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This study presents a Physics-Informed Neural Network (PINN) approach for solving differential 

equations, providing a versatile and data-driven alternative to traditional methods. Focusing on 

the comparison between exact, analytic, and neural network solutions, we investigate the 

effectiveness of PINNs in capturing complex dynamics across diverse applications. The 

comparison is illustrated through carefully crafted graphs, highlighting the accuracy and 

efficiency of the PINN methodology. By eliminating the need for explicit analytical solutions, 

PINNs offer a flexible framework for addressing a wide range of differential equations, 

showcasing their potential to revolutionize problem-solving in various scientific and engineering 

domains. This research contributes valuable insights into the capabilities of PINNs and their role 

in advancing computational methodologies for differential equations.  
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1. Introduction 

Differential equations play a crucial role in modelling a diverse range of physical [1], 

biological [2], and engineering phenomena [3,4]. Achieving an optimal balance between 

accuracy and computational efficiency in solving these equations has been a longstanding 

challenge. While traditional numerical methods and analytical techniques have been widely 

employed, they face difficulties when handling complex, nonlinear systems or problems 

lacking explicit analytical solutions. In recent years, the advent of Physics-Informed Neural 

Networks (PINNs) has introduced innovative approaches to address differential equations by 

integrating principles of physics with the learning capabilities of neural networks [5-7]. 
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Neural networks (NN) have become integral in solving problems across various domains, as 

highlighted in Le Cun et al. [8], ranging from computer vision to language processing. 

Notably, machine learning approaches, particularly in scientific computing and differential 

equations, have gained prominence. Raissi et al. [9] introduced the concept of infusing 

physics knowledge into the learning process of neural networks, unlocking new possibilities 

for applications across diverse fields. One key application of neural networks is in 

supervised learning, where the objective is to establish a mapping function between input 

objects and their corresponding output values. This involves training the neural network 

using a dataset with input/output pairs, minimizing the error between predicted and true 

solutions through optimization processes employing gradient algorithms and automatic 

differentiation, as discussed in Baydin et al. [10]. 

When applied to differential equations, supervised learning entails finding a mapping 

function between physical input variables (e.g., position, time) and the solution of the 

equation. However, this approach has limitations, such as poor extrapolation beyond the 

training data range and the requirement for a substantial amount of training data to prevent 

convergence issues. To overcome these limitations, PINNs are introduced. PINNs enhance 

traditional neural networks by incorporating additional physics-based information, proving 

particularly valuable in simulating physical and engineering systems governed by differential 

equations. This involves evaluating the solution at collocation points to ensure that the 

estimated solution satisfies the equations. A new loss function, representing the physics, is 

introduced and combined with the original one during the learning process, leading to a dual-

constraint approach that imposes restrictions in the solution space. This makes PINNs 

suitable for scenarios with limited known data, as often encountered in differential equations. 

The use of PINNs for solving differential equations represents a departure from conventional 

methods, providing a data-driven and computationally efficient alternative. Unlike traditional 

approaches requiring explicit analytical solutions, PINNs leverage neural networks to 

directly approximate unknown solutions based on observed data and governing physical 

laws. This integration of machine learning techniques with the inherent physics of the 

problem offers a versatile tool for solving a wide range of differential equations, even in 

cases where traditional methods face challenges. This introduction sets the stage for 

exploring the application of PINNs in solving differential equations. As we delve into the 

intricacies of this methodology, we will examine how PINNs encode physical principles, 

learn from data, and provide accurate approximations of solutions. 

The paper is organized as follows: Section 2 provides a review of the basics of PINNs for 

Ordinary Differential Equations (ODEs). Section 3 offers a tutorial on the method, 

demonstrating its application to solve simple linear and nonlinear differential equations. 

Finally, Section 4 draws conclusions based on the insights gained from the exploration of 

PINNs in solving differential equation. 
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2. Physics Informed Neural Network 

The Basics of PINNs for ODE: 

A Physics-Informed Neural Network (PINN) is a specialized artificial neural network 

designed to integrate established physical principles or equations into its architecture. By 

leveraging the governing equations within the framework of deep learning, a PINN 

capitalizes on domain-specific knowledge to enhance its ability to learn and predict 

outcomes. This unique approach allows the network to respect the underlying physics of the 

system it models, fostering improved accuracy and generalization in predicting physical 

phenomena. In essence, a PINN harmoniously combines the power of machine learning with 

domain-specific insights, contributing to more robust and accurate predictions in line with 

the governing physics of the system. 

 

Figure 1: illustrates the schematic structure of a Physics-Informed Neural Network employed 

in solving a differential equation. The input layer comprises a single input variable, such as a 

time coordinate, represented by one neuron. The network consists of three hidden layers, 

each housing four neurons, interconnecting with both the input and output layers. The output 

layer, hosting a single variable (one neuron), symbolizes the solution denoted as uθ. 

 

3. Illustration of the Method on a Simple Examples 

A solution in neural networks typically involves determining the optimal weights and biases 

that minimize a specific loss function. The objective is to fine-tune these weights and biases 

to reduce the overall loss and enhance the network's capability to provide accurate 

predictions for unseen data. 

The Physics-Informed Neural Network (PINN) algorithm entails training a neural network to 

concurrently assimilate insights from available data and conform to established physics or 

mathematical principles. Here is a simplified overview of the process: 

1. Data Collection: Collect relevant data pertaining to the problem at hand, which may 

consist of input-output pairs reflecting the system's behavior. 

2. Neural Network Architecture: Devise a neural network architecture tailored to the specific 
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problem. Emphasize the inclusion of layers capable of learning from data while 

incorporating physics equations as constraints. 

• Loss Function: Define a comprehensive loss function that encompasses two key 

components: 

1. Data Loss Component      2. Regularization Component 

• Data Fitting Loss: Evaluates the disparity between the neural network predictions 

and the actual data. 

3. Physics-Informed Loss: Embeds the physics equations or principles as constraints, 

ensuring adherence to the underlying laws. 

4. Training: Employ optimization techniques to minimize the combined loss function. This 

process trains the neural network to deliver accurate predictions while conforming to the 

specified physics constraints. 

5. Validation: Evaluate the performance of the trained model on validation data to ascertain 

its generalization capabilities. This ensures that the model captures both the inherent data 

patterns and adheres to physics principles. 

The distinctive feature of PINN lies in its capacity to harness data for learning while 

incorporating prior knowledge of the system's physics. This makes PINN particularly 

valuable for scenarios where data is limited, yet the underlying physics are well-understood. 

 I Linear Differential Equation 

We have employed PINN to solve a range of linear differential equations with initial 

conditions. The table provides a list of the specific problems addressed. The solutions for 

each problem were obtained through Python implementation, and the corresponding visual 

representations are depicted in Figures 2 to 4. 

S.No Differential Equation Initial Condition 

1 du

dx
= x 

u(0)=0 

2               
du

dx
= 3x2 u(0)=1 

3              
dy

dx
= 7x + 6 u(0)=3 

Table 1: List of problem solved by PINN 
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                                     Figure: 2 
                               Figure:3 

 

Figure:4 

II Non-Linear Differential Equation 

Our attention is directed towards the logistic differential equation, a prominent first-order 

ordinary differential equation utilized for the modelling of population growth. The familiar 

expression for logistic growth is given by: 

                                             
df

dt
= R f(t)(1 − f(t))                                                            … (1) 
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In this context, the function f(t) signifies the population growth rate as a function of time t, 

and the parameter R determines the maximum population growth rate, significantly 

influencing the solution's shape. 

Given the initial condition f (0) =f0 , the solution to equation (1) can be expressed as: 

                                          f(t) =
f0

f0  +(1−f0)e−t 

If f0 =
1

2
,  then the solution is the logistic function        

                                            f(t) =
1

1+e−t   

a. Solution with PINN    

The solution of an Ordinary Differential Equation (ODE) through the Physics-Informed 

Neural Network (PINN) entails harnessing neural network capabilities while integrating 

physical constraints to ensure accurate predictions. The process involves: 

• The neural network 

• Constructing the loss function 

• Solving the differential equation with PINNs 

Analytically deriving the solution to the logistic differential equation (1) serves as a 

straightforward illustration of how PINNs work. All the techniques elucidated in the 

subsequent sections are easily adaptable to more intricate ordinary differential equations. 

PINNs rely on two fundamental properties of neural networks (NNs): 

1. Universal Function Approximators: 

Demonstrations from formal studies [12,13] affirm that neural networks (NNs) function as 

universal approximators for any given function. Consequently, a sufficiently deep and 

expressive NN can effectively approximate any function, including solutions to the provided 

differential equation. 

2. Automatic Differentiation: 

The computation of derivatives (of any order) for an NN output concerning its inputs (and, 

naturally, model parameters during backpropagation) is straightforward through automatic 

differentiation (AD). In fact, it is AD that has been instrumental in making neural networks 

efficient and successful from the outset. 

 

The most crucial contribution to the loss is determined as the residual of the differential 

equation, expressed as follows: 

dfNN      

dt
− RfNN(t)(1 − fNN(t)) = 0 

where fNN(t) is the output of a NN with one input and its derivative is computed using AD. It 

is readily apparent that if the neural network output respects the aforementioned equation, one 
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is effectively solving the differential equation. To quantify the specific loss contribution 

arising from the residual of the differential equation, it is necessary to define a set of points 

within the equation domain, commonly known as collocation points. The mean square error 

(MSE) or an alternative loss function is then evaluated as an average over all the selected 

collocation points: 

LDE =
1

M
∑ (M

j=1
dfNN      

dt
|tj

− RfNN(tj)( 1 − fNN(tj)))2 

The loss contribution is determined by averaging the residual of the differential equation 

over a set of collocation points. To incorporate the boundary condition, it is included in the 

loss computation in the same way as described previously: 

LBC = (fNN(t0) − 0.5)2 with t0 = 0 

This adds the loss contribution from the boundary conditions to the Mean Squared Error 

(MSE) loss. Consequently, the final loss is a sum of the losses from the differential equation 

and the boundary conditions: 

L = LDE+LBC 

Throughout the optimization process, this combined loss is minimized, leading to the 

training of the neural network output to adhere to both the differential equation and the 

provided boundary condition, thereby approximating the final solution to the differential 

equation. 

a. Analytical Solution (Laplace Transform Method) 

A function f: (0, ∞) → F is considered to be of exponential order if there exists a constant M 

(>0) ∈ R such that |f(t)| ≤ Meatfor all  t>0. For each function f:(0, ∞) → R of exponential 

order, we define the Laplace transform of the function as: 

L(f(t)) = F(s) = ∫ f(t)e−stdt
∞

0
. 

The Laplace transform of the function f is represented as L(f). It is also established that L is a 

linear and injective operator. Consequently, at points where f is continuous, we have: 

f(t) = L−1(F(s)) = ∫ f(t)estdt
∞

0

 

this is called the inverse Laplace transforms. 

If L(f(t)) is Laplace transform of f(t) , then 

i) L(1)  =
1

s
  

ii) L(tn)  =
n!

sn+1  

iii) L(eat) =
1

s−a
  

iv) L(f ′(t)) = sF(s) −f0. 

We consider the logistic differential equation  
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df

dt
= f(t) − g(f),             t ≥ 0                                            ….. (2)   

 with initial condition f(t = 0)=0.5.  Let where g is a nonlinear function of  f.  

By applying Laplace transform to both sides of differential equation (2), we obtain: 

                                                sF(s) − f0 = F(s) − G(s) 

                   F(s) =
f0

s−1
−

G(s)

s−1
                                                               ……(3) 

Therefore, assuming the inverse Laplace transform to (3) we obtain 

                       f(t) = f0exp (t) − L−1 (
G(s)

s−1
)                                         ….. (4) 

Let g(f) = f 2 , then by power series 

            f(t) = ∑ antn ,    ∞
n=1                                                       …… (5) 

we obtain 

                   g(f) = (∑ antn)∞
n=1

2
=a0

2 - 2a0a1t + (2a0a2 + a1
2)t2 +…. 

By Laplace transform 

                  G(s) = 
a0

2

s
+

2a0a1

s2 +
4a0a2+2a1

2

s3 +
12a0a3+12a1a2

s4 +…. 

Using (4) one get 

                   F(s) = 
0.5

t−1
− {

a0
2

s(s−1)
+

2a0a1

s2(s−1)
+

4a0a2+2a1
2

s3(s−1)
+

12a0a3+12a1a2

s4(s−1)
+…..} 

Applying the inverse Laplace transform to this equation yield: 

                a0 + a1t + a2t2 + a3t3+…. =0.5(1+t+
t2

2!
+

t3

3!
+…)-a0

2t − (
a0

2

2
− a0a1) t2 

                                                                            −(
a0

2

6
+

a0a1

3
+

2a0a2

3
+

a1
2

3
)t3 −…. 

                                                                 =0.5+(0.5-a0
2)t + (

1

4
−

a0
2

2
− a0a1) t2 

                                                                                +(
1

12
−

a0
2

6
−

a0a1

3
−

2a0a2

3
−

a1
2

3
)t3 +…. 

Equating the coefficient of power t gives 

a0 = 0.5,   a1 = 0.5 − a0 
2 ==>  a1 = 0. 25, 

                                                                 a2 =
1

4
−

a0
2

2
− a0a1 ==> a2 = 0, 

a3 =
1

12
−

a0
2

6
−

a0a1

3
−

2a0a2

3
−

a1
2

3
==> a3 =

1

48
, …. 

the solution u(t) derived from equation (5) is expressed as follows: 

                                                    f(t)= 0.5 + 0.25t + 0.2t3 + ⋯,  
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representing the obtained solution. 

 

Figure :5   PINN solution acquired for the logistic differential equation with epochs=1000 

(Left) and analytical solution obtained using Laplace transform (Right). 

 

Figure:6 The application of the PINN approach to solve the logistic differential equation, 

accompanied by the depiction of a set of randomly chosen training points. 
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Figure:7 The estimate of loss function values using Adam optimizer. 

 

4. Conclusions 

This study introduces a Physics-Informed Neural Network (PINN) as an alternative for 

solving differential equations. Through a comparison with exact and analytic methods, the 

research highlights the effectiveness of PINNs in capturing complex dynamics across diverse 

applications. The study’s carefully crafted graphs underscore the accuracy and efficiency of 

the PINN methodology. By eliminating the need for explicit analytical solutions, PINNs 

provide a flexible framework with the potential to revolutionize problem-solving in scientific 

and engineering domains. This research contributes valuable insights into the capabilities of 

PINNs, emphasizing their role in advancing computational methodologies for differential 

equations. 
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