nonlinear activation 

function. Normalizing the distribution data enhances the correlation coefficient between the 

dependent and independent factors. The inputs and outputs of Eq. (8) are normalized to the 

interval [-1,1]. 

Xnor = 2 × (
XOD−Xminmum

Xmaximum−Xminimum
) − 1                       (8) 

where XOD stands for the starting data, Xminimum for its lowest value, Xmaximum for its highest 

value, and Xnor for the normalized output. The input and goal data were normalized before 

being utilized to train the network. The ANN can be trained without any extra patterns. 

ANNs may accurately anticipate the acquired values using statistical metrics like the mean 

squared error (MSE) and the linear correlation coefficient (R) if they are trained with enough 

data. After a successful training session, the network was put to the test with real-world data. 

 

4. RESULTS and DISCUSSION 

The ANNs in this work were designed using a collection of 42 experimental data points for 

path loss. Moreover, 30 records were used for training, 6 for validation, and 6 for testing. 
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The LM technique with 10 neurons in the hidden layer performed the best with the fewest 

errors. 

In terms of Minimum Absolute Error (MinAE), Normalized Mean Square Error (NMSE), 

Maximum Absolute Error (MaxAE), Mean Square Error (MSE), Mean Absolute Error 

(MAE), and the linear correlation coefficient (R) between the experimental data and the 

output, Tables 2 and 3 assess the performance of the ANN for two cases: first, both 

transmitting and receiving nodes' antennas are placed at 0.5 (scenario 0.5m), while in the 

second case they are placed at 1.5 meters above the ground (scenario 1.5m). 

Table 2: The findings of the ANN model on the 0.5meter test dataset. 

Performance 

parameters 
The network evaluation 

MinAE 0.003523289 

MaxAE 2.056589119 

MSE 0.759659771 

MAE 0.644812121 

R 0.9972 

NMSE 0.00162 

Table 3: The findings of the ANN model on the 1.5 m test data set. 

Performance 

parameters 
The network evaluation 

MinAE 0.006284176 

MaxAE 3.07346844 

MSE 0.48245806 

MAE 0.229288274 

R 0.9987 

NMSE 0.00135 

Because the error characteristics of the test and validation sets are similar, the results appear 

acceptable given the small amount of network data, and no severe overfitting appears to have 

happened. The path loss prediction model will be taken from Scenario 1.5m, since it has the 

least path loss. The fixing of both the transmitting energy and the height of the nodes, the 

path loss of the wireless network in the greenhouse depends on how far apart the sending and 

receiving nodes are from one another. With the aforementioned network training, the 

algorithm's weights were used to come up with a formula for predicting Wireless network 

path loss. Eq. (9) gives the Tansig as activation  function utilized in the hidden layer: 

Ai =
2

(1+exp−2Mi)
− 1⁡,⁡⁡⁡⁡⁡⁡i = 1: 10                                   (9) 
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The values of Mi are listed in Table 4. As a result, Eq. (9) and Eq. (10) allow for the 

prediction of wireless network path loss. 

PL1.5m = 0.099995A1 − 0.23268A2 − 0.24114A3 − 0.25616A4 + 1.19406A5
− 0.06549588A6 − 0.3265009A7 − 0.154316A8 + 0.2729222A9
+ 0.698229379A10 − 0.00454 

                                                                                                                                                                                                    (10) 

Table 4: Scenario 1.5m, weight values calculated by the Levenberg-Marquardt algorithm 

with 10 neurons. 

Mi=Wi1xD+Wi2xh+bi 

i Wi1 Wi2 bi 

1 -0.92024 4.535022 4.156035 

2 4.438692 -0.84711 -3.34391 

3 -1.82848 4.257503 1.978151 

4 4.482065 -1.21699 -1.77728 

5 1.30909 -0.24369 -0.41696 

6 2.392758 -3.70449 -0.00617 

7 4.937716 -2.34521 0.700464 

8 -2.4965 4.11114 -1.94444 

9 0.230107 8.668886 0.805272 

10 9.057415 0.875293 6.948328 

Fig. (6) depicts the results of the PL1.5m prediction formula based on the algorithm's weights. 

Statistical measures such as R and MSE show that this formula gives an accurate estimate of 

path losses over a wide range of inter-distances between transmitting and receiving nodes. 

Under the new suggested model, the mean squared error is 0.48245806, while the linear 

correlation coefficient is 0.9987. In Fig. (7), the experimental data for path losses (PLExp.) are 

compared to those calculated by the new formula (PL1.5m), FSPL, 2Ray, LRCFM, FSPL + 

COST235, and 2 Ray + COST235 for the same distance and height at which the transmitting 

and receiving nodes are installed. It can be seen that the findings of the PL1.5m model and the 

experimental data match up very well. According to Fig. (7), the Average Absolute Percent 

Deviation (AAPD) (Eq.11) parameter for PL1.5m model, FSPL+COST235, 2Ray+COST235, 

FSPL, 2Ray, and LRCFM correlations is 0.36%, 17%, 55.5%, 42.7%, 81.11%, and 5.454% 

respectively. The findings of the PL1.5m model and the experimental data coincide quite well, 

as seen in Fig. (3-5). 

AAPD =
1

N
∑ |⁡(

PLexp−PLcal

PLexp
)| × 100N

i=1                (11) 
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Fig.3. Comparison of network output performance to experimental data. 

 

Fig.4. A comparison of several models (FSPL+ COST235, 2Ray + COST235, LRCFM) with 

proposed formula outcomes. 

 

Fig. 5. Compares the new prediction model's accuracy to several commonly used path loss 

models. 
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5. Conclusions 

Path losses in greenhouse wireless networks were quantified using an ANN-based technique, 

and an updated formula for estimating these losses as a function of height and distance was 

introduced. The developed formula enables the researchers to apply the model without 

resorting to a computer with ANN software installed. Through predicting the amount of 

received signal power lost, the suggested formula proved to be more accurate when 

compared to standard models for path loss estimation. 
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