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Unmanned aerial vehicles (UAVs) are revolutionizing telecommunication networks by offering 

innovative solutions to bridge coverage gaps and extend connectivity. However, to ensure reliable 

and efficient communication between UAVs and ground stations, accurate channel estimation 

becomes a critical factor. Therefore, much research has been presented in the field of millimeter 

wave channel estimation. Although, it is necessary to investigate the role of UAVs as a relay 

between terrestrial users and satellite networks. In this regard, an estimating channel method is 

proposed. First, due to the noise removal ability of the autoencoder network, it is used to reduce 

the received signal noise. Next, channel coefficients are estimated with the help of a designed 

CNN network. Finally, the combining matrices used at the receiver are updated to improve the 

SNR. The simulation results show that the designed neural networks for noise removal and 

channel estimation improve the accuracy. Also, updating the combining matrices at the receiver 

shrinks the area to scan and consequently more directed beams can be used that improve the SNR. 

Using the proposed structure, the overall accuracy can be improved around 10% for different 

SNRs.  
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1. Introduction 

In recent years, the rapid development of UAVs, commonly known as drones, has paved the 

way for their utilization across various industries [1]. One domain where UAVs have shown 

immense promise is in telecommunication networks. These flying devices are 

revolutionizing the way we think about connectivity by providing innovative solutions to 

address coverage gaps, disaster response, and network maintenance. Some of the most 

important roles of UAVs in telecommunication networks are extending coverage and 
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connectivity, rapid deployment in emergency situations, network maintenance and 

inspection, and surveillance and security [2]: 

Channel estimation in UAV-enabled telecommunication networks is of utmost importance as 

it determines the quality of the received signal and enables efficient modulation and 

demodulation techniques. Accurate channel estimation is crucial for optimal resource 

allocation, effective power control, and robust error correction, all essential for reliable and 

high-performance communication in UAV-enabled telecommunication networks. However, 

channel estimation for UAVs presents unique challenges due to their mobility, altitude 

variations, and dynamic environments. These challenges necessitate the development of 

specialized techniques to overcome them. Traditional methods, like pilot-based estimation, 

are commonly used, but advanced techniques, including machine learning algorithms and 

advanced signal processing, are being explored to address the specific needs of UAV 

communication systems [3]. The future holds opportunities for further advancements, such 

as integrating artificial intelligence, MIMO techniques, and beamforming algorithms, to 

improve the accuracy and reliability of channel estimation in UAV networks. 

Numerous studies have been conducted on UAV mmWave channel estimation; a selection of 

the most significant ones is presented [4-8]. In [9] a new approach called Adaptive-Structure 

Extreme Learning Machine (ASELM) presented that enables fast channel prediction for 

obtaining Channel State Information (CSI) in a proactive manner. This method facilitates 

agile beam-based inter-UAV while maintaining prediction accuracy at reasonable costs. [10] 

introduces an innovative approach to spatial beam training, considering the three-

dimensional (3D) space in which UAVs operate.  

[11] This paper introduces a novel framework for performing data-driven air-to-ground 

channel estimation in millimeter-wave (mmWave) communications within a wireless 

network of unmanned aerial vehicles (UAVs). The framework addresses the need for 

accurate channel information in mmWave communication by developing an effective 

channel estimation approach. This approach enables each UAV to collect mmWave channel 

data and train an independent channel model using a conditional generative adversarial 

network (CGAN) along each beamforming direction. [12]  

[13] focuses on addressing the challenge of channel estimation in a multi-user system using 

unmanned aerial vehicles (UAVs) and operating in the millimeter-wave (mmWave) 

frequency range. The specific challenges addressed are the beam squint effect, which occurs 

in mmWave massive multiple-input multiple-output (MIMO) systems, and the time-varying 

nature of the channels caused by the mobility of the UAVs. [14] proposed a method to 

simultaneously estimate the position of the unmanned aerial vehicle (UAV) and it presented 

a matrix completion approach to recover the performance.  

In [15], a new autoregressive (AR)-Gaussian channel prior is introduced to effectively 

represent the sparsity and clustering characteristics of mmWave MIMO Internet of Things 

(IoT) channels. Subsequently, a channel approximation technique is presented to address the 

challenges posed by channel uncertainty. This method leverages the inherent structure of the 

AR-Gaussian channel prior to provide an accurate estimation of the channel. [16] developed 

a model for the mmWave channel in a UAV-assisted scenario, incorporating hybrid 

beamforming and accounting for the effects of UAV jitter. By considering the random 
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fluctuations in the UAV's attitude angle, authors determined the distribution of the angle of 

arrivals/departures (AOAs/AODs) in the channel.  

[17] focuses on a millimeter-wave communication system that utilizes movable UAV based 

base stations. These UAV-base stations are equipped with antennas and multiple sensors to 

track the channels. To achieve an omnidirectional beam, a cylindrical array antenna is 

mounted on the movable UAV-base stations. Additionally, the article proposes the use of a 

deep neural network-based attitude estimation method as an alternative to traditional 

methods of attitude estimation. [18] introduces a new technique for predicting channel 

behavior during link blockages in the 28 GHz frequency band. Their method involves 

organizing multipath components (MPCs) along a UAV's flight path into separate path bins 

based on the minimum Euclidean distance among their channel parameters. Once organized, 

the channel parameters of the MPCs within each path bin are forecasted during periods of 

blockage. 

Despite the fact that many researches have been presented in the field of channel estimation, 

it is necessary to consider the ability of autoencoder in noise removal and mmWave channel 

sparseness in the channel estimation process. Therefore, in the following, the system model 

is presented along with the proposed method. 

 

2. System model  

As depicted in Fig 1(a), a network of UAVs can be placed as a relay between users and the 

satellite network. With the help of these UAVs, the link quality for millimeter wave 

communication is improved and it provides the possibility of connecting users to the satellite 

at a high rate. The UAV is equipped with a uniform planar array (UPA) consisting of Mx 

antennas in the horizontal direction (X-direction) and My   antennas in the vertical direction 

(Y-direction) (Fig1(b)).  

Assuming there are U devices (Fig1(b)), the received pilots Y[m]ϵCN×T during the mth 

measurements at the BS can be represented as stated in reference [14]. 
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Where 
*[ ] (1/ ) [ ] [ ]um T m mw W x% @ . It can be simplified as: 
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HBF[ ] [ ] [ ]H

um m m= +y F h w% %  (3) 

and the channel response vector h can be generally given as [15]: 
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as   1,...,  x xm M=  and   1,...,  y ym M= . dx and dyrepresent the space of two adjacent 

antenna elements in X -direction and Y-direction, respectively. κ is the carrier wavelength. 

 

(a) 
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(b) 

Fig1: System model (a) and receiver structure along with processing steps (b) in mmWave 

UAV link 

2.1 Channel estimation using deep learning 

The general structure of the proposed method is shown in Fig1(b). The first part consists of a 

receiver structure UAV equipped with a hybrid UPA to improve SNR and support multiple 

users. After applying analog and digital combination matrices, the received signal is pre-

processed by applying Z filters. In this case, the received signal will be a combination of 

channel and noise. 

Then the noise is estimated and removed with the help of ENCODER neural network. Next, 

in the channel estimation section, the channel coefficients are estimated with the help of the 

designed neural network. Since the range of entry coefficients depends on the user's position, 

it is possible to update combining matrices in order to steer the beams toward the expected 

scatters. The detailed of each block is described below. 

2.1.1 Preprocessing  

In this section, a filter can be defined as follows to remove the effect of the combination 

matrix and access the channel information. 
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In order to remove noise, Autoencoder networks can be used, which have a high ability to 

identify the noise pattern and remove it [19-23]. For this purpose, the structure shown in 

Figure 2 is designed. The input part of this network receives channel data for a specified 

number of frames and the real and imaginary parts are separated and create a 2D image. To 

start the reverse process, the fully connected (FC) layer computes the class scores, resulting 

in volume of size [1x1x576]. 

 

Fig2: Autoencoder structure for noise removal 

2.1.2 Channel Estimation  

After removing the noise, the channel data can be fed to another neural network which is 

shown in the Fig3, in order to improve the estimation. Since the channel values are complex, 

the real and imaginary parts are separated and fed to the network as a two-layer picture. The 

first layer is a convolution layer with the size of 3 × 3 × 32 that uses 32 different 3 by 3 

filters to the input image of size Mx ×My × 2. Then the Relu layer which is a type of 

activation function to introduce non-linearity into the model is added. For other convolution 

layers a batch normalization (BN) is employed. 

 

Fig3: CNN structure for channel estimation 

 

 



451 Ahmed Kateb Jumaah Al-Nussairi et al. mmWave Channel Estimation in UAV....                                                                          

 

Nanotechnology Perceptions Vol. 20 No.S2 (2024) 

2.1.3 Precoder Updating 

Fig4 (a) shows the transmitter and the receiver channel paths, while Fig4 (b) shows the 

power delay profile, AoA, and AoD for this scenario. As it is shown the variance of AoA is 

small and can be considered in the channel estimation process. Besides, the matrices used for 

combining in the analog part of the receiver are first randomly selected with specific values 

to be able to receive information from different angles. Therefore, it is necessary to update 

combining matrices in each time slot in order to steer the combining beams toward the user. 

For this purpose, a circle with particular radius (r) is considered as it is shown in Fig4(a) and 

the m training frames are chosen from a set that are steering toward the angles inside the 

circle. 

 

(a) 

 

(b) 

Fig4: The channel paths between the transmitter and receiver (a) and the power delay profile 
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and AoA and AoD (b) for this scenario. 

2.2 Loss Functions  

In order to train the designed networks, it is necessary to define the loss functions for each of 

the networks separately. Therefore, different loss functions are defined for the noise removal 

network and the channel estimation network as follows:  
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Then the total loss function is L as defined in 9.  

 

3. SIMULATION RESULTS 

In this section, in order to evaluate the performance of the proposed method, the following 

model has been implemented in MATLAB software. For this purpose, the UPA structure is 

equipped with 32x16 antennas and 4x4 RF chain. It is assumed that the UAV receives the 

signal from4 paths in the mmWave channel with Gaussian noise as  
2(0, )n N : and the 

AoA is defined from [0, π] randomly.  

The performance criterion is based on the normalized mean squared error (NMSE) that is 
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Fig5 shows the channel estimation results for different SNRs. As shown, using the proposed 

method can achieve higher accuracy than the OMP [17] and hybrid [18] methods. In [17] the 

problem is solved by the OMP algorithm which makes use of a redundant dictionary 

comprising array response vectors characterized by finely quantized angle grids. While in 

[18], a hybrid channel estimation technique is employed, comprising two distinct stages. In 

the first stage, Compressed Sensing (CS) is utilized for channel estimation in the e-angles, 

taking into account their unique distribution characteristics. Subsequently, in the second 

stage, Sparse Bayesian Learning (SBL) is employed for channel estimation in the a-angles, 

which exhibit different distribution characteristics. 
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Fig5: Channel estimation results for different SNRs 

Fig6 shows the channel estimation for different number of training frames. By increasing the 

number of transmitted frames, the accuracy of noise removal and channel estimation 

increases, but it reduces the resources for data in the coherence time of the channel. For any 

channel the coherence time is limitted and is used both for training frame and data. So, it is 

important to keep most of available for data transmission. 

 

Fig6: Channel estimation results for different number of training frames 

The simulation results show that the accuracy of channel estimation can be increased with 

the help of the presented framework. Removing noise, using the CNN for channel 
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estimation, and limiting the transmitted beams due to the available information from the 

angle of arrival in previous time frames provides high accuracy. 

 

4. Discussion  

In order to estimate the millimeter wave channel, artificial neural networks were used. These 

networks excel in their ability to discern data patterns, making them suitable for 

distinguishing the desired signal from noise. In the provided framework, these networks 

were applied to eliminate noise and calculate channel coefficients, resulting in notably high 

precision. Furthermore, considering the sparse nature of millimeter wave channels, a 

technique is introduced to enhance channel estimation accuracy by updating the combining 

matrices at the receiver. This update process effectively improved the SNR. Additionally, 

assessments demonstrated that employing higher SNRs during network training yielded 

improved accuracy, as the networks could more effectively capture data patterns. 

 

5. Conclusion  

In this paper, a channel estimation method for UAV-enabled link is proposed, which consists 

of three stages. In the first step, using the designed autoencoder network, the noise pattern in 

the received data is estimated and removed. Then, in the second step, the channel 

coefficients are estimated with the help of the designed neural network. Finally, with the 

help of the received angles in the current time interval, the range of angles is estimated and 

the composition matrices are updated in such a way that they only have bias in these 

directions. The use of these matrices increases the final accuracy of the method. Also, the 

results show that the use of neural networks in different channel conditions can provide 

better accuracy. 
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