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Many types of resemblance across lexical and semantic levels are sometimes difficult for current 

plagiarism detection algorithms to detect. To overcome this drawback, this paper suggests a 

brand-new Weighted Harmonic Mean model that incorporates Hamming, Cosine, and Jaccard 

similarity scores. The suggested model makes use of the harmonic means' sensitivity to low 

scores to emphasize suspicious situations and accentuate small differences. Furthermore, Particle 

Swarm Optimization is suggested and presented as an effective way to tune weights and enhance 

performance. It is obtained that the proposed model performs better than the other stated methods.   
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1. Introduction 

Jaccard distance [1] abbreviated as JD focuses on shared words between two texts, useful for 

identifying verbatim copying. Assume X1 and X2 be the finite sample sets. The Jaccard 

coefficient is given by 

Jc(X1, X2) =
|X1 ∩ X2|

|X1 ∪ X2|
=

|X1 ∩ X2|

|X1| + |X2| − |X1 ∩ X2|
 ,    

0 ≤ Jc(X1, X2) ≤ 1 

The Jaccard similarity (JS) is given by 

J(X1, X2) = 1 − Jc(X1, X2) 
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                                  =
|X1 ∪ X2| − |X1 ∩ X2|

|X1 ∪ X2|
 

The Hamming distance (HD) takes mismatched characters into account, which is useful for 

identifying little changes. The hamming distance between two strings or vectors of equal 

length is the number of points at which the matching symbols differ. JD counts the minimum 

number of substitutions required to change a string to another, or the minimum number of 

errors that might have led to the change. Hamming similarity (HS) is defined as 1 minus the 

normalized HD.  

Cosine Similarity (CS) (as mentioned in Tan et al., 2018) captures semantic similarity, 

valuable for identifying paraphrased plagiarism.   

The CS is defined as  

𝐂𝐒 = 𝐂(𝐗𝟏, 𝐗𝟐) = 𝐜𝐨𝐬 (𝛉) =
𝐗𝟏 ⋅ 𝐗𝟐

∥ 𝐗𝟏 ∥∥ 𝐗𝟐 ∥
=

∑  𝐧
𝐢=𝟏 𝐗𝐢𝐘𝐢

√∑  𝐧
𝐢=𝟏 𝐗𝐢

𝟐 ⋅ √∑  𝐧
𝐢=𝟏 𝐘𝐢

𝟐

 

A metric for comparing two non-zero vectors defined in an inner product space is termed 

CS.  Consequently, rather of relying on the magnitudes of the vectors, the CS just needs to 

know their angle. The CS always lies in the interval [-1,1]. The CS is constrained in [0,1] if 

the vectors' component values cannot be negative. Combining these might help the model 

detect plagiarism at various similarity levels and increase its overall accuracy. Although the 

JD and HD have obvious mathematical meanings when taken separately, CD is more 

difficult and less intuitive to comprehend their products together. 

 

2. Background 

An alternative viewpoint of assessing similarity may be predicated on the ratios of disputes. 

The ratio of shared tokens to all tokens in the union of two texts is represented by the JD. 

The percentage of mismatched tokens to all tokens in each text is represented by the HD. 

The harmonic mean (HM) may be helpful in detecting plagiarism because HM is applied in 

other fields like information retrieval and text mining. The idea of employing the HM for 

plagiarism detection has been investigated in a few research publications, even if the precise 

application of the weighted HMs (WHM) for plagiarism detection using JS, HS, and CS is 

not yet well documented. In 1988, Stout et al made an attempt at plagiarism detection, but 

that effort was create expert systems that solve issues by first suggesting answers and then 

refining them. Paper by Adams et al., (2015) advocates adopting the HM in mindless 

technology but not towards using JS, HS and CS .more focused on developing a computer 

programming language that provides a basis for learning in order to  

In a noteworthy study by Sağlam et al., (2022), they discussed several measures, but they did 

not include the HM ; instead, they talked about the program JPlag. The HM  approach was 

suggested by Roul & Sahoo (2022) for automated text summarization, but not for plagiarism. 

Takano & Omori, (2018) first suggested utilizing the HM to identify plagiarism, but they 

eventually went on to k means clustering.  Even though Thamotharan et al., (2023) explore 
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text descriptions and random noise, they do so by employing HM  in generative adversarial 

networks. A methodology that integrates semantic similarity metrics like CS with citation 

analysis is presented in a publication by Sharma et al., (2018). Although the authors do not 

specifically use the HM, they stress the need of weighing the contributions of many 

measurements to find both obvious and subtle plagiarism cases. 

The particular combination of JS, HS, and CS utilizing the WHM is not addressed in these 

publications, they  

have still offered insightful information about the   possible advantages of doing so. 

Therefore, it is suggested that these three approaches be combined with the WHM in this 

proposed method. 

 

3. Proposed Model 

I. Proposed model and applicability 

Theorem: (Proposed model formula and applicability) The proposed modelS(T1, T2) =

 
1

H(wJ∗ J,wH∗ H,wC∗ C)
, correctly implements the DRS formula for combining multiple similarity 

scores Jaccard, Hamming, Cosine simply J,H and C respectively with corresponding weights 

wJ, wH, and wC , where wi > 0 and  ∑ wi = 1, T1 and T2 are two documents to compare 

Proof: 

The weighted harmonic means of a set of non-negative numbers x1, x2, … , xn with 

corresponding weights w1, w2, … , wn (where wi > 0 and ∑ wi = 1) is defined as: 

H =
n

∑ (
wi
xi

)
 

The proposed model's formula for combining similarity scores J, H, and C with weights 

wJ, wH, and wC is: 

S(T1, T2) =  
3

(
1

wJ ∗  J(T1, T2)
+

1
wH ∗  H(T1, T2)

+
1

wC ∗  C(T1, T2)
)
 

S(T1, T2) =  
1

((
1
3) ∗ (

1
wJ ∗  J(T1, T2)

+
1

wH ∗  H(T1, T2)
+

1
wC ∗  C(T1, T2)

))

 

The expression inside the parentheses matches the WHM formula for three scores (J, H, C) 

with weights (
1

3
,

1

3
,

1

3
): 

S(T1, T2) =  
1

H(J,H,C)
  where weights are  wJ =  wH =  wC =

1

3
. 

Reintroducing the original weights wJ, wH, wC, we get: 
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S(T1, T2) =  
1

H(wJ∗ J,wH∗ H,wC∗ C)
 , where wJ +  wH + wC =  1,  

The constraint wJ + wH +  wC =  1 defines a plane within this hypercube, where valid 

scores reside. 

This final expression demonstrates that the model's formula correctly implements the WHM 

for combining the scores J, H, and C with their respective weights wJ, wH, and wC. 

Therefore, the theorem is proven. Furthermore, as HM is true for any xi, i = 1,2,3, … , n, J, H, 

and C can compare many documents, this theorem is also true for n number of documents 

without loss of generality. Sorry for the dual usage of J, H, and C with JS, HS and CS. 

II. Domain of the DRS model 

The domain of J is [0, 1], as it measures the proportion of shared elements between two sets, 

where 0 indicates no overlap and 1 indicates complete overlap.  If defined as 1 minus the 

normalized HD, H also lies in [0, 1]. Therefore, J and H: 0 ≤  J, H ≤  1 

Domain of C is [-1, 1], as it measures the cosine of the angle between two vectors, where -1 

indicates    opposite directions, 0 indicates orthogonality, and 1 indicates perfect alignment. 

Now, HM (wJ, wH, wC) ≤ arithmetic mean (wJ, wH, wC), if (wJ, wH, wC) > 0. Hence, C: 

−1 ≤  C ≤  1, but its contribution to the WHM is bounded by 
1

wC
, ensuring a non-negative 

denominator. Therefore, the domain of the DRS is [0, 1], if weights (wJ, wH, wC) > 0 

and ∑ wi = 1. 

III. Range of the DRS model 

Given that the denominator and (wJ, wH, wC) >  0, the DRS ≥  0. When wJ =  wH =  wC =

1, the      highest value of S may be found, which yields S =  1. But since a finite result of 

DRS requires that at least one of J, H, and C be non-zero, the DRS can approach but never 

reach 0. Consequently, the DRS’s range is (0, 1]. 

The DRS formula is used to project this point geometrically into the plane, representing a 

weighted balance of the scores. The resulting DRS similarity is an advanced proximity 

metric that is sensitive to both semantic and lexical overlaps. Hence, it has become 

mandatory to prove the range of the DRS values lies between 0 to 1. 

IV. Range of values lies between 0 to 1:   

Theorem: The final similarity score S in the DRS model, defined as: 

S(T1, T2) =  
3

(
1

wJ ∗  J(T1, T2)
+

1
wH ∗  H(T1, T2)

+
1

wC ∗  C(T1, T2)
)
 

always falls within the range of 0 to 1, inclusive, provided that the individual similarity 

measures J, H, and C also fall within the range of 0 to 1, and the weights wJ, wH, and wC are 

non-negative and sum to 1. 

Proof: 
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Assume that the range of individual scores J(T1, T2), H(T1, T2), and C(T1, T2) all lie within 

the range [0, 1]. Since wJ, wH, and wC are non-negative, their products with J, H, and C, 

respectively, also remain within [0, 1]. Consequently, their reciprocals (
1

wJ∗ J
,

1

wH∗ H
,

1

wC∗ C
) 

are always greater than or equal to 1. 

The sum of these reciprocals is thus also greater than or equal to 1: 

1

wJ ∗  J
+

1

wH ∗  H
+

1

wC ∗  C
≥  1 

S =  
3

(
1

wJ ∗  J
+

1
wH ∗  H

+
1

wC ∗  C
)

≤  
3

1
 =  3 

Since the sum is always positive, S is also always positive. 

Upper Bound of S: 

The minimum value of the sum occurs when all individual scores are 1: 

1

wJ ∗  1
+

1

wH ∗  1
+

1

wC ∗  1
=

1

wJ
+

1

wH
+

1

wC
 

Using the inequality of harmonic, arithmetic, and geometric means: 

1

𝑤𝐽
+

1

𝑤𝐻
+

1

𝑤𝐶
≥  3 ∗  (

1

𝑤𝐽
∗

1

𝑤𝐻
∗

1

𝑤𝐶
)

1
3

=  3 ∗  (
1

𝑤𝐽 ∗ 𝑤𝐻 ∗  𝑤𝐶
)

1
3

 

Since 𝑤𝐽 +  𝑤𝐻 +  𝑤𝐶 =  1, their product 𝑤𝐽 ∗ 𝑤𝐻 ∗ 𝑤𝐶 is maximized when𝑤𝐽 =  𝑤𝐻 =

 𝑤𝐶, i.e., 
1

3
 each. 

1

𝑤𝐽
+

1

𝑤𝐻
+

1

𝑤𝐶
≥  3 ∗  (

1

1
27

)

1
3

=  3 

Therefore, S is at most 
3

3
=  1. Combining the lower bound (S > 0) and upper bound (𝑆 ≤  1) 

establishes that S always falls within the range of 0 to 1, inclusive. Therefore, the theorem is 

proven. 

Limitations: 

But it is crucial to keep in mind that merely multiplying these two measurements does not 

result in a clear-cut or understandable geometric idea. Rather than trying to give the 

combined score a formal geometric interpretation, it could be more helpful to understand it 

in terms of how well it detects plagiarism. 

V. Monotonicity of the DRS model 

Theorem: In the given model, as the individual similarity measures J, H, and C decrease 
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simultaneously, the final similarity score S of DRS also decreases monotonically, indicating 

stronger plagiarism evidence with lower scores. 

Proof: (by contradiction) 

Suppose S increases or remains constant when at least one of J, H, or C decreases while the 

others remain constant. 

𝑆 =  
3

(
1

(𝑤𝐽 ∗  𝐽)
+  

1
(𝑤𝐻 ∗  𝐻)

+ 
1

(𝑤𝐶 ∗  𝐶)
)

 

1

𝑆
 =

(
1

(𝑤𝐽 ∗  𝐽)
+  

1
(𝑤𝐻 ∗  𝐻)

+ 
1

(𝑤𝐶 ∗  𝐶)
)

3
 

If any of J, H, or C decreases while the others remain constant, the corresponding term in the 

denominator (
1

(𝑤𝑖∗ 𝑥𝑖)
) increases because 𝑥𝑖 decreases but 𝑤𝑖 remains positive. Since the 

denominator increases, the reciprocal (
1

𝑆
) decreases. However, by definition, S and (

1

𝑆
)  are 

multiplicative inverses. Therefore, if (
1

𝑆
)  decreases, S itself must increase, contradicting the 

initial assumption. 

The presumption that S must be untrue because S contradicts itself whether S is rising or 

staying constant. The only conclusion that makes sense is that S does, in fact, drop when J, 

H, or C decrease. This demonstrates that as any or all of the individual similarity 

measurements J, H, and C decline, the final similarity score S decreases monotonically, 

suggesting stronger proof of plagiarism with lower scores. The theorem is thus proved. It is 

assumed in the foregoing argument that 𝑤𝐽 , 𝑤𝐻 , 𝑎𝑛𝑑 𝑤𝐶 are all positive weights. The 

equivalent term in the denominator becomes meaningless if any weight is 0, which has no 

effect on S's monotonicity. The individual weights and the proportionate changes in the 

similarity measurements determine how quickly S decreases. This                   mathematical 

demonstration of the model's              monotonicity trait highlights its capacity to detect ever 

more dubious instances of plagiarism with decreasing similarity scores. 

VI. Weight Sensitivity of the DRS model 

Theorem: Weight Sensitivity. The final similarity score S in the given model is sensitive to 

the choice of weights 𝑤𝐽 , 𝑤𝐻 , and 𝑤𝐶, allowing for prioritization of different aspects of 

similarity captured by the  individual measures J, H, and C. 

Proof: 

𝑆(𝑇1, 𝑇2) =  
3

(
1

𝑤𝐽 ∗  𝐽(𝑇1, 𝑇2)
+

1
𝑤𝐻 ∗  𝐻(𝑇1, 𝑇2)

+
1

𝑤𝐶 ∗  𝐶(𝑇1, 𝑇2)
)
 

Consider two sets of weights, (𝑤𝐽1, 𝑤𝐻1, 𝑤𝐶1) and (𝑤𝐽2, 𝑤𝐻2, 𝑤𝐶2), where 𝑤𝐽𝑖 >  0 and 

∑ 𝑤𝐽𝑖 =  1 for both sets. Suppose at least one weight differs between the sets, i.e., 𝑤𝐽𝑖 ≠  𝑤𝐽𝑗 
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for some 𝑖 and 𝑗. 

The terms in the denominator, 
1

𝑤𝑖∗ 𝐽
,

1

𝑤𝑖∗ 𝐻
, and 

1

𝑤𝑖∗ 𝐶
, will have different values for the two 

weight sets due to the changes in 𝑤𝑖. Specifically, a higher weight 𝑤𝑖 will lead to a smaller 

reciprocal term, as 
1

𝑥∗𝑦
 decreases as 𝑥 increases (for positive 𝑥 and 𝑦). The model formula for 

the two weight sets will have distinct denominators as a result of the reciprocal terms' varied 

values. Changes in the denominator will result in changes in S since S is the reciprocal of a 

function of the denominator. By modifying the weights, one may alter the relative 

importance of each unique similarity metric on the final score S. For instance, a decrease in 

𝑤𝐻 lessens the influence of HS, but an increase in 𝑤𝐽 emphasizes Jaccard similarity more. 

The model's ability to adjust to various plagiarism detection              requirements and 

prioritize different characteristics of similarity depending on the job at hand is                       

demonstrated by its sensitivity to weight combinations. The theorem is thus established. 

Limitation:  

The choice of optimal weights typically depends on the nature of the documents and the 

types of plagiarism to be detected. Empirical evaluation on a representative dataset is often 

necessary to determine the best weight configuration for a given application. 

VII. Uniqueness of the DRS model 

The DRS stands out among several hybrid methods for combining multiple similarity scores 

in plagiarism detection. As HM value is unique, the proposed WHM is also unique by its 

definition.  

The linear combination (LC) simply sums the weighted similarity scores: 

𝑆𝐿𝐶 =  𝑤𝐽 ∗  𝐽 +  𝑤𝐻 ∗  𝐻 +  𝑤𝐶 ∗  𝐶 

The model uses a weighted linear combination to combine the JS, HS, and CS scores, 

adjusting for relative relevance through the use of weights. Since DRS uses harmonic 

averaging, something like LC is unable to accomplish the target assigns greater weight to 

similarity scores with lower values, which suggest stronger proof of copying. DRS focuses 

on low scores with sensitivity. DRS permits prioritizing particular  elements by weights in 

the denominator, whereas LC regards every score equally in terms of its influence on the 

ultimate result. Thus, LC is more flexible. Because reciprocals and a division are nonlinear 

processes, the suggested model in this junction is nonlinear. The combination's nonlinearity 

is unaffected by the weights, which regulate the relative relevance of the scores. 

When predictor variables exhibit strong correlation, a phenomenon known as 

multicollinearity occurs in linear regression, leading to unstable model estimates. 

Multicollinearity does not immediately relate to DRS as DRS is not a linear regression 

model. DRS  performance can still be impacted by correlations between the similarity scores 

(J, H, and C). High correlation between scores can make it difficult for the DRS to 

distinguish between them, which might lower its accuracy. Correlations between similarity 

metrics must be evaluated, and feature selection or dimensionality reduction strategies 

should be considered as necessary. 
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VIII. Comparison with DRS with Geometric Mean 

The geometric mean (GM) combines the geometric product of weighted similarity scores: 

𝑆𝐺𝑀 =  (𝑤𝐽 ∗  𝐽)
1
3 ∗ (𝑤𝐻 ∗  𝐻)

1
3 ∗ (𝑤𝐶 ∗  𝐶)

1
3 

GM downplays the impact of individual low scores compared to DRS, as values are 

averaged on a logarithmic scale. GM is heavily influenced by extremely high or low scores 

in any individual measure, potentially distorting the overall similarity assessment. Hence, 

GM has higher susceptibility to extreme values. 

IX. Unique Properties and Advantages of DRS 

By using harmonic averaging to detect plagiarism with increased sensitivity, the DRS is able 

to identify low similarity scores. Through assigning weighs, DRS provides controlled 

flexibility, avoiding some similarity measurements from taking center stage. Theoretical 

clarity is ensured by DRS's mathematical base in decision theory and information retrieval. 

The best approach to use will depend on the application and the data, and practical testing 

with real-world        datasets is essential. Subsequent investigations may examine other 

variables or weighting schemes in DRS to enhance flexibility and precision. 

X. Optimization for Weight Tuning 

The suggested model refers to it as Particle Swarm Optimization (PSO) because of its 

mimicked swarming tendency, which frequently strikes a good balance between exploration 

and exploitation. However, in order to explain why other algorithms do not work, Genetic 

Algorithms (GA) which draw inspiration from evolution explore a variety of alternatives but 

may need to be carefully adjusted. The well-known metaheuristic known as simulated 

annealing (SA) can be sluggish, but SA avoids local minima by accepting poorer solutions in 

a probabilistic manner. While SA is effective in locating local optima, gradient descent can 

become trapped in less-than-ideal answers. As a result, PSO is used because PSO works well 

for multidimensional, nonlinear problems like weight tuning in DRS, efficiently balances 

local and global search, frequently converges to optimal solutions, and is computationally 

fast and somewhat easy to apply. The algorithm for the implementation of PSO in the 

proposed model is given in the section Conceptual Mathematical Explanation.  

XI. Conceptual Mathematical Explanation 

Problem Formulation: 

• Define the search space: ℝ3 (representing possible weight vectors (𝑤𝐽 , 𝑤𝐻 , 𝑤𝐶) 

• Constrain the weights to sum to 1:                           𝑤𝐽 +  𝑤𝐻 +  𝑤𝐶 =  1. 

• Formulate the objective function to minimize: 𝑓(𝑤𝐽, 𝑤𝐻 , 𝑤𝐶) 

Particle Representation: 

Each particle i is represented by:  

• Position vector:                                      
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𝑥𝑖(𝑡) =  (𝑤𝐽
𝑖(𝑡)

, 𝑤𝐻
𝑖(𝑡)

, 𝑤𝐶
𝑖(𝑡)

) ∈  ℝ3 

• Velocity vector:                                

 𝑣𝑖(𝑡) =  (𝑣𝐽
𝑖(𝑡)

, 𝑣𝐻
𝑖(𝑡)

, 𝑣𝐶
𝑖(𝑡)

) ∈  ℝ3 

Velocity Update Rule (Mathematical Explanation): 

• Inertia component: 

 𝑤 ∗ 𝑣𝑖(𝑡) - Preserves previous velocity for exploration. 

• Cognitive component: 

𝑐1 ∗  𝑟1 ∗  (𝑝𝑏𝑒𝑠𝑡𝑖– 𝑥𝑖(𝑡)) - Attracts particle towards its personal best position. 

• Social component: 

𝑐2 ∗  𝑟2 ∗  (𝑔𝑏𝑒𝑠𝑡 −  𝑥_𝑖(𝑡)) - Attracts particle towards the global best position found by 

the swarm. 

Position Update Rule (Mathematical Explanation): 

• 𝑥𝑖(𝑡+1) =  𝑥𝑖(𝑡) + 𝑣𝑖(𝑡+1) - Updates position based on updated velocity. 

• Enforce constraint: 

 𝑤𝐽
𝑖(𝑡+1)

+ 𝑤𝐻
𝑖(𝑡+1)

+  𝑤𝐶
𝑖(𝑡+1)

=  1 (e.g., by normalization). 

While formal convergence proofs for PSO in general problem settings are complex, 

empirical evidence and theoretical studies suggest that, under certain conditions, PSO can 

converge to global optima or near-optimal solutions and convergence behavior depends on 

hyperparameter tuning, problem structure, and algorithm variants. PSO's ability to balance 

exploration and exploitation, handle non-differentiable objectives, and adapt to complex 

search spaces makes PSO well-suited for tuning weights in the DRS model. Careful 

hyperparameter tuning and consideration of PSO variants can further enhance its 

effectiveness. 

 

4. RESULTS AND DISCUSSIONS 

The figure 1 has two primary groupings of documents using JS. The bigger cluster on the left 

includes Documents 1, 2, 3, and 4. These documents are quite similar to one another, as seen 

by the thick margins between them. The smaller cluster on the right contains Documents 3 

and 5. These texts are less comparable to those in the core cluster, but they do share certain 

characteristics. Document 1 is the central document in the graph. Document 1 has the 

strongest ties to the other texts in the main cluster. This shows that Document 1 shares a lot 

of the same material as the other papers in this cluster. Document 3 is the most isolated one 

on the graph. Document 3 has the weakest links with the other papers.  
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Fig.1. Jaccard similarity 

This implies that Document 3 has material that differs significantly from the other 

documents in the graph. Document 5 is similarly relatively solitary, although Dcocument 5 is 

more closely related to Document 3 than to any other document. This shows that Document 

5 has some similarities with Document 3, but also distinct from the other documents on the 

graph. The thickness of the graph's edges indicates the JS coefficient among the related texts. 

For instance, the edge between Documents 1 and 2 has a weight of 0.72, indicating that 72% 

of the words in Document 1 are also found in Document 2. 

In figure 2, Document 1 looks to be fundamental to the network, with edges connecting 

document 1 to the majority of the other documents using HS. This shows that Document 1 is 

quite similar to many of the other documents in the collection. Documents 3 and 3 form a 

smaller cluster on the right side. These papers have thinner connections linking them to one 

another and to the main cluster, indicating a lesser level of similarity. Document 5 is having 

high similairty with Document 2 like Documets 3 and 4. 

 

Fig.2. Hamming similarity 

In figure 3, Document 1 appears to be key to the network, with edges connecting document 1 

to several other papers using CS. This shows that Document 1 has a high degree of similarity 

with many of the other documents in the collection. Some documents are considerably 

separated from the others in the graph. This indicates that these papers are less comparable to 
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the others in the sample. Document 3, located in the graph's lower right corner, has minimal 

links to other documents.  

 

Fig.3. Cosine similarity 

The cosine similarity score ranges between -1 and 1. A score of 1 indicates that the two 

papers are the same, whereas a score of -1 indicates that they are entirely different. The 

cosine similarity score is dependent on the length of the documents. Two short texts that are 

quite similar may have a lower cosine similarity score than two longer documents that are 

less similar. 

A unigram similarity graph in figure 4 compares documents based on the frequency of 

unigrams, which are individual words or tokens in a document. The graph's edges show the 

similarity between two papers, and the weight of the edge indicates the intensity of the 

similarity. The diagram represents documents as nodes, and the similarity between two 

papers is represented by an edge connecting the two nodes. The weight of the edge is 

indicated by a number next to it. For example, the edge between Document 1 and Document 

2 has a weight of 0.58, indicating that they are 58% similar. The diagram shows that 

Document 1 is the most similar document to all of the other documents. 

 

Fig.4. DRS network graph 
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The document similarity heat map is given in figure 5.  

 

Fig.5. Heatmap of DRS 

But, on calculating the mean squared value for error (MSE) for the test data, it is obtained 

the following results. Jaccard MSE = 0.3184, Hamming MSE = 0.3118, Cosine MSE = 

0.2783, and DRS MSE = 0. JS and HS have comparable MSEs of 0.31, indicating that they 

identify moderate average changes across documents. CS has the lowest MSE of 0.2783, 

showing that papers are more comparable in terms of meaning and word use than the other 

metrics. DRS has a perfect score of 0, indicating that DRS classifies all document pairings as 

completely similar or different. This calls into doubt its granularity and ability to facilitate 

nuanced comparisons. As the MSE value is 0 for DRS, one cannot determine simply, DRS 

gives better results than the other three without further investigation, why DRS become zero. 

Hence, further exprimental needed to tune the weights. On weight tuning ,and normalizing 

figure 6 is obtained as the result.  

 

Fig.6. Normalized MSE 

wJ + wH + wC = 1 sets a limit on the degrees of freedom. Not all combinations of wJ, wH, 

and wC will meet this criterion. The filtering phase reduces the possibilities to those in which 
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wJ, wH and wC are between 0 and 1. The exact number of combinations that fulfill both 

requirements will be determined by the precise values in wJvalues and wH values. Out of 25 

initial combinations, 4 do not meet the requirements, resulting in a final result of 25 - 4 = 21 

values. The evidence is in the precise numbers chosen for wJ values and wHvalues, as well 

as the analysis of each combination to explore if the combination fits both requirements. To 

investigate the optimal value for the MSE on the 21 set of values, figure 7 is produced. It is 

obtained top three weights with minimal MSE from figure 7.  

 

Fig.7. MSE values of various weight combinations 

Weights corresponding to combination number 7, 8 and 12 and MSE values are respectively, 

wJ = 0.25, wH = 0.25, wC = 0.50, MSE = 0.008, wJ = 0.50, wH = 0.25, wC = 0.25, 

MSE = 0.002, and wJ = 0.25, wH = 0.50, wC = 0.25, MSE = 0.007. Out of these three 

combinations, weights given by combination 8 perform better than other weights 

comparatively.  

 

5. Conclusion 

In conclusion, the DRS provides a complex method to plagiarism detection by combining JS, 

HS, and CS scores using the DRS. With a strong theoretical background, sensitivity to low 

similarity scores, and controlled flexibility, DRS is a potential method for detecting many 

types of plagiarism. The use of PSO for weight tweaking improves its applicability and   

ensures optimal performance. 

Theorems confirm DRS's features, emphasizing its sensitivity to weight alterations, 

consistency in identifying plagiarism evidence, and well-defined range and scope. DRS 

distinguishes itself from other hybrid approaches such as LC and GM by offering notable 

advantages such as improved sensitivity to semantic and lexical overlap. The study 

emphasizes the necessity of empirical evaluation, namely the requirement for appropriate 

weight configurations depending on document features and plagiarism kinds. The proposed 

method gives the similarity between the documents, but DRS cannot determine the main 

source from which the other sources may extract the content to yield the similarity. This 

becomes the limitation of this work.  

This study adds by presenting a strong model, giving a rigorous theoretical foundation, and 
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utilizing sophisticated optimization techniques. While acknowledging limits and 

recommending future efforts, such as investigating PSO variations and hybrid optimization 

algorithms, the work emphasizes DRS's promise as a versatile and effective plagiarism 

detection tool. DRS's solid mathematical basis, versatility through weight adjustment, and 

sensitivity make DRS an appealing alternative for numerous text analysis tasks, paving the 

way for advances in computational optimization and plagiarism detection in a variety of 

scenarios. 
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