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1. Introduction 

In 1970, Norman Levine [6] introduced generalized closed sets in topological spaces. In 2013, 

the notion of nano topology is introduced by Lellis Thivagar and Carmel Richard[5] whose 

idea of nano topological structure is grounded on lower, upper and boundary approximations 

of a subset of a universal set with an equivalence relation on it. K. Bhuvaneswari and K. 

Mythili Gnanapriya[2]  introduced nano generalized closed sets in nano topological spaces in 

2014. The concept of Micro open set in Micro topological spaces was introduced and 

investigated by Chandrasekar.S [3] in 2019. R.Bhavani [1] introduced some strong forms of 

generalized closed sets in Micro topological spaces in 2021. Taha H.Jasim [9] introduced 

micro generalized closed sets in micro topological spaces in 2021. In this direction, in 2022, 

P.Herin Wise Bell et.al [4] introduced Micro generalized continuous in Micro topological 

spaces. This paper focuses on the introduction of new class of sets called Micro Sp-generalized 

closed set in Micro topological spaces and study some of its basic properties. 
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2. Preliminaries 

Definition 2.1.[7] A subset B from a topology  on the Space X is said to be generalized closed 

set (shortly g-closed) if Cl (B)   U for B  U and U is open in 

(X, ).  A subset B of a topological space (X, )  is called g-open if  X – B is g-closed.  

Definition 2.2.[5]  Let R be an equivalence relation on the universe U. R(X) = {U, 

, LR(X), UR(X), BR(X)} where X  U.  Then R(X) satisfies the following axioms. 

(i) U and  R(X).  

(ii) The union of the elements of any sub collection of R(X) is in R(X).  

(iii) The intersection of the elements of any finite sub collection of R(X) is in R(X). That 

is, R(X) is a topology on U called the Nano topology on U with respect to X.  Thus (U, R(X)) 

is called as Nano topological space.  The elements of R(X) are called as Nano open sets.  A 

subset F of U is nano closed if its complement is nano open. 

Definition 2.3.[2] Let (U, R(X)) be a nano topological space. A subset A of  (U, R(X)) is 

called nano generalized closed set (briefly Ng-closed) if NCl (A)  V where A  V and V is 

nano open.            

Definition 2.4.[3] Let (U, R(X)) be a Nano topological space and A  U.  Then R(X)  = {N 

 (N ): N, NR(X)}  and  R(X) is called the micro topology in U with respect to X.  

The triplet (U, R(X), R(X)) is called micro topological space and the elements of R(X) are 

called micro open sets and the complement of a micro open set is called a micro closed set.  

Definition 2.5.[3] The Micro-closure of a set A is denoted by Mic-Cl (A) and is defined as 

Mic-Cl (A) =  { B : B is Micro-closed and A   B}. 

The Micro-interior of a set A is denoted by Mic-Int (A) and is defined as Mic-Int (A) =  { B 

: B is Micro-open and A  B}. 

Definition 2.6.[9] A subset B of (U, R(X), R(X)) is called micro generalized closed set 

(shortly Mic g-closed) if Mic Cl (B)  U  for B  U and U is micro open set in (U, R(X), 

R(X)) is called Mic g-open if U – B is Mic g-closed. 

Definition 2.7.[6] Let (U, R(X), R(X)) be a Micro topological space and AU. Then A is 

said to be Micro Sp-open (briefly Mic Sp-open) if for each x  A  Mic-SO (U, X), there exists 

a Micro pre-closed set F such that x  F  A. The set of all Micro Sp-open sets is denoted by 

Mic Sp-O (U, X). 

Definition 2.8.[6] Let (U, R(X), R(X)) be a Micro topological space and B  U  is called 

Micro Sp-closed (briefly Mic Sp-closed) if and only if its complement is Micro Sp-open and 

Mic Sp-CL (U, X) denotes the set of all Micro Sp-closed sets. 

Remark 2.9.[6] An arbitrary intersection of Mic Sp-closed sets of a Micro topological space 

(U, R(X), R(X)) is Mic Sp-closed. 

Definition 2.10.[6] A point x  U is said to be a Micro Sp-interior point of A if there exists a 
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Micro Sp-open set V containing x such that x  V  A. 

     The union of all Micro Sp-open sets contained in A is said to be Micro Sp-interior of A and 

is denoted by Mic Sp-Int (A). 

Definition 2.11.[6] Let A be any subset of a Micro topological space (U, R(X), R(X)). Then 

a point x  U is in the Micro Sp-closure of A if and only if AH  , for every H  Mic Sp-

CL (U, X) containing x.      

         The intersection of all Micro Sp-closed sets F containing A is called the Micro Sp-closure 

of F and is denoted by Mic Sp-Cl (F). 

Definition 2.12.[3] For any two subsets A and B in a Micro topological space             (U, R(X), 

R(X)), 

(i) A is Micro-closed if and only if Mic-Cl (A) = A. 

(ii) A is Micro-open if and only if Mic-Int (A) = (A). 

(iii) A  B implies Mic-Int (A)  Mic-Int (B) and Mic-Cl (A)  Mic-Cl (B). 

(iv) Mic-Cl (Mic-Cl (A)) = Mic-Cl(A) and Mic-Int (Mic-Int(A))=Mic-Int(A). 

(v) Mic-Cl (A  B)  Mic-Cl (A)  Mic-Cl (B). 

(vi) Mic-Cl (A  B)  Mic-Cl (A)  Mic-Cl (B). 

(vii) Mic-Int (A  B)  Mic-Int (A)  Mic-Int (B). 

(viii) Mic-Int (A  B)  Mic-Int (A)  Mic-Int (B). 

(ix) Mic-Cl (Ac) = [Mic-Int (A)]c. 

(x) Mic-Int (Ac) = [Mic-Cl (A)]c. 

 

3. MICRO Sp-GENERALIZED CLOSED SETS 

Definition 3.1. A subset A of a Micro topological space (U, R(X), R(X)) is said to be a Micro 

Sp generalized-closed (briefly Mic Spg-closed) set if Mic Sp-Cl (A)  V whenever A  V and 

V  Mic Sp-O (U, X). The collection of all Micro Spg-closed sets is denoted by Mic SpG-CL 

(U, X). 

Remark 3.2. Every Micro Sp-closed set is a Micro Spg-closed set but the converse is not always 

be true and it is shown in the following example. 

Example 3.3. Consider U = { a , b , c , d} with U/R = {{b}, {d}, {a ,c}}, X = {a, c} then R(X) 

= {U , , {a , c}}. If   = {b} then R(X) = {U ,  , {b}, {a , c}, {a , b , c}} and Mic Sp-O (U, 

X) = {U , , {a , c}, {b , d}, {a, c, d}}, Mic Sp-CL (U, X) = {U , , {b} , {a,c},{b,d}}. Also 

Mic SpG-CL (U, X) =  {U , , {a} , {b}, {c}, {d}, {a,b},{a,c}, {b,c}, {b, d}, {a, b, c}, {a, b, 

d},{b, c, d}}.  Here {a,b} is a  Micro Spg-closed set but not  Micro Sp-closed set. 

Theorem 3.4. If a set A is Micro Spg-closed set if and only if [Mic Sp-Cl (A) – A] contains no-

non empty Micro Sp-closed set. 
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Proof: Let A be a Micro Spg-closed set.  Then there exists a Micro Sp-open set V such that A 

 V and Mic Sp-Cl (A)  V.  Let F be a non-empty Micro Sp-closed set such that F  [Mic 

Sp-Cl (A) – A].  Then F  Mic Sp-Cl (A)  Ac, which implies A  Fc, where Fc is Micro Sp-

open set. So Mic Sp-Cl (A)  Fc. Which implies F  [ Mic Sp-Cl (A)]c.  Thus F  Mic Sp-Cl 

(A)  [Mic Sp-Cl (A)]c. So F = .  Therefore [ Mic Sp-Cl (A) –A ] contains no non empty 

Micro Sp-closed set. 

Conversely, let A  V and V  Mic Sp-O (U, X) such that A is not a Micro Spg-closed set. 

Then Mic Sp-Cl (A)  V, which implies Mic Sp-Cl (A)   Vc. Then Mic Sp-Cl (A)   Vc is a 

non empty Micro Sp-closed set of [ Mic Sp-Cl (A) – A ], which is a contradiction.  Hence A is 

Micro Spg-closed set.  

Definition 3.5. A subset A of Micro topological space (U, R(X), R(X)) is called a Micro Sp 

generalized-open (briefly Mic Spg-open) set if Ac is Mic Sp generalized- closed.  The set of all 

Mic Spg-open sets is denoted by Mic SpG-O (U, X). 

Remark 3.6. The intersection of any two Micro Sp-generalized closed sets in (U, R(X), R(X)) 

is not always a Micro Sp-generalized closed set as shown in the example below. 

Example 3.7. Consider U = { 1 , 2 , 3 , 4} with U/R = {{1}, {3}, {2 , 4}}, X = {1, 3} then 

R(X) = {U , , {1} , {3}}. If   = {1, 4} then R(X) = {U ,  , {1}, {3}, {1, 3}, {1 , 4}, {1 , 3 

, 4}} and Mic Sp-O (U, X) = {U , , {1 , 3}, {2, 3, 4}}, Mic Sp-CL (U, X) = {U, , {1} , {2, 

4}}. Also Mic SpG-CL (U, X) =  {U , , {1} , {2}, {4}, {1, 2},{1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 

4}, {1, 3, 4}}.  Here {1, 2, 3} and {1, 3, 4} are Micro Spg-closed sets but {1, 2, 3}  {1, 3, 4} 

= {1, 3} is not a Micro Spg-closed set. 

Theorem 3.8. The union of Micro Sp-generalized closed sets in (U, R(X), R(X)) is a Micro 

Sp-generalized closed set if Mic Sp-O (U, X) forms a Micro topological space. 

Proof: Assume that E and F are Micro Spg-closed sets in (U, R(X), R(X)).  Let E  F  A 

where A  Mic Sp-O (U, X). Since U is a Micro topological space, Mic Sp-Cl (E  F) = Mic 

Sp-Cl (E)  Mic Sp -Cl (F)  V. As E and F are Micro Spg-closed sets, Mic Sp-Cl (E)  A and 

Mic Sp-Cl (F)  A. Thus Mic Sp-Cl (E  F)  A. Hence E  F is Micro Spg-closed only if the 

space is Micro topology. 

Remark 3.9. The above theorem does not hold when Mic Sp-O (U, X) is not a Micro topological 

space and it is shown in the following example. 

Example 3.10. In example 3.3,  Mic SpG-CL (U, X) = {U ,  , {a}, {b},{c},{d},{a , b}, {a, c}, 

{b, c} , {b, d}, {a, b, c}, {a, b, d},{b, c, d}}. Here {c}  {d} = {c, d} which is not a Micro 

Spg-closed set. 

Theorem 3.11. A Micro Spg-closed set is Micro Sp-closed if and only if [Mic Sp-Cl(A) – A] is 

Micro Sp-closed. 

Proof: Let A be a Micro Spg-closed set, then [Mic Sp-Cl (A) – A] = . By theorem 3.4, [Mic 

Sp-Cl (A) – A] is Micro Sp-closed. Also [Mic Sp-Cl (A) – A] itself is a subset of it. By theorem 

3.4, [Mic Sp-Cl (A) – A] = .  Hence A is Micro Sp-closed. 

Theorem 3.12. Let A be a Micro Spg-closed subset of U.  If A  B  Mic Sp-Cl (A) then B is 
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also a Micro Spg-closed. 

Proof: Let V be a Micro Sp-open set in (U, R(X), R(X)) such that B  V which implies A  

V.  Since A is a Micro Spg-closed set which implies Mic Sp-Cl (A)  V. Also, B  Mic Sp-Cl 

(A). Now Mic Sp-Cl (B)   Mic Sp-Cl (Mic Sp-Cl(A))  =  Mic Sp-Cl (A)  V. Therefore Mic 

Sp-Cl (B)  V Hence B is also a Micro Spg-closed subset.  

Lemma 3.13. For any subset A of a Micro topological space (U, R(X), R(X)),  

Mic Sp-Int [Mic Sp-Cl (A) – A] = . 

Theorem 3.14. For a subset A of U, Mic Sp-Cl (Ac) = [Mic Sp-Int (A)]c. 

Proof: Let A be a subset of U and let Ac = U – A.  Also let B be a Mic Sp-open set such that B 

 A.  By definition 2.10, Mic Sp-Int (A) =  {B / B  A and B  Mic Sp-O (U,X)}.  That is 

Mic Sp-Int (A) =   {U – F / U – A  F and F = U – B}.  Hence Mic Sp-Int (A) = U –  {F / 

F is Mic Sp-closed and U – A  F}. Thus Mic Sp-Int (A) = U – Mic Sp-Cl (U – A).  That is 

Mic Sp-Int (A) = U – Mic Sp-Cl (Ac) which implies Mic Sp-Cl (Ac) = U – Mic Sp-Int (A).  

Hence Mic Sp-Cl (Ac) = [Mic Sp-Int (A)]c. 

Theorem 3.15. A subset A of a Micro topological space (U, R(X), R(X)) is Mic Spg-open if 

and only if  F  Mic Sp-Int (A) whenever F is Mic Sp-closed and F  A. 

Proof: Let A be a Mic Spg-open set. Then Ac is Mic Spg-closed set. Thus Mic Sp-Cl (Ac)  Fc.  

By Theorem 3.14, Mic Sp-Cl (Ac) = [Mic Sp-Int (A)]c. Then [Mic Sp-Int (A)]c  Fc.  Hence F 

 Mic Sp-Int (A) where F is Mic Spg-closed and F  A. Conversely, let F  Mic Sp-Int (A), 

where F is Mic Spg-closed and F  A.  Let Fc = X – F be a Mic Spg-open set such that Ac  

Fc.  Then by assumption, F  Mic Sp-Int (A) implies [Mic Sp-Int (A)]c  Fc.  Which implies 

Mic Sp-Cl (Ac)  Fc.  Therefore Ac is Mic Spg-closed.  Hence A is Mic Spg-open. 

Theorem 3.16. A subset A of a Micro topological space (U, R(X), R(X)) is Mic Spg-closed 

if [Mic Sp-Cl (A) – A] is Mic SPg-open. 

Proof: Let A  V and V Mic Sp-O(U,X). Now Mic Sp-Cl (A)  (U – V)  Mic Sp-Cl (A)   

(U – A) = [Mic Sp-Cl (A) – A] and by Remark 2.9, Mic Sp-Cl (A)  (U – V) is Mic Sp-closed 

and by assumption, [Mic Sp-Cl (A) – A] is Mic Spg-open. Then by Theorem 3.15, Mic Sp-Cl 

(A)  (U – A)  Mic Sp-Int [Mic Sp-Cl (A)] – A] =  (by Lemma 3.13). Thus Mic Sp-Cl (A) 

 (U – V) =   implies Mic Sp-Cl (A)  U.  Hence A is Mic Spg-closed. 

Theorem 3.17. If a subset A of U is Mic Spg-open, then G = U whenever G is Mic Sp-open and 

Mic Sp-Int (A)  Ac  G. 

Proof: Let G be a Mic Sp-open set and Mic Sp-Int (A)  Ac  G.  Then Gc   [Mic Sp-Cl (Ac) 

– Ac].  Now G is Mic Sp-open implies Gc is Mic Sp-closed and A is Mic Spg-open which implies 

Ac is Mic Spg-closed.  Hence by Theorem 3.4, Gc = . Hence G = U. 

Theorem 3.18. If Mic Sp-Int (A)  B  A and if A is a Mic Spg-open then B is also Mic Spg-

open. 
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Proof: Let Mic Sp-Int (A)  B  A then Ac  Bc  Mic Spg-Cl (Ac) where Ac is Mic Spg-

closed and hence Bc is also Mic Spg-closed by theorem 3.12. Hence B is Micro Spg-open. 

Theorem 3.19. Let (U, R(X), R(X)) be a Micro topological space. Then for each x U, either 

{x} is Mic Sp-closed or U \ {x} is Mic Spg-closed. 

Proof: Suppose that {x} is not Mic Sp-closed, then by definition 2.8, U \ {x} is not Mic Sp-

open. Let A be any Mic Sp-open set such that U \ {x}  A which implies A = U. Thus, Mic 

Sp-Cl (U \ {x})  A. Hence, U \ {x} is Mic Spg-closed. 
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