On Micro S_pg-Closed Sets in Micro Topological Spaces

M. Maheswari¹, S. Dhanalakshmi¹, N. Durgadevi²

¹Research Scholar, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802. (Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamilnadu)

²Associate Professor, Department of Mathematics, Sri Parasakthi College for Women, Courtallam-627802 (Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012. Tamilnadu)

Email: udayar.mahesh@gmail.com

The objective of this paper is to define and study a new kind of sets called Micro Spg-closed sets in Micro topological spaces. Further some of its properties and characterizations are analyzed.

Keywords: Generalized closed set, Micro topological space, Micro generalized closed set, Micro Sp-open set, Micro Sp-closed set, Micro Spg-open set and Micro Spg-closed set.

1. Introduction

In 1970, Norman Levine [6] introduced generalized closed sets in topological spaces. In 2013, the notion of nano topology is introduced by Lellis Thivagar and Carmel Richard[5] whose idea of nano topological structure is grounded on lower, upper and boundary approximations of a subset of a universal set with an equivalence relation on it. K. Bhuvaneswari and K. Mythili Gnanapriya[2] introduced nano generalized closed sets in nano topological spaces in 2014. The concept of Micro open set in Micro topological spaces was introduced and investigated by Chandrasekar.S [3] in 2019. R.Bhavani [1] introduced some strong forms of generalized closed sets in Micro topological spaces in 2021. Taha H.Jasim [9] introduced micro generalized closed sets in micro topological spaces in 2021. In this direction, in 2022, P.Herin Wise Bell et.al [4] introduced Micro generalized continuous in Micro topological spaces. This paper focuses on the introduction of new class of sets called Micro S_p-generalized closed set in Micro topological spaces and study some of its basic properties.

2. Preliminaries

Definition 2.1.[7] A subset B from a topology τ on the Space X is said to be generalized closed set (shortly g-closed) if Cl (B) \subseteq U for B \subseteq U and U is open in

 (X, τ) . A subset B of a topological space (X, τ) is called g-open if X - B is g-closed.

Definition 2.2.[5] Let R be an equivalence relation on the universe U. $\tau_R(X) = \{U, \tau_R(X) = \{$

- ϕ , $L_R(X)$, $U_R(X)$, $B_R(X)$ } where $X \subseteq U$. Then $\tau_R(X)$ satisfies the following axioms.
- (i) U and $\phi \in \tau_R(X)$.
- (ii) The union of the elements of any sub collection of $\tau_R(X)$ is in $\tau_R(X)$.
- (iii) The intersection of the elements of any finite sub collection of $\tau_R(X)$ is in $\tau_R(X)$. That is, $\tau_R(X)$ is a topology on U called the Nano topology on U with respect to X. Thus $(U, \tau_R(X))$ is called as Nano topological space. The elements of $\tau_R(X)$ are called as Nano open sets. A subset F of U is nano closed if its complement is nano open.

Definition 2.3.[2] Let $(U, \tau_R(X))$ be a nano topological space. A subset A of $(U, \tau_R(X))$ is called nano generalized closed set (briefly Ng-closed) if NCl $(A) \subseteq V$ where $A \subseteq V$ and V is nano open.

Definition 2.4.[3] Let $(U, \tau_R(X))$ be a Nano topological space and $A \subseteq U$. Then $\mu_R(X) = \{N \cup (N' \cap \mu): N, N' \in \tau_R(X)\}$ and $\mu \notin \tau_R(X)$ is called the micro topology in U with respect to X. The triplet $(U, \tau_R(X), \mu_R(X))$ is called micro topological space and the elements of $\mu_R(X)$ are called micro open sets and the complement of a micro open set is called a micro closed set.

Definition 2.5.[3] The Micro-closure of a set A is denoted by Mic-Cl (A) and is defined as Mic-Cl (A) = \cap { B : B is Micro-closed and A \subseteq B}.

The Micro-interior of a set A is denoted by Mic-Int (A) and is defined as Mic-Int (A) = \cup { B : B is Micro-open and A \supseteq B}.

Definition 2.6.[9] A subset B of $(U, \tau_R(X), \mu_R(X))$ is called micro generalized closed set (shortly Mic g-closed) if Mic Cl $(B) \subseteq U$ for $B \subseteq U$ and U is micro open set in $(U, \tau_R(X), \mu_R(X))$ is called Mic g-open if U - B is Mic g-closed.

Definition 2.7.[6] Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space and $A\subseteq U$. Then A is said to be Micro S_p -open (briefly Mic S_p -open) if for each $x\in A\subseteq$ Mic-SO (U,X), there exists a Micro pre-closed set F such that $x\in F\subseteq A$. The set of all Micro S_p -open sets is denoted by Mic S_p -O (U,X).

Definition 2.8.[6] Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space and $B \subseteq U$ is called Micro S_p -closed (briefly Mic S_p -closed) if and only if its complement is Micro S_p -open and Mic S_p -CL (U, X) denotes the set of all Micro S_p -closed sets.

Remark 2.9.[6] An arbitrary intersection of Mic S_p -closed sets of a Micro topological space $(U, \tau_R(X), \mu_R(X))$ is Mic S_p -closed.

Definition 2.10.[6] A point $x \in U$ is said to be a Micro S_p -interior point of A if there exists a Nanotechnology Perceptions Vol. 20 No. 7 (2024)

Micro S_p -open set V containing x such that $x \in V \subseteq A$.

The union of all Micro S_p -open sets contained in A is said to be Micro S_p -interior of A and is denoted by Mic S_p -Int (A).

Definition 2.11.[6] Let A be any subset of a Micro topological space $(U, \tau_R(X), \mu_R(X))$. Then a point $x \in U$ is in the Micro S_p -closure of A if and only if $A \cap H \neq \phi$, for every $H \in \text{Mic } S_p$ -CL (U, X) containing x.

The intersection of all Micro S_p -closed sets F containing A is called the Micro S_p -closure of F and is denoted by Mic S_p -Cl (F).

Definition 2.12.[3] For any two subsets A and B in a Micro topological space $(U, \tau_R(X), \mu_R(X))$,

- (i) A is Micro-closed if and only if Mic-Cl (A) = A.
- (ii) A is Micro-open if and only if Mic-Int (A) = (A).
- (iii) $A \subset B$ implies Mic-Int (A) \subset Mic-Int (B) and Mic-Cl (A) \subset Mic-Cl (B).
- (iv) $\operatorname{Mic-Cl}(\operatorname{Mic-Cl}(A)) = \operatorname{Mic-Cl}(A)$ and $\operatorname{Mic-Int}(\operatorname{Mic-Int}(A)) = \operatorname{Mic-Int}(A)$.
- (v) $\operatorname{Mic-Cl}(A \cup B) \supseteq \operatorname{Mic-Cl}(A) \cup \operatorname{Mic-Cl}(B)$.
- (vi) $\operatorname{Mic-Cl}(A \cap B) \subseteq \operatorname{Mic-Cl}(A) \cap \operatorname{Mic-Cl}(B)$.
- (vii) Mic-Int $(A \cup B) \supseteq Mic-Int (A) \cup Mic-Int (B)$.
- (*viii*) Mic-Int $(A \cap B) \subseteq Mic$ -Int $(A) \cap Mic$ -Int (B).
- (ix) Mic-Cl $(A^c) = [Mic-Int (A)]^c$.
- (x) Mic-Int $(A^c) = [Mic-Cl(A)]^c$.

3. MICRO S_p-GENERALIZED CLOSED SETS

Definition 3.1. A subset A of a Micro topological space $(U, \tau_R(X), \mu_R(X))$ is said to be a Micro S_p generalized-closed (briefly Mic S_p g-closed) set if Mic S_p -Cl $(A) \subseteq V$ whenever $A \subseteq V$ and $V \in \text{Mic } S_p$ -O (U, X). The collection of all Micro S_p g-closed sets is denoted by Mic S_p G-CL (U, X).

Remark 3.2. Every Micro S_p -closed set is a Micro S_p g-closed set but the converse is not always be true and it is shown in the following example.

Example 3.3. Consider $U = \{a, b, c, d\}$ with $U/R = \{\{b\}, \{d\}, \{a, c\}\}, X = \{a, c\}$ then $\tau_R(X) = \{U, \phi, \{a, c\}\}$. If $\mu = \{b\}$ then $\mu_R(X) = \{U, \phi, \{b\}, \{a, c\}, \{a, b, c\}\}$ and Mic S_p -O $(U, X) = \{U, \phi, \{a, c\}, \{b, d\}, \{a, c, d\}\}$, Mic S_p -CL $(U, X) = \{U, \phi, \{b\}, \{a, c\}, \{b, d\}\}$. Also Mic S_p -CL $(U, X) = \{U, \phi, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$. Here $\{a, b\}$ is a Micro S_p -closed set but not Micro S_p -closed set.

Theorem 3.4. If a set A is Micro S_p -closed set if and only if [Mic S_p -Cl (A) – A] contains nonon empty Micro S_p -closed set.

Nanotechnology Perceptions Vol. 20 No. 7 (2024)

Proof: Let A be a Micro S_p -closed set. Then there exists a Micro S_p -open set V such that A \subseteq V and Mic S_p -Cl (A) \subseteq V. Let F be a non-empty Micro S_p -closed set such that $F \subseteq$ [Mic S_p -Cl (A) - A]. Then $F \subseteq$ Mic S_p -Cl (A) \cap A c , which implies $A \subseteq F^c$, where F^c is Micro S_p -open set. So Mic S_p -Cl (A) \subseteq F c . Which implies $F \subseteq$ [Mic S_p -Cl (A)] c . Thus $F \subseteq$ Mic S_p -Cl (A) \cap [Mic S_p -Cl (A)] c . So $F = \phi$. Therefore [Mic S_p -Cl (A) -A] contains no non empty Micro S_p -closed set.

Conversely, let $A \subseteq V$ and $V \in \text{Mic } S_p\text{-O }(U,X)$ such that A is not a Micro $S_p\text{-closed}$ set. Then Mic $S_p\text{-Cl }(A) \not\subset V$, which implies Mic $S_p\text{-Cl }(A) \subseteq V^c$. Then Mic $S_p\text{-Cl }(A) \cap V^c$ is a non empty Micro $S_p\text{-closed}$ set of [Mic $S_p\text{-Cl }(A) - A$], which is a contradiction. Hence A is Micro $S_p\text{-closed}$ set.

Definition 3.5. A subset A of Micro topological space $(U, \tau_R(X), \mu_R(X))$ is called a Micro S_p generalized-open (briefly Mic S_p g-open) set if A^c is Mic S_p generalized- closed. The set of all Mic S_p g-open sets is denoted by Mic S_p G-O (U, X).

Remark 3.6. The intersection of any two Micro S_p -generalized closed sets in $(U, \tau_R(X), \mu_R(X))$ is not always a Micro S_p -generalized closed set as shown in the example below.

Example 3.7. Consider $U = \{1, 2, 3, 4\}$ with $U/R = \{\{1\}, \{3\}, \{2, 4\}\}, X = \{1, 3\}$ then $\tau_R(X) = \{U, \phi, \{1\}, \{3\}\}\}$. If $\mu = \{1, 4\}$ then $\mu_R(X) = \{U, \phi, \{1\}, \{3\}, \{1, 3\}, \{1, 4\}, \{1, 3, 4\}\}$ and Mic S_p -O $(U, X) = \{U, \phi, \{1, 3\}, \{2, 3, 4\}\}$, Mic S_p -CL $(U, X) = \{U, \phi, \{1\}, \{2, 4\}\}\}$. Also Mic S_p -CL $(U, X) = \{U, \phi, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}$. Here $\{1, 2, 3\}$ and $\{1, 3, 4\}$ are Micro S_p g-closed sets but $\{1, 2, 3\} \cap \{1, 3, 4\}$ = $\{1, 3\}$ is not a Micro S_p g-closed set.

Theorem 3.8. The union of Micro S_p -generalized closed sets in $(U, \tau_R(X), \mu_R(X))$ is a Micro S_p -generalized closed set if Mic S_p -O (U, X) forms a Micro topological space.

Proof: Assume that E and F are Micro S_pg -closed sets in $(U, \tau_R(X), \mu_R(X))$. Let $E \cup F \subseteq A$ where $A \in \text{Mic } S_p\text{-O}(U, X)$. Since U is a Micro topological space, Mic $S_p\text{-Cl }(E \cup F) = \text{Mic } S_p\text{-Cl }(E) \cup \text{Mic } S_p\text{-Cl }(F) \subseteq V$. As E and F are Micro S_pg -closed sets, Mic $S_p\text{-Cl }(E) \subseteq A$ and Mic $S_p\text{-Cl }(F) \subseteq A$. Thus Mic $S_p\text{-Cl }(E \cup F) \subseteq A$. Hence $E \cup F$ is Micro S_pg -closed only if the space is Micro topology.

Remark 3.9. The above theorem does not hold when Mic S_p -O (U, X) is not a Micro topological space and it is shown in the following example.

Example 3.10. In example 3.3, Mic S_pG -CL $(U, X) = \{U, \phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c, d\}\}$. Here $\{c\} \cup \{d\} = \{c, d\}$ which is not a Micro S_pg -closed set.

Theorem 3.11. A Micro S_p -closed set is Micro S_p -closed if and only if [Mic S_p -Cl(A) - A] is Micro S_p -closed.

Proof: Let A be a Micro S_p g-closed set, then [Mic S_p -Cl (A) - A] = ϕ . By theorem 3.4, [Mic S_p -Cl (A) - A] is Micro S_p -closed. Also [Mic S_p -Cl (A) - A] itself is a subset of it. By theorem 3.4, [Mic S_p -Cl (A) - A] = ϕ . Hence A is Micro S_p -closed.

Theorem 3.12. Let A be a Micro S_pg -closed subset of U. If $A \subseteq B \subseteq Mic S_p$ -Cl (A) then B is Nanotechnology Perceptions Vol. 20 No. 7 (2024)

also a Micro S_pg-closed.

Proof: Let V be a Micro S_p -open set in $(U, \tau_R(X), \mu_R(X))$ such that $B \subseteq V$ which implies $A \subseteq V$. Since A is a Micro S_p -closed set which implies Mic S_p -Cl $(A) \subseteq V$. Also, $B \subseteq Mic S_p$ -Cl (A). Now Mic S_p -Cl $(B) \subseteq Mic S_p$ -Cl $(Mic S_p$ -Cl $(A) = Mic S_p$ -Cl $(A) \subseteq V$. Therefore Mic S_p -Cl $(B) \subseteq V$ Hence B is also a Micro S_p -closed subset.

Lemma 3.13. For any subset A of a Micro topological space $(U, \tau_R(X), \mu_R(X))$,

Mic S_p -Int [Mic S_p -Cl (A) - A] = ϕ .

Theorem 3.14. For a subset A of U, Mic S_p -Cl $(A^c) = [Mic S_p$ -Int $(A)]^c$.

Proof: Let A be a subset of U and let $A^c = U - A$. Also let B be a Mic S_p -open set such that B \subset A. By definition 2.10, Mic S_p -Int $(A) = \cup \{B \mid B \subset A \text{ and } B \in \text{Mic } S_p$ -O $(U,X)\}$. That is Mic S_p -Int $(A) = \cup \{U - F \mid U - A \subset F \text{ and } F = U - B\}$. Hence Mic S_p -Int $(A) = U - \bigcap \{F \mid F \text{ is Mic } S_p$ -closed and $U - A \subset F\}$. Thus Mic S_p -Int $(A) = U - \text{Mic } S_p$ -Cl (U - A). That is Mic S_p -Int $(A) = U - \text{Mic } S_p$ -Cl $(A^c) = U - \text{Mic } S_p$ -Int (A). Hence Mic S_p -Cl $(A^c) = [\text{Mic } S_p$ -Int $(A)]^c$.

Theorem 3.15. A subset A of a Micro topological space $(U, \tau_R(X), \mu_R(X))$ is Mic S_p g-open if and only if $F \subseteq \text{Mic } S_p$ -Int (A) whenever F is Mic S_p -closed and $F \subseteq A$.

Proof: Let A be a Mic S_p -open set. Then A^c is Mic S_p -closed set. Thus Mic S_p -Cl $(A^c) \subseteq F^c$. By Theorem 3.14, Mic S_p -Cl $(A^c) = [Mic S_p$ -Int $(A)]^c$. Then $[Mic S_p$ -Int $(A)]^c \subseteq F^c$. Hence $F \subseteq Mic S_p$ -Int (A) where F is Mic S_p -closed and $F \subseteq A$. Conversely, let $F \subseteq Mic S_p$ -Int (A), where F is Mic S_p -closed and $F \subseteq A$. Let $F^c = X - F$ be a Mic S_p -open set such that $A^c \subseteq F^c$. Then by assumption, $F \subseteq Mic S_p$ -Int (A) implies $[Mic S_p$ -Int $(A)]^c \subseteq F^c$. Which implies $[Mic S_p$ -Cl $(A^c) \subseteq F^c$. Therefore A^c is $[A^c]$ -closed. Hence $[A^c]$ is $[A^c]$ -open.

Theorem 3.16. A subset A of a Micro topological space (U, $\tau_R(X)$, $\mu_R(X)$) is Mic S_pg-closed if [Mic S_p-Cl (A) – A] is Mic S_pg-open.

Proof: Let $A \subseteq V$ and $V \in \text{Mic } S_p\text{-O}(U,X)$. Now Mic $S_p\text{-Cl }(A) \cap (U-V) \subseteq \text{Mic } S_p\text{-Cl }(A) \cap (U-A) = [\text{Mic } S_p\text{-Cl }(A) - A]$ and by Remark 2.9, Mic $S_p\text{-Cl }(A) \cap (U-V)$ is Mic $S_p\text{-closed}$ and by assumption, [Mic $S_p\text{-Cl }(A) - A]$ is Mic $S_p\text{-open}$. Then by Theorem 3.15, Mic $S_p\text{-Cl }(A) \cap (U-A) \subseteq \text{Mic } S_p\text{-Int } [\text{Mic } S_p\text{-Cl }(A)] - A] = \phi$ (by Lemma 3.13). Thus Mic $S_p\text{-Cl }(A) \cap (U-V) = \phi$ implies Mic $S_p\text{-Cl }(A) \subseteq U$. Hence A is Mic $S_p\text{-closed}$.

Theorem 3.17. If a subset A of U is Mic S_p g-open, then G = U whenever G is Mic S_p -open and Mic S_p -Int $(A) \cup A^c \subseteq G$.

Proof: Let G be a Mic S_p -open set and Mic S_p -Int $(A) \cup A^c \subseteq G$. Then $G^c \subseteq [Mic S_p\text{-Cl }(A^c) - A^c]$. Now G is Mic S_p -open implies G^c is Mic S_p -closed and A is Mic S_p g-open which implies A^c is Mic S_p g-closed. Hence by Theorem 3.4, $G^c = \phi$. Hence G = U.

Theorem 3.18. If Mic S_p -Int $(A) \subseteq B \subseteq A$ and if A is a Mic S_p g-open then B is also Mic S_p g-open.

Proof: Let Mic S_p -Int $(A) \subseteq B \subseteq A$ then $A^c \subseteq B^c \subseteq Mic S_pg$ -Cl (A^c) where A^c is Mic S_pg -closed and hence B^c is also Mic S_pg -closed by theorem 3.12. Hence B is Micro S_pg -open.

Theorem 3.19. Let $(U, \tau_R(X), \mu_R(X))$ be a Micro topological space. Then for each $x \in U$, either $\{x\}$ is Mic S_p -closed or $U \setminus \{x\}$ is Mic S_p -closed.

Proof: Suppose that $\{x\}$ is not Mic S_p -closed, then by definition 2.8, $U \setminus \{x\}$ is not Mic S_p -open. Let A be any Mic S_p -open set such that $U \setminus \{x\} \subseteq A$ which implies A = U. Thus, Mic S_p -Cl $(U \setminus \{x\}) \subseteq A$. Hence, $U \setminus \{x\}$ is Mic S_p -closed.

References

- 1. Bhavani.R: "On Strong forms of generalized closed sets in Micro Topological spaces", Turkish Journal of Computer and Mathematics Education, Vol 12, Issue 11, 2021, PP: 2772-2777.
- 2. Bhuvaneswari.K and Mythili Gnanapriya.K: "Nano generalized closed sets in Nano Topological spaces", International Journal of Scientific and Research Publications, Vol 4,Issue 5, May 2014.
- 3. Chandrasekar.S: "On Micro topological spaces", Journal of New Theory, Vol. 26, 2019, PP: 23-31.
- 4. Herin Wise Bell.P, Ganesan.S and Jeyashri.S: "Micro Generalized closed sets and Micro Generalized continuous in Micro topological spaces", Vol 4, Issue 1, 2022, PP:156-167.
- 5. Lellis Thivagar and Carmel Richard: "On Nano forms of weakly open sets", International Journal of Mathematics and Statistics Invention, 1(1)(2013), 31-37.
- 6. Maheswari.M, Dhanalakshmi.S and Durga Devi.N: "Micro S_P-open sets in Micro topological spaces", Ratio Mathematica, Vol 45, 2023, PP: 90-96.
- 7. Norman Levine: "Generalized closed sets in Topology", Rend, Circ. Mat. Palermo 19, 89-96(1970).
- 8. Subramanian, Jeyashri and Selvaraj Ganesan: "Micro generalized Locally Closed Sets in Micro Topological Spaces", The International journal of analytical and experimental modal analysis, Vol XII, Issue VI, 2020.
- 9. Taha H.Jasim, Saja S. Mohsen, Kanayo S.Eke: "On Micro-generalized closed Sets and Micro-generalized continuity in Micro Topological Spaces", European journal of Pure and Applied Mathematics, Vol 14, No. 4, 2021, 1507-1516.