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As the prevalence of high-risk infectious diseases increases, interest in automated disease 

diagnostic facilities has been growing. However, while conventional large diagnostic centers 

employ expensive fully automated diagnostic equipment, small and medium-sized diagnostic 

centers rely on manual diagnosis or individually separated small-scale automatic diagnosis for 

each diagnostic process due to limited operating space. To enhance productivity of the small and 

medium-sized centers, a precision molecular diagnostic system that integrates small-scale 

automated equipment for each diagnostic process has been developed. Nonetheless, determining 

the optimal number of equipment and required manpower for each diagnostic process remains a 

significant problem that needs to be addressed. In this study, to tackle this issue, we employ a 

discrete event simulation technique to simulate and analyze deployment of diagnostic equipment 

in a molecular diagnostic center. In particular, we explore various types of facility layouts to 

propose an optimal deployment strategy for diagnostic equipment in a precision molecular 

diagnostic facility, considering the size and volume of inspections performed in the diagnostic 

system.  
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1. Introduction 

Recently, as COVID-19 broke out and spread globally, creating a pandemic, many efforts 

have been made to optimize the efficiency of diagnosis and treatment. In particular, these 

high-risk infectious diseases pose a serious threat to public health due to their spread, fatality 

rate, and difficulty in treatment. High-risk infectious diseases are new or recurrent diseases, 

and there are many cases for which there is no or insufficient appropriate vaccine or 

treatment. High-risk infectious diseases have characteristics such as high transmissibility, 

high fatality rate, difficulty in treatment and prevention, negative social/economic impact, 

and global threat. 
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There is currently a growing interest in rapid and highly accurate automated diagnostic 

facilities due to the recent spread of the high-risk infectious diseases. On-site 

immunodiagnostic methods are primarily utilized for screening purposes; however, for more 

precise diagnostics, molecular diagnostics, which is a genetic amplification technology, is 

necessary. Nevertheless, fully automated molecular diagnostic equipment is mainly found in 

huge-sized diagnostic centers due to its substantial size and cost. 

In the case of small to medium-sized diagnostic centers, limitations on a budget and 

operational space bring about manual handling of processes which range from preparing test 

samples to pre-processing genetic extraction. This results in complex tasks, a need for a 

significant number of specialized personnel, and increased risk of infection among 

healthcare workers (Koo et al., 2018). 

To address these challenges, precision molecular diagnostic automation systems have 

emerged (Koo et al., 2018), which integrate automated equipment for each stage of the 

molecular diagnostic process, including genetic extraction, reagent dispensing, genetic 

amplification, and data analysis. However, determining the number of required equipment 

units and personnel for each diagnostic process with consideration on the size and type of the 

diagnostic center remains a challenging issue. 

In this study, we make a simulation model of a molecular diagnostic process for various 

types of diagnostic centers from large sized ones to small sized ones. In particular, we 

employ a Python-based discrete event simulation framework, which is named as SimPy. 

Based on extensive analysis, we select the best processing model and conduct simulations 

with respect to various facility layouts. This allows us to propose the optimal facility layout 

of an integrated automation system for precision molecular diagnostics, considering size and 

test volume of the diagnostic center. 

 

2. LITERATURE REVIEW 

2.1. Integrated Automation System for Precise Molecular Diagnostics 

The integrated automation system for precision molecular diagnostics is designed for the 

purpose of determining disease infection status. It makes rapid and accurate extraction, 

amplification, and testing of genetic material from infectious agents or causative substances, 

such as bacteria or viruses, found in blood, urine, saliva, and other bodily fluids. On the other 

hand, traditionally, the molecular diagnostic process of 'extraction - dispensing - genetic 

amplification (PCR) - analysis' was carried out manually as depicted in Figure 1. The 

integration of this process into a compact automated system represents a significant 

advancement. 

The automation system results in enhanced service quality from the perspective of reduced 

retesting rates, improved productivity, and risk reduction of inter-infection among healthcare 

professionals, due to the standardized test process. However, the challenge lies in 

determining the quantity of required equipment and man-power for each specific molecular 

diagnostic process, with respect to the size and type of diagnostic center. 
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Fig. 1: Integrated automation system for precise molecular diagnostics 

2.2. Discrete Event Simulation Module 

Discrete event simulation (DES) is a development approach widely used for decision 

optimization in production systems by employing reinforcement learning  (George, 2013). 

Typically, DES is utilized in situations where high complexity and limited resources are 

involved, offering the advantage of swiftly assessing system behavior (Caro & Moller, 

2016). Depending on distribution policy, it falls into the categories of commercial off-the-

shelf (COTS) and open-source software. Using DES, various scenarios related to production 

system operation can be simulated to make optimal decisions, ultimately leading to increased 

productivity and reduced risks. Table 1 provides an example of reinforcement learning-based 

DES simulation research. 

Table 1: Previous research papers on using a DES tool for reinforcement learning 

DES tool Author (year) 
Target problem 

(interface) 
Algorithm Category 

AnyLogic 

Thomas et al. 

(2018) 

Scheduling in 

Manufacturing 

system(RL4J) 

Deep Q-learning 

(DQN) 
COTS 

Jang et al. (2018) 
Traffic signal control 

(RL4J) 

Deep Q-learning 

(DQN) 
COTS 

Farhan, Göhre, 

and Junprung 

(2020) 

Coffee shop 

operation(Pathmind) 

Proximal policy 

optimization (PPO) 
COTS 

Pinciroli et al. 

(2020) 

Energy system 

operation(Pathmind) 

Proximal policy 

optimization (PPO) 
COTS 
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Simio Greasley (2020) 

Operation in 

Manufacturing system(RL 

function) 

Q-learning COTS 

Plant 

Simulation 

Rabe et al. (2017) 
Logistic 

operation(MySQL) 

Deep Q-learning 

(DQN) 
COTS 

Shiue, Lee, and 

Su (2018) 

Scheduling in 

Manufacturing system© 

Deep Q-learning 

(DQN) 
COTS 

Mayer, Classen, 

and 

Endisch(2021) 

Operation in 

Manufacturing 

system(TCP/IP) 

Proximal policy 

optimization (PPO) 
COTS 

Flexsim 

Pires et al. (2021) 

Operation in 

Manufacturing 

system(SQL) 

Deep Q-learning 

(DQN) 
COTS 

Preston (2017) 
Material handling 

plan(Excel) 

No algorithm (study 

on RL interface) 
COTS 

SimPy 

Stricker et al. 

(2018) 

Scheduling in 

Manufacturing system 

(Python) 

Deep Q-learning 

(DQN) 

Open 

Source 

Menda et al. 

(2018) 

Bus and aircraft 

control(Python) 

Trust region policy 

optimization 

(TRPO) 

Open 

Source 

Woo et al. (2021) 

Scheduling in 

Manufacturing 

system(Python) 

Deep Q-learning 

(DQN) 

Open 

Source 

COTS DES tools provide various modeling features, visualization and analysis functions. In 

particular, AnyLogic, Simio, FlexSim, and ExtendSim offer optimized environments for 

reinforcement learning development. However, COTS DES tools are somewhat expensive, 

and thus it is challenging for individuals or small companies to use. Additionally, they 

typically lack open-source code and require annual subscription fees for improvements and 

development, which can pose sustainability issues. In contrast, open-source DES tools like 

SimPy offer cost-effectiveness and the advantage of continuous improvement driven by 

various user community, enhancing reliability despite slightly reduced convenience. 

In this study, we utilize the open-source Python-based SimPy for modeling the batch 

simulation of molecular diagnostic equipment processes. SimPy, as shown in Figure 2, is 

capable of performing discrete event simulations and offers a wide range of functions. It can 

work in conjunction with data processing packages such as Pandas and Numpy, enabling 

various data simulations (Agostino et al., 2012). 
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Fig. 2: Simulation-based environment (Nam et al., 2022) 

Notably, SimPy.Environment included in the the SimPy package manages time, defines 

events, and progresses them (Oh et al., 2022). SimPy.Event is responsible for modeling time 

progression during the simulation process, handling resource calls provided by SimPy, and 

modeling generators. Lastly, SimPy.Resource models the resources required for processes. It 

consists of Resource for modeling resources with similar characteristics, Store for storing 

discrete resources, and Container for storing continuous resources (Nam et al., 2022). 

 

3. RESEARCH METHODOLOGY 

3.1. Facility Layout Based on Diagnostic Center Size 

In Republic of Korea, diagnostic centers vary in size, including 28 tertiary comprehensive 

hospitals, 328 general hospitals, 1,398 clinics, and 244 healthcare institutions (Healthcare 

bigdata hub, 2022). Except for tertiary comprehensive hospitals such as university hospitals, 

the majority of diagnostic centers lack the space to operate large-scale diagnostic equipment. 

Consequently, they resort to manual diagnostics or separate the diagnostic equipment for 

different processes. 

Therefore, we aim to propose an optimal facility layout with respect to the size of the 

diagnostic center, which is suitable for the equipment of extraction, dispensing, and genetic 

amplification that can be used even in diagnostic centers that cannot operate large-scale 

diagnostic equipment. 

Depending on the size and type of diagnostic center, the approach varies as shown in Table 

2: 

(1) Comprehensive hospitals, with a daily testing volume of over 1,000 cases, have 

deployed four large-capacity extraction equipment units, allowing simultaneous testing of 

different specimens (blood, sputum, tissues, etc.), and four PCR devices for diagnosing up to 

four different infections concurrently. 

(2) Blood test centers, with a daily testing volume of over 500 cases, utilize two large-

capacity extraction equipment units solely for blood testing. 

(3) On-site centers, like emergency rooms, with a daily testing volume of under 500 

cases, emphasize rapid testing. Therefore, four small-capacity extraction equipment units 
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with fast processing times are deployed along with two PCR devices to enable concurrent 

diagnosis of multiple infections. 

(4) In the case of local hospitals that conduct fewer than 500 individual tests per day, 

they deploy one large-capacity extraction equipment and one PCR device. 

(5) For small-scale hospitals, clinics, and public health centers with limited daily testing 

volumes, economical molecular diagnostics are implemented in small testing rooms. This 

involves the deployment of either one large extraction equipment unit or two smaller ones, 

along with a single PCR device. 

Please note that the above configurations are designed to suit the testing capacities and 

requirements of each type and size of diagnostic center. 

Table 2: Requirements of each type and size of diagnostic center 

Type 

Daily 

inspection 

volume 

Number of 

simultaneous 

samples 

Number of 

concurrent 

diagnoses 

Extraction 

equipment 

Required quantity 

PCR 

equipment 

Required 

quantity 

48 

sample/ 

40min 

8 

sample/ 

30min 

96 sample/ 

90min 

Comprehensive 

hospitals 
<1000 <4 <4 4 - 4 

Blood test 

centers 
<500 <1 <1 2 - 2 

Emergency 

room, 

On-site centers 

>500 <4 <1 - 4 2 

Local hospital >500 1 1 1 - 1 

Small-scale 

hospitals, 

Public health 

centers 

>300 >2 1 - 2 1 

3.2. Discrete Event Simulation Modeling 

We configure six steps for molecular diagnostic process as follows: Step1) decapping, Step2) 

extraction, Step3) dispenser, Step4) PCR setup, Step5) PCR running, and Step6) analysis. 

For each step, we set parameters including testing capacity, processing time, and equipment 

range as shown in Figure 3. We then conduct simulations using the SimPy package, 

assuming a total testing period of 9 hours (540 minutes) per day and five different cases 

considering the various total number of tests and the workers' various working hours. 
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Fig. 3: Discrete-event Simulation model 
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Fig. 4: Discrete-event Simulation Python code 
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Figure 4 shows a source code to implement the overall simulation procedure. The code 

simulates different stages of a manufacturing process, monitors the operation and production 

of each machine, and evaluates the performance of the manufacturing process. 

 

4. RESULT AND DISCUSSION 

To validate the simulation model, we compare the result from the simulation with manual 

process scheduling analysis, as shown in Table 3. Based on a 9-hour workday, daily testing 

volume resulting from simulation shows an average accuracy of 96% compared to the 

process scheduling analysis. Additionally, from the perspective of the total working time per 

person excluding equipment operation time, the simulation result shows an average accuracy 

of 95%. 

Table 3: Validation the Python SimPy Simulation Model 

Case 

A. Process 

Scheduling 

for Model 

B. 

simulation-

Python 

SimPy 

Model 

Model 

Accuracy 

C. Process 

Schedulin

g for 

Model 

D. 

simulation-

Python 

SimPy 

Model 

Model 

Accuracy 

Daily inspection volume 
[B/A*100] 

(%) 

Total hours worked one 

person (min) 

[D/C*100] 

(%) 

Comprehensive 

hospitals 
1440 1392 96.67 365 330 90.41 

Blood test centers 768 792 96.97 195 210 92.86 

Emergency room, 

On-site centers 
352 366 96.17 310 297 95.81 

Local hospital 384 372 96.88 200 200 100.00 

Small-scale hospitals, 

Public health centers 
176 188 93.62 310 300 96.77 

 

5. CONCLUSION AND FUTURE WORK 

In this paper, we present a discrete-event simulation analysis using SimPy, based on standard 

Python. We examine daily testing capacity with respect to facility types and analyze facility 

setup costs and required workforce for the integrated precision molecular diagnostic 

automation system. The results of this study will be helpful in the decision-making of 

diagnostic centers interested in establishing an integrated precision molecular diagnostic 

system. 

For further research, it is necessary to improve facility layout in order to reduce congestion 

time by considering logistics flow according to the configuration of diagnostic center. 



                                                   Discrete Event Simulation for Facility…. Hong-Mo Yang et al. 634  
 

Nanotechnology Perceptions Vol. 20 No.S2 (2024) 

Additionally, it may also be valuable to research on applying reinforcement learning models 

to optimize testing capacity at each time point. 
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