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This paper presents a novel approach to constructing cryptographic hash 

functions by lever- aging the spectral properties of Ramanujan graphs and the 

optimization capabilities of Genetic Algorithms (GAs). Ramanujan graphs, 

known for their sparse structure and large spectral gap, provide a robust 

mathematical foundation for creating collision-resistant hash functions. We 

utilize Ramanujan graphs constructed by Pizer and Lubotzky-Phillips-Sarnak 

(LPS) to encode the difficulty of computing isogenies between super singular 

elliptic curves, a problem known to be resistant to both classical and quantum 

attacks. Furthermore, a Genetic Algorithm framework is employed to optimize 

the hash function, enhancing its efficiency and adaptability for diverse 

cryptographic applications. The proposed method is rigorously analyzed for 

collision resistance, pre-image resistance, and efficiency. Experimental results 

demonstrate its feasibility for practical implementation in post-quantum secure 

communication and block chain systems. This study advances the design of 

cryptographic hash functions, offering a scalable and quantum-resistant 

alternative to existing solutions. 

Keywords: Hash function, Rmanujan graphs, Pizer’s graphs, LPS graphs, 

Genetic Algorithm.  

 

 

1. Introduction 

With the rapid advancement of quantum computing, classical cryptographic systems face 

unprecedented challenges. Quantum algorithms, such as Shor’s algorithm [18], threaten the 
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foundational assumptions underpinning many widely-used cryptographic schemes, including 

those ensuring collision resistance in hash functions [16,5]. A cryptographic hash function is 

a cornerstone of secure systems, playing critical roles in data integrity, digital signatures, 

authentication protocols, and block chain technologies. The primary requirement for such 

functions is their ability to resist collisions—where two different inputs produce the same hash 

output—a property that becomes increasingly vulnerable in the quantum era. 

Current hash function designs, while robust in classical settings, often fail to meet the 

combined requirements of scalability, efficiency, and security in post-quantum contexts. For 

instance, many classical hash functions either lack the structural complexity needed to 

withstand quantum attacks or introduce significant computational overhead when adapted for 

post-quantum security. These limitations present a critical research gap: the need for hash 

functions that are not only resistant to quantum attacks but also efficient and scalable enough 

for practical applications, such as secure communication and block chain systems. 

Additionally, existing methods for enhancing collision resistance often rely on computational 

assumptions that may weaken with advances in quantum algorithms. This underscores the 

necessity of exploring alternative mathematical structures that inherently exhibit strong 

security properties. Among such structures, Ramanujan graphs have emerged as a promising 

candidate due to their exceptional spectral properties, which contribute to cryptographic 

robustness. However, the integration of these graphs into hash function design and their 

potential for enhancing quantum resistance remain underexplored. 

This study addresses these challenges by leveraging Ramanujan graphs to design a novel 

cryptographic hash function that aligns with post-quantum security requirements. By linking 

the security of the proposed hash function to the difficulty of computing isogenies between 

super singular elliptic curves, we create a robust framework that not only fills the identified 

research gap but also sets a foundation for future advancements in quantum-resistant 

cryptography. 

A class of cryptographic hash functions known as Cayley hash functions is built from Cayley 

graphs and offers desirable characteristics including natural parallelism and a reduction of 

security to a clear-cut, well-defined mathematical issue. Cayley hash functions might serve as 

a solid basis for post-quantum cryptography as this problem is inherently resistant to quantum 

period finding methods due to its involvement of non-Abelian groups. There have been four 

distinct parameter settings for Cayley hash functions, and pre image algorithms have been 

identified for each of them. 

For the most part, Cayley graphs are explicit Ramanujan graphs. Pizer created an explicit 

Ramanujan network, the only non-Cayley graph known to exist, based on the super singular 

elliptic curve isogeny theory. We concentrate on Ramanujan graphs made from Cayley graphs, 

even if Pizer’s Ramanujan graphs have some cryptographic uses. 

Assume that X = (V,E) is a finite graph that is (undirected) and has vertex set V and edge set 

E .If there are k edges incident on each vertex in a graph, then that graph is considered k-

regular. Let F⸦ V, the set of all edges connecting F to V \ F is known as the border ∂F. The 

expanding constant of X is defined by Here, we’d want to use the well-known mathematical 

structures of elliptic curves and graphs to build a safe hash function. In fact, we’ll go through 



                   Quantum-Resistant Cryptographic Hash Functions: Leveraging… Krishnaprabha R 4486  
 

Nanotechnology Perceptions Vol. 20 No. 7 (2024) 

a technique for allocating super singular elliptic curves with the characteristic p to an expander 

graph’s vertices and isogenies between those elliptic curves to the edges that intersect those 

vertices. 

 

The objective is to build a collision-resistant, efficiently calculable hash function. We suggest 

generating cryptographic hash functions from expander graphs that can be proven. The hash 

function returns the finishing vertex and uses the input as a set of instructions for traversing a 

graph. Any expander graph may be constructed using our method, however we present two 

families of ideal expander graphs here so that you can compare their effectiveness and collision 

resistance. The two families are, respectively, Pizer’s and Lubotzky-Phillips-Sarnak’s (LPS) 

Ramanujan graphs. Since Ramanujan graphs are the best expander graphs, they offer superior 

mixing capabilities. Computing collisions is at least as difficult as computing isogenies 

between super singular elliptic curves when building a hash function from the Ramanujan 

network of super singular elliptic curves overFp2 with l-isogenies, l a prime distinct from p. 

The best method now available solves what is thought to be a highly challenging issue in 

square-root time. 

If computing a collision requires solving another well-known hard problem, such as factoring 

or discrete log, we refer to it as a provable hash. First section of this paper is about hash 

functions and elliptic curves. We will provide an overview of the construction of a hash 

function using expander graphs in the section after this. Then describe how collision-resistant 

hash functions are built using Pizer’s Ramanujan graphs. 

The endomorphism ring calculation problem and the path finding problem are the same for 

super singular elliptic curves. Ramanujan graphs are the best expander graphs because of their 

mixing properties. Building verified collision-resistant hash functions using expander graphs 

is made much easier by the mixing characteristics of these networks. The output of hash 

functions closely mimics the uniform distribution and, as a result, is almost similar to random 

bits, according to the rapid mixing characteristic. The most useful property of expander graphs 

for cryptography is their ability to quickly approximate the uniform distribution using random 

walks. Numerous techniques for computing collision-resistant hash functions use walking 

directions as the input, and the hash function’s output is the last vertex. 

In the last part of this paper we will show the role of Artificial Intelligence algorithm such as 

Genetic Algorithm (GA) [10,6] for improving the performance and security of hash functions. 

The paper is structured to comprehensively address the design and optimization of a quantum-

resistant cryptographic hash function. The Abstract presents a concise summary, including the 

research problem, methodology, and findings. The Introduction provides the background, 

articulates the problem, identifies the research gap, and lists the contributions and paper 

organization. The Review of Literature surveys relevant works on cryptographic hash 

functions, Ramanujan graphs, and Genetic Algorithms, identifying limitations in existing 

methods. The Methodology outlines the construction of the hash function using Ramanujan 

graphs for collision resistance and GAs for optimization, detailing design principles, traversal 

mechanisms, and security analysis.T he Construction of Cryptographic Hash Functions Using 

Genetic Algorithm section elaborates on the integration framework, algorithm details, and 
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implementation aspects. The Results and Discussion present performance evaluation, security 

analysis, and a comparative study, highlighting the method’s efficiency, robustness, and 

practical implications. Finally, the Conclusion summarizes the findings, discusses limitations, 

and suggests directions for future research. Review of Literature The review of literature 

should provide a comprehensive overview of existing research relevant to cryptographic hash 

functions, Ramanujan graphs, Genetic Algorithms(GAs), and their combined applications 

[15,1,8]. 

Cryptographic Hash Functions 

Cryptographic hash functions are foundational elements in secure communication, digital 

signatures, and block chain technology. A robust hash function must satisfy three essential 

properties: 

 Collision Resistance: It should be computationally infeasible to find two distinct inputs 

producing the same hash output. 

 Pre-image Resistance :Given a hash output, it must be computationally difficult to retrieve 

the original input. 

 Second Pre-image Resistance: It must be challenging to find a second input that maps to 

the same hash as a given input. 

Traditional hash functions, such as SHA-256 and SHA-3, have proven effective in classical 

settings but are vulnerable to attacks leveraging quantum computing, such as Grover’s 

algorithm, which reduces their security strength by half. Consequently, there is a growing need 

for hash functions that are resistant to quantum attacks, prompting research into alternative 

methods that incorporate hard mathematical problems, such as those based on isogeny graphs 

and sparse Ramanujan graphs. 

 Ramanujan Graphs in Cryptography 

Ramanujan graphs, introduced by Lubotzky, Phillips, and Sarnak (LPS), have been 

extensively studied for their unique spectral properties, including their large spectral gap, 

which ensures strong connectivity and sparse structure. 

 Applications in Cryptography: These graphs have been utilized in cryptographic protocols 

due to their inherent hardness properties, making them suitable for constructing secure 

systems. 

 Super singular Isogeny Graphs: Ramanujan graphs derived from super singular elliptic 

curves have gained prominence in post-quantum cryptography. The difficulty of computing 

isogenies between these curves underpins the security of protocols such as Super singular 

Isogeny Diffie Hellman (SIDH). 

Several studies, such as those by Pizer and the LPS group, have explored the construction of 

Ramanujan graphs, providing a basis for leveraging their mathematical properties in secure 

hash function design. Despite their potential, the integration of these graphs into cryptographic 

hash functions remains underexplored. 
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 Genetic Algorithms in Optimization 

Genetic Algorithms, inspired by the process of natural selection, are widely used for solving 

complex optimization problems. 

 Key Components: Encoding solutions, fitness evaluation ,crossover, mutation, and 

selection. 

 Applications in Cryptography: GAs have been employed to optimize cryptographic 

primitives, such as key generation and cipher design, due to their ability to navigate large 

solution spaces efficiently. 

 Benefits in Hash Functions: GAs can enhance hash function efficiency by optimizing 

parameters like traversal paths and encoding mechanisms to reduce computational overhead 

while maintaining security properties. 

While GAs have been applied in various cryptographic contexts, their application in enhancing 

graph based hash functions remains a novel area of exploration. 

 Intersection of Ramanujan Graphs and GAs in Hash Functions 

The integration of Ramanujan graphs with GAs offers a promising avenue for creating 

quantum- resistant hash functions. 

 Sparse and Efficient Structures: Ramanujan graphs provide a scalable structure for hash 

generation, while GAs optimize the parameters to ensure collision resistance and efficiency. 

 Hardness Properties: By encoding the isogeny problem in super singular elliptic curves 

within the hash function, the construction achieves robustness against quantum attacks. 

Recent research highlights the growing interest in hybrid approaches that combine the 

strengths of mathematical structures and optimization algorithms. However, no prior work 

explicitly integrates Ramanujan graphs and GAs to design cryptographic hash functions, 

making this study a significant contribution to the field. 

Gaps in Existing Literature 

 Lack of scalable, efficient, and quantum-resistant hash functions based on hard 

mathematical problems. 

 Limited exploration of Ramanujan graphs in practical cryptographic applications. 

 Under utilization of Genetic Algorithms in optimizing graph-based cryptographic 

constructions. 

Methodology 

This section outlines the approach used to construct the proposed cryptographic hash function 

by integrating Ramanujan graphs and Genetic Algorithms (GAs). The methodology is divided 

into distinct stages to ensure clarity and reproducibility. 

 Design Principles 

The construction of the hash function is based on the following principles: 
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 Spectral Properties of Ramanujan Graphs: Ramanujan graphs are employed for their sparse 

structure and large spectral gap, ensuring strong connectivity and inherent collision resistance. 

 Hard Mathematical Problems: The difficulty of computing isogenies between super 

singular elliptic curves forms the backbone of the collision-resistant property. 

 Optimization via Genetic Algorithms: GAs are utilized to refine the traversal mechanisms 

and parameter settings, ensuring computational efficiency and adaptability. 

 Selection of Ramanujan Graphs 

Construction of Graphs: Utilize Ramanujan graphs constructed by Pizer and Lubotzky- 

Phillips-Sarnak (LPS) for their well-documented properties and mathematical robustness. 

Choose appropriate graph parameters such as vertex count and spectral gap to balance 

scalability and efficiency. Vertex Encoding: 

 Represent input data as vertices in the Ramanujan graph. 

 Map the input using a deterministic hashing scheme to ensure uniform distribution across 

the graph. 

 Traversal-Based Hash Function Construction 

 Graph Traversal Algorithm: 

 Define a traversal algorithm that selects a path in the graph based on the encoded input. 

 Traverse the graph to produce a sequence of vertices, with the sequence determined by the 

input data. 

 Hash Output Generation: 

 Aggregate the vertex sequence into a fixed-length hash value using a predefined 

aggregation function (e.g., XOR or modular arithmetic). 

 Ensure that the final hash value maintains the desired cryptographic properties, such as 

fixed length and uniform distribution. 

 Integration of Genetic Algorithms 

 Encoding Mechanism: 

 Encode traversal paths as chromosomes in the Genetic Algorithm. 

 Represent traversal parameters, such as starting points and step sizes, as genes. 

 Fitness Function: Define a fitness function to evaluate the quality of each hash function 

instance. Criteria include: 

 Collision resistance: Measure the difficulty of finding two inputs with the same hash. 

 Pre-image resistance: Assess the infeasibility of reversing the hash. 

 Efficiency: Evaluate the computational cost of the hash generation process. 

 GA Operations: 
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 Selection: Select the best-performing traversal strategies based on fitness scores. 

 Crossover: Combine the genes of high-fitness individuals to explore new traversal 

strategies. 

 Mutation: Introduce random variations to maintain diversity and avoid local optima. 

 Optimization Process: 

 Iterate the GA over multiple generations until convergence on an optimized traversal 

mechanism. 

 Finalize the traversal strategy and parameters for the hash function. 

 Security Analysis 

 Collision Resistance: Analyze the hash function’s resistance to collisions by evaluating the 

uniqueness of hash outputs for random inputs. 

 Pre-image and Second Pre-image Resistance: Test the function against pre-image attacks 

by attempting to reverse engineer the input from the hash output. 

 Quantum Resistance: Assess the computational complexity of attacks leveraging quantum 

algorithms, ensuring robustness against Grover’s algorithm and quantum isogeny attacks. 

 Implementation and Testing 

 Implementation: 

 Develop a prototype implementation of the hash function using programming tools like 

Python or C++. 

 Integrate the Ramanujan graph-based framework with the GA optimization module. 

 Testing Scenarios: 

 Test the hash function with datasets of varying sizes and characteristics. 

 Benchmark performance against standard cryptographic hash functions such as SHA-256 

and SHA-3. 

 Performance Evaluation 

 Efficiency Metrics: Measure computational time, memory usage, and scalability. 

 Security Metrics: Quantify the resistance to collision, pre-image, and quantum attacks. 

 Comparison with Existing Methods: Compare the proposed hash function with traditional 

and post-quantum hash functions to highlight its advantages. 

  

2. Preliminaries 

EllipticCurve 

Let Fq be a finite field where q=pa, p a large prime. [13] Short Weierstrass form of an elliptic 

curve E over Fq is the set of points E (Fq) ={ (x, y), x, y ∈ Fq : y2 = x3 + ax + b } ∪ { 0E }, 
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a, b ∈ Fq ,0E = 0 = ( 0 : 1 : 0 ) the point at infinity. 

The j-invariant of an elliptic curve given by the Weierstrass equation y2=x3+ax+b is given by 

the  

                                 4a3          

formula j(E)=17284a3+27b2.    For the elliptic curve E0 : y2 = x3 + x the j-invariant is 

j(E0)=1728. Isomorphic curves have the same j-invariant; over an algebraically closed field, 

two curves with the same j-invariant are isomorphic. Let E: y2= x3+ax+b be an elliptic curve. 

Let P1= (x1, y1) and P2 = (x2, y2) be two points on E different from the point at infinity, then 

we define the binary operation ⊕ on E as P ⊕ 0 = 0⊕P=P for any point P ∈ E. If x1 = x2 and 

y1 = -y2, thenP1 ⊕ P2 = 0; 

Otherwise set 

λ=  

The point(P1⊕P2)=(x3,y3)is defined by 

x3=λ2−x1−x2 

y3=−λx3−y1+λx1 

Under the binary operation ⊕ the set of points on the elliptic curve E forms an abelian 

group[14]. Over finite fields, they form finite Abelian groups. 

Let E/Fq be an elliptic curve, and suppose that #E(Fq) = n is relatively prime to q. Then E(Fq) 

is either cyclic or isomorphic to the direct product of two cyclic groups. 

Theorem: Let E/Fq be an elliptic curve, with q=pr for some prime p. Then E(Fq) is cyclic if 

One of the following conditions hold:1.#E(Fq) =pk for some integer k. 2. E/Fqis super singular 

and q≥5 is prime with q=1mod 4 .An isogeny between two elliptic curves  E and E΄ is a 

surjective morphism [3]. Isogeny may not be injective. If E=E΄, we call an isogeny an 

endomorphism The collection of all endomorphisms on E along with the zero map is called 

the endomorphism ring, denoted by End(E) An example for an endomorphism on the elliptic 

curve E is the multiplication-by- m map ie [m] : E →E defined by P→[m]P, P∈E(F). 

Degree of an isogeny 

 Let ϕ: E1→ E2 be an isogeny then the degree of ϕ is the maximum of the degrees of the 

polynomials f1(x,y) and f2(x,y) .If the degree of an isogeny is l then it is known as an l-isogeny 

Dual isogeny of the l isogeny ϕ : E1 →E2  is an l isogeny ϕˆ : E2→E1 such that ϕ ◦ ϕˆ = ϕˆ◦ ϕ 

= [l] where [l] is the multiplication by l map. 

Elliptic curves related by an isogeny of degree n are said to be n-isogenous. Two elements j1, 

j2 of a field k are n-isogenous over k if there are n-isogenous elliptic curves E1; E2 over k 

with j(E1) = j1 and j(E2) = j2. 
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Ramanujan Graphs 

In a graph G = (V,E), two points xi, xj ∈ V are adjacent or neighbors if { xi, xj } ∈ E. If all the 

vertices of G are pair wise adjacent, then we say G is complete [9]. A complete graph with n 

vertices is denoted as Kn. The degree d(v) of a vertex v is the number of vertices in G that are 

adjacent to v.Adjacency matrix associated with a graph G is a square matrix AG the entries 

ai,j are given by 

ai,j  =   {
     1 if {xi, xj} ∈  E

0 other wise
 

The adjacency matrix of a graph is to calculate the number of walks of different length 

connecting two vertices in the graph. A vertex v ∈ V is incident with an edge { xi, xj } E if 

v=vi or v=vj. A walk on a graph is an alternating series of vertices and edges, beginning and 

ending with a vertex, in which each edge is incident with the vertex immediately preceding it 

and the vertex immediately following it. 

A walk between two vertices u and v is called a u-v walk. The length of a walk is the number 

of edges it has. In a walk, we count repeated edges as many times as they appear. The eigen 

value of a graph is the eigen value of the corresponding adjacency matrix. Since the diagonal 

of the adjacency matrix is all zeros the sum of all eigen values of a graph is always 0. 

An expander graph [7] is a graph in which every subset of the vertices has many neighbors. 

An undirected graph G=( V, E) is c−expanding if for every S ⊆V, |S|≤(|V|)/((2c)), and 

|Γ(S)|≥(c–1)|S|, where Γ(S) is the set of neighbors of S (not including S). The most effective 

graphs for preserving communication secrecy are the Ramanujan and Caley graphs. Since it is 

difficult to locate pathways in these networks, these graphs are crucial in cryptography. For 

super singular elliptic curves, the path finding issue and the endomorphism ring calculation 

problem are identical. The mixing qualities of Ramanujan graphs make them ideal expander 

graphs. 

The mixing features of these graphs are highly helpful for building verifiable collision-

resistant hash functions from expander graphs. According to the quick mixing property, the 

output of hash functions closely resembles the uniform distribution and, as a result, is 

essentially identical to random bits. Expander graphs’ ability to swiftly approximate the 

uniform distribution using random walks is their most valuable feature for cryptography. 

Several methods for calculating collision-resistant hash functions employ the input as walking 

directions around a graph, and the output of the hash function is the last vertex.[2] Any 

expander graph may use these constructions, however locating cycles in such a graph is a 

challenging challenge. We can maintain a short path length in a Ramanujan graph. The 

difficulty of reversing a walk on a graph is largely used in the construction of cryptographic 

hash functions. 

Path-finding problem:“ For a fixed starting and ending vertices representing the start and end 

points of a walk on the graph of a fixed length, find a path between them. A hash function can 

be defined by using the input to the function as directions for walking around the graph: the 

output is the  label for the ending vertex of the walk. Finding collisions for the hash function 

is equivalent to finding cycles in the graph, and finding pre-images is equivalent to path-

finding in the graph.n  Backtracking is not allowed in these walks. Charles–Goren–Lauter in 
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2006 proposed two hash functions based on the hardness of finding paths in Lubotzky–

Phillips–Sarnak (LPS) graphs and the next one is based on Super singular Isogeny Graphs 

(Pizer). [2] In 2008 Petit–Lauter–Quisquater breaks the hash function based on LPS graphs.” 

As a result, Super singular Isogeny graphs have lately attracted the attention of scholars. We 

transmit the images of the elements in the torsion basis through the isogeny in quantum-

resistant public-key cryptosystems based on the difficulty of finding isogenies between super 

singular elliptic curves in order to construct a shared commutative square even though the 

endomorphism ring is not commutative in this situation. 

Charles, Goren, and Lauter introduced super singular isogeny graphs to cryptography in 

2006.[2]. They are optimal expander graph that is Ramanujan graphs, in these graphs walks of 

length approximately equal to the logarithm of the graph size. Isogeny graphs for super 

singular elliptic curves were first considered by Mestre .Pizer showed that these graphs have 

the Ramanujan property. The path-finding problem in super singular isogeny graphs is the 

basis for the CGL cryptographic hash function. 

“A sparse graph is a graph in which there are less edges overall than there are at its maximum.” 

A sparsely populated, highly linked graph is known as an Expander graph. Imagine a simple 

graph G with 7 vertices and 2 edges originating from each vertex. There are 14 edges in this 

graph. If this graph is complete every vertex connected to every other vertex, so 7! edges. This 

is an example of a sparse graph since 7! >14. 

A finite, connected, k- regular graph X is Ramanujan if, for every eigen value µ of the 

adjacency matrix of X other than ±k, one has |µ| ≤ 2√(k-1). We call 2√(k-1)as a Ramanujan 

bound 

A super singular isogeny network is a graph whose edges are special mappings (isogenies) 

between such (classes of) curves and whose nodes are super singular curves (isomorphism 

classes of) curves. Isogeny graphs are undirected since each isogeny has a dual isogeny. It is 

hard to find a path of a given length between two random nodes in the isogeny graph. This 

hardness is the basis of isogeny-based cryptosystems. [4] 

 

3. Super singular isogeny graph 

To define a super singular isogeny graph, fix a finite field K of characteristic p, a super singular 

elliptic curve E over K, and a prime l≠p . Then the corresponding isogeny graph is constructed 

in such a way that, the vertices are the K- isomorphism classes of elliptic curves which are K-

isogenies to E. Each vertex is labeled with the j-invariant of the curve. The edges of the graph 

correspond to the l-isogenies between the elliptic curves[19]. As the vertices are isomorphism 

classes of elliptic curves, isogenies that differ by composition with an automorphism of the 

image are identified as edges of the graph. Then the corresponding isogeny graph is 

constructed in such a way that, the vertices are the K -isomorphism classes of elliptic curves 

which are K- isogenous to E. Each vertex is labeled with the j-invariant of the curve. The edges 

of the graph correspond to the l-isogenies between the elliptic curves[19]. As the vertices are 

isomorphism classes of elliptic curves, isogenies that differ by composition with an 

automorphism of the image are identified as edges of the graph. Consider FP2 and 

supersingular elliptic curves. In the Super singular isogeny graph Vertices are all isogenous 
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elliptic curves over FP2. Edges are isogenies of a fixed prime degree l.Suppose l=2 

Every finite subgroup of E1(k) is the kernel of a separable isogeny over k that is uniquely 

determined (up to isomorphism) and this isogeny can be computed using V´elu’s algorithm. 

Also every n- isogeny ϕ: E1−→E2 has a unique dual isogeny ϕˆ:  E2→E1 that satisfies ϕ ◦ ϕˆ 

=ϕˆ◦ ϕ =[n] where [n] is the multiplication by n map that sends P ∈ E1 to n P ∈ E1 The kernel 

of them multiplication by n map is the n- torsion subgroup. If E0, E1 are K- isogenous elliptic 

curves, ϕ: E0→ E1 is an l-isogeny and Φ ∈ Aut(E1) is an automorphism, then ϕ and Φ ◦ ϕ are 

identified and correspond to the same edge of the graph. If p= 1 mod12, we can uniquely 

identify an isogeny with its dual to make it an undirected graph. It is a multigraph in the sense 

that there can be multiple edges if no extra conditions are imposed on p. 

Hash Functions 

A hash function must be simple to compute and converts bit strings of some finite length to 

bit strings of some fixed finite length. In this research, we focus on unkeyed hash functions 

that are resistant to collisions. Unkeyed hash functions can compute the result without using a 

secret key. 

Complexity theorists are familiar with the usage of expander graphs to generate pseudo-

random behaviour. The goal is to create collision-resistant hash functions using expander 

graphs. In general, the hash function’s output is the final vertex of the walk and its input is 

used as the route to navigate a graph (without going backwards).The walk in the provided 

graph begins at a fixed vertex for a fixed hash function. It is possible to define a family of hash 

functions by allowing the beginning vertex to vary. By dividing the input to the hash function 

into pieces of size e, such that 2e= k-1, we may do a walk on a k-regular expander graph. 

Each step of the walk selects an edge originating from the first vertex to proceed along in order 

to reach the next vertex. The following e bits of the input define which edge to follow at each 

stage of the walk. Only k-1 options for the following edge are permitted at each step since we 

do not permit backtracking throughout the walk. Other options for k might be possible if 

variations allowed input to be written in base b. As an alternative, e might be selected so that 

2e< k − 1. 

If the input was uniformly random, the output of the hash function will be uniform since a 

random walk on an expander graph mixes quickly. After O( log(N) ) steps, the output of a 

random walk on an expander network with N vertices trends towards the uniform distribution. 

Let hi represent the hash function, which is defined as follows: let the super singular elliptic 

curve Ei be the walk’s beginning vertex. 

Problem 1: Generate two separate isogenies of degree ln between two super singular elliptic 

curves E1 and E2 over Fp2, f1 : E1→E2and f2 : E1→E2. 

Problem 2: Determine an endomorphism f : E→E of degree l2n that is not the multiplication 

by ln map for a given E, a super singular elliptic curve over Fp2. 

Problem 3 : Determine an isogeny f : E1→E2 of degree ln between E1 and E2, two super 

singular elliptic curves over Fp2. 

Theorem : A solution to Problem 1 with E1 = Ei and a solution to Problem 2 with E = Ei are 
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implied by finding a collision in the hash function hi. 

Proof : For a hash function in this family, discovering a collision means finding two different 

pathways between two vertices. The initial vertex, E1, equals Ei, for the hash function hi. The 

pathways must have the same length if the hash function accepts inputs with a fixed bit length. 

Using composition of isogenies, where E1 =Ei and E2 are supersingular elliptic curves over 

Fp2, one may create two separate isogenies, ϕ1 : E1→E2 and ϕ2 : E1→E2, ϕ1=ϕ2, by 

identifying two distinct pathways in the graph from the vertex E1= Ei to the vertex E2. 

Additionally, since the graph’s edges are i- isogenies, the length requirement on the pathways 

implies that degϕ1 = degϕ2, thus the degree of the two isogenies must have the same l-power 

degree. Taking ϕ2’s dual yields the isogeny ϕˆ2: E2→E1. An endomorphism of the elliptic 

curve E1 of degree l2n for some n is now ϕ1 ◦ ϕˆ2 : E1→E1. Since ϕ2 =ϕ1, this endomorphism 

cannot be the multiplication by ln map, which likewise has degree l2n. Stated differently, a 

collision in the graph also results in a cycle1 of even length. 

Therefore, by explicitly identifying a collision in this hash function, it is possible to identify 

two isogenies between two super singular elliptic curves that have the same e-power degree 

as well as an l2n-degree endomorphism of a given super singular elliptic curve E= E1= Ei that 

is not the multiplication by ln map. In each scenario, an isogeny may be assessed by composing 

the isogenies along the path, given a path or a cycle in the graph. With Velu’s formulae, one 

may rapidly evaluate the isogeny and complete each step of the composition. 

Theorem : Using E1 =E to solve Problem 3 entails finding preimages for the hash function hi. 

Proof: Let E2 be the super singular elliptic curve over Fp2 whose j-invariant corresponds to y 

given an output y to the hash function hi. Finding a path in the graph of l-isogenies from E1= 

Ei to E2 is equivalent to finding an input x such that hi(x) =y. The length of the path for l=2 

must be n if the hash function accepts inputs of length n. As a result, the isogeny f must have 

degree ln. The path’s length for generic primes l and n will be around n/(log_2 (l))  

Problem 2 can be solved by finding a cycle in the graph, therefore let’s start by making sure 

our graph is free of small cycles (i.e., has big girth).In order to guarantee that the graph has no 

short cycles, we shall impose the following constraints on the congruence class of the prime 

p. 

3.2 Conversion into the quadratic form language 

The issue of identifying isogenies can be converted into a language of quadratic forms for 

numerical representation. Finding two different isogenies ϕ1, ϕ2 between two elliptic curves 

E1 and E2 of degree ln results in an endomorphism of degree l2n of E1 that is not the 

multiplication by n map, as is stated in the proof of Theorem 1.The degree map, also known 

as the Norm map on a maximum order in a quaternion algebra, is a rank 4 positive definite 

quadratic form. A super singular elliptic curve’s endomorphism ring (over Fp) is isomorphic 

to a maximum order in the quaternion algebra B =Bp,∞ over Q, ramified exclusively at p and 

∞. 

The Z-lattice with rank 4 is the maximum order. The presence of an endomorphism of degree 

l2n denotes the existence of a non-trivial representation of the number l2n by the quadratic 

form, which is the norm form on the lattice, meaning that it is not as the norm of ln. However, 

take note that the most effective methods currently available for figuring out a super singular 
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elliptic curve’s endomorphism ring as a maximum order in B are exponential in p. As a result, 

it appears that just translating the cycle-finding issue into the language of quadratic forms is 

computationally challenging. 

3.2.1 Verifying there are no minimal cycles in Gp,l 

With the tools previously mentioned, we can quickly identify situations in which G(p,l) has 

no small cycles. We may guarantee that there are no cycles of length n for n in a given interval 

[0,S] by carefully selecting p in relation to l. In the graph of l-isogenies, a non-trivial cycle of 

length 2n suggests that l2n is non trivially represented by the norm form of some maximum 

order in B. In the event that the cycle aligns with an element x of norm l2n, it follows that the 

quadratic polynomial X2-Tr(x)X+Norm(x) is irreducible. Consequently, p becomes ramified 

or inert inside the field that the polynomial defines. 

The most well-known technique, the Pollard-Rho attack, will locate a cycle in the predicted 

time O(√(p ) log^2 p)if the graph G(p,l) lacks short cycles. Therefore, assuming p ≈

 2256would provide around 128 bits of protection from this attack. 

3.3.Lubotzky-Phillips-Sarnak Ramanujan Graphs (LPS Ramanujan Graphs) 

The Lubotzky-Phillips-Sarnak expander graph is an alternative to utilizing the graph G(p,l). 

The graph is explained below. Let l and p be two different primes, where p is comparatively 

large and l is little. Additionally, l ≡ 1(mod4) and l is a quadratic residue (modp) . We represent 

the LPS graph by Xl,p where l and p are its parameters. Next, we specify the edges and vertices 

that comprise the graph Xl,p.The matrices are the vertices of Xl,p. The vertices of Xl,p are the 

matrices in PSL(2, Fp) that is the equivalence relation A=−A for every matrix A and the 

invertible 2 × 2 matrices with elements in Fp. If A is a 2 × 2 matrix with determinant 1, then 

the 4-tuple of A’s entries or those of −A will be called the vertex, depending on which is 

lexicographically smaller in the standard ordering of the set {0, ... ,p−1}4. Next, we go over 

the edges that comprise the graph. The matrices gA, where the g′s are the following explicitly 

stated matrices, are related to a matrix A. Assume that i is an integer such that i2≡−1(modp). 

The following problem has precisely 8(l+1) solutions (g0,g1,g2,g3). 

 g0
2 + g1

2 + g2
2 + g3

2 =l. 

Among these there are exactly l+1 with g0>0 are odd and gj even for j=1,2,3.To each such 

(g0,g1,g2,g3) we associate the matrix 

 g = [ 
g0 + ig1g2 + ig3

−g2 + ig3g0 − ig1
 ] 

This provides us with a set S of l+1 matrices in PGL(2, Fp). However, since their determinants 

are squares modulo p, they are located in PSL(2,Fp), the index 2 subgroup of PGL(2,Fp). It is 

a proven truth that g−1is in S if g is. Additionally, because l is tiny, it takes extremely little 

time to find the set of matrices in S using exhaustive search. The graph Xl,p is l+1-regular 

with (p(p^2-1))/2  vertices. Here is an illustration of a Cayley graph. Assuming a group G and 

a subset G1⊆G, one builds a graph with the elements of G as its nodes, and for each g ∈ G1,the 

nodes x,y have an edge that corresponds to g if x=gy or y=gx. 

Explicitly computing the product of generators that result in a cycle on the graph is the same 
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as finding a collision. According to Sarnak, determining the lowest t such that lt is represented 

by the quadratic form is equivalent to calculating the girth. 

g0
2+4p2g1

2+4p2g2
2+4p2g3

2 

subject to the condition that at least one of g1, g2, g3 is not zero. There, the reasoning 

demonstrates that t ≥ 2loglp. As a result, the LPS graph’s girth is at least two loglp. The 

challenge of calculating the minimal cycle cannot be easier than the representability problem, 

which is regarded as hard, as finding the minimal cycle as a product solves the representability 

problem in O(t) operations and gives an explicit answer. We note that the LPS graph’s girth is 

practically ideal. Therefore, it is not expected that the challenge of finding the smallest cycle 

in the LPS graphs will be any simpler than the well acknowledged difficulty of the task for a 

generic homogeneous l-regular graph. 

3.3.1 Rationale for the Usage of Ramanujan Graphs 

Ramanujan graphs are an essential component of this study, chosen for their exceptional 

mathematical properties that align well with the requirements of cryptographic hash function 

design. Their utility in cryptography stems from their unique combination of spectral and 

combinatorial properties, which make them particularly suitable for ensuring collision 

resistance and computational efficiency. Below, we provide a detailed explanation of the 

rationale for incorporating Ramanujan graphs into our work: 

 Spectral Properties and Expander Graphs: 

Ramanujan graphs are optimal examples of expander graphs, which are sparse yet highly 

connected. The spectral gap—the difference between the largest and second-largest eigen 

values of their adjacency matrix—is maximized in Ramanujan graphs. This property translates 

to strong connectivity and randomness-like behavior, which are critical for cryptographic 

applications. In the context of hash functions, this randomness-like property helps distribute 

input values uniformly across the output space, reducing the likelihood of collisions. 

 Sparse Structure with High Connectivity: 

The sparsity of Ramanujan graphs ensures that the computational overhead for processing 

these graphs remains minimal, even as the size of the graph scales. High connectivity, on the 

other hand, ensures robust resistance against attacks that exploit weak structural properties. 

This combination makes Ramanujan graphs an ideal foundation for constructing hash 

functions that are efficient and secure, even for large-scale applications. 

 Link to Super singular Elliptic Curves and Isogenies: 

Ramanujan graphs have a deep connection to number theory and algebraic geometry, 

particularly in their construction using super singular elliptic curves. The vertices of such 

graphs correspond to isomorphism classes of super singular elliptic curves, and the edges  

represent isogenies between these classes. By linking the collision resistance of the hash 

function to the difficulty of computing these isogenies—a well-known hard problem in 

cryptography—Ramanujan graphs naturally inherit quantum-resistant properties. This ensures 

that the hash function remains secure even in the presence of quantum computing capabilities. 
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 Proven Mathematical Foundations: 

Ramanujan graphs, particularly those constructed by Pizer and Lubotzky-Phillips-Sarnak 

(LPS), are supported by rigorous mathematical proofs that guarantee their spectral properties. 

This provability adds a layer of trustworthiness to their application in cryptographic systems, 

where formal security guarantees are paramount. 

 Existing Applications in Cryptography: 

The successful application of Ramanujan graphs in other cryptographic primitives, such as key 

exchange protocols and random number generation, demonstrates their potential for enhancing 

the security of hash functions. Building on this foundation, our study seeks to explore and 

extend their utility in the design of provably secure and efficient hash functions. 

3.3.2 Practical Implications of Using Ramanujan Graphs 

Incorporating Ramanujan graphs into our hash function design not only provides strong 

theoretical underpinnings but also offers practical advantages: 

 Quantum Resistance: Linking collision resistance to the hardness of computing isogenies 

ensures that the hash function can withstand quantum attacks. 

 Efficiency: The sparse structure of the graphs ensures low computational complexity, 

making the function suitable for high-performance applications such as blockchain and secure 

communication. 

 Scalability: The inherent properties of Ramanujan graphs remain consistent as the graph 

size increases, allowing for scalability without compromising security or efficiency. 

By utilizing Ramanujan graphs, this study addresses critical gaps in existing hash function 

designs, providing a robust, efficient, and quantum-resistant solution. The choice of these 

graphs is not arbitrary but grounded in their proven mathematical and practical strengths, 

making them an indispensable component of the proposed cryptographic framework. 

 

4. Construction of Hash function using Pizer’s Ramanujan graphs 

Let p and l each be a unique prime number. Assign the set of super singular elliptic curves 

over the finite field Fp2 as the vertex set, V, for the graph G(p,l). If there is no p-torsion over 

any extension field, an elliptic curve over a finite field of characteristic p is said to be super 

singular. 

G(p,l) has ⌊p/12⌋+ϵ vertices, where ϵ∈{0,1,2} depending on the congruence class of 

pmodulo12. Later, when p ≡1(mod12) is imposed, then the result is ϵ = 0. We will select a 

linear congruential function to translate j-invariants from Fp2 injectively into Fp for the output 

of the hash function because there are about p/12 different j-invariants. Thus, log(p) bits will 

be the output of the hash function. We suggest using a graph with a cryptographic size of 

p≈256.[11] 

If there is an isogeny of degree l between the vertices E1 and E2, then there is an edge between 

them. An isogeny is an elliptic curve morphism that transforms the identity element into the 

identity. To have degree ”means to have kernel of size” for separable isogenies. Actually, by 
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knowing the subgroup of size l, we may recognize isogenies by their kernels and compute the 

isogeny itself using V’elu’s formulae. We compute isogenies by explicitly noting generators 

for the (rank2) l-torsion and identifying thel+1 subgroups of order l. This allows us to take a 

step in a walk on the graph. G(p,l) is l+1 regular. The Brandt matrix, also known as the 

adjacency matrix, describes how the lth Hecke operator acts on the space of level p weighted 

cusp forms. So, the Ramanujan-Petersson conjecture[9] leads to the bound on the eigen values. 

This means that the graph has the Ramanujan property. 

V’elu provides precise methods for calculating the Weierstrass equation of the curve E/C and 

the equation of the isogeny E E/C, assuming that C is a subgroup of E. Let E be given by 

the equation 

y2+a1xy+a3y=x3+a2x2+a4x+a6.The next two functions are defined in Fq(E). Define for 

Q=(x,y) as a point on E – {O } 

gx(Q)=3x2+2a2x+a4 -a1y,  gy(Q)= -2y - a1x - a3, Let t(Q)=2gx(Q) - a1gy(Q) 

    u(Q)=(gy(Q))2 

t=∑_(Q∈(C-{O}))▒〖t(Q)〗    

w = ∑_(Q∈(C-{O})(u(Q)+x(Q)t(Q)))▒  

The equation then yields the curve E/C as 

Y2+A1XY+A3Y = X3+A2X2+A4X+A6 

Here 

A1=a1, A2=a2, A3=a3, A4=a4−5t, A6=a6−(a12+4a2)t−7w. 

We may simply ascertain the j invariant of E/C from the Weierstrass equation. We use V’elu’s 

formulae for subgroups of order l, and it is evident that this process can be completed for each 

of the l+1 groups of order l using O(l) elliptic curve operations. 

Since there are three edges that emanate from each vertex and no backtracking is permitted in 

a walk, the output of the hash function when using super singular elliptic curves and two-

isogenies can be used to determine which edge to follow next from each vertex by using a 

single bit as shown below. Commence at vertex E1.On the elliptic curve E1, the subgroups of 

order 2 are each supplied by a single point with two torsion: y2=f(x).Pi=(xi,0) are the three 

non-trivial 2-torsion points, and the cubic f(x) factors as 

(x − x1)(x − x2)(x − x3)  

This factorization is over a degree at most two extension field. 

Both of the other 2-torsion points are mapped to the same 2-torsion point ϕ(P2)=ϕ(P3) on the 

isogenous elliptic curve, E2, when computing the isogeny ϕ, which corresponds to taking the 

quotient by<P1>. In turn, the dual isogeny ϕˆ that results from multiplying the quotient of E2 

by the subgroup produced by ϕ(P2) goes back to E1.Therefore, selecting one of the two 

additional 2-torsion subgroups other than <ϕ(P2)> is sufficient to choose the following step 

from E2. 

Keeping x˜1, the x-coordinate of ϕ(P1), and factoring (x−x˜1) out of the new cubic f2(x), 
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leaving a quadratic to be factored, is an effective technique to get the two new 2-torsion points 

on E2. According to some convention, the quadratic’s roots can be arranged in a certain order, 

and choosing between them for the subsequent step in the walk only requires one bit. As a 

result, the hash function requires a walk of length n steps if the input bit length is n. 

That is, each vertex is represented by an elliptic curve Ei that can be calculated using the 

equation y2 =fi(x), where fi(x) is a cubic. Factor the cubic fi(x) to determine the 2-torsion 

subgroups at each step. At each stage, factor the quadratic after computing the 2-torsion using 

the image of the other 2-torsion point. Apply V’elu’s formulae after selecting which one to 

quotient by after ordering. 

Finding two isogenies between two super singular elliptic curves with the same l-power degree 

constitutes a collision in this hash function. This task is highly challenging if the graph G(p,l) 

lacks small cycles, as building isogenies of significant degree between curves is a well-known 

computationally challenging challenge. To prevent small cycles in the graph, we shall impose 

limits on the congruence class of the prime p. We may be sure that there are no cycles of length 

n for n in a given interval [0,S] by carefully picking p relative to l. The graph of l-isogenies 

has a non-trivial cycle of length 2n, which suggests that the norm form of a certain maximum 

order in B, a quartenian algebra over Q does not trivially represent l2n. The quadratic 

polynomial X2-Tr(x)X+Norm(x) is assumed to be irreducible if the cycle is equivalent to an 

element x of norm l2n. As a result, p is ramified in the field described by the polynomial. To 

ensure that the graph has no brief cycles, use this principle generally. Also finding an isogeny 

of a specified l-power degree between two given elliptic curves is a particular case of 

producing two isogenies of the same l-power degree. 

Because finding isogenies between super singular elliptic curves is difficult, collision 

resistance follows when the hash function is built from one of Pizer’s Ramanujan graphs. 

 

5. AI algorithm(GA) for optimizing the efficiency of Cryptographic Hash Functions 

A post-quantum cryptography technique called the Super singular Isogeny Diffie-Hellman 

(SIDH) key exchange protocol takes advantage of the computational challenge of identifying 

isogenies across super singular elliptic curves. The Supersingular Isogeny Hash Function 

(SIHF), a comparable cryptographic structure, makes use of the same mathematical principles 

as SIDH. A hash function for cryptography called SIHF is based on how difficult it is to 

identify isogenies between supersingular elliptic curves. Although it operates in a different 

mathematical domain, it is intended to give cryptographic features similar to those of 

conventional cryptographic hash functions like SHA-256 or SHA-3. 

In terms of AI’s possible application to SIHF or related cryptographic constructs, it may be 

utilized for cryptanalysis or optimization tasks involving the discovery of isogenies or other 

hash function calculations. Artificial intelligence (AI) methods, such as machine learning 

algorithms, might be used, for instance, to investigate novel approaches to addressing SIHF-

related mathematical issues or to increase the efficiency of specific hash function phases. 

It’s crucial to remember, though, that cryptographic hash functions, such as SIHF, are usually 

made to withstand attacks, particularly those that use machine learning or artificial intelligence 

approaches. Such hash functions are secure because they depend on certain mathematical 
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problems being computationally hard; to break them, major advances in processing power and 

cryptographic techniques would be necessary. 

AI techniques, particularly optimization algorithms, could be used to improve the efficiency 

of certain aspects of SIHF implementation. This might involve optimizing parameters or 

finding more efficient ways to compute isogenies. SIHF depends on variables like key sizes 

and curve selection. AI methods might help choose the best settings depending on a range of 

factors, such as efficiency, security, and platform compatibility. 

Using a genetic algorithm to optimize the parameters of an elliptic curve for use in the 

Supersingular Isogeny Hash Function (SIHF) could potentially offer several advantages. 

To identify the best configurations, genetic algorithms may search across a wide parameter 

space quickly and effectively. This may result in elliptic curves that provide SIHF operations 

with improved computational and memory efficiency. The security of the SIHF may be 

improved by fine-tuning the elliptic curve’s parameters. This might entail choosing hash 

function parameters that make it harder for attackers to exploit flaws or vulnerabilities. The 

selection of parameters for elliptic curve-based cryptography methods that withstand known 

attacks may be aided by genetic algorithms. The program may find parameter combinations 

that offer superior defense against side-channel or collision assaults by examining a broad 

range of options. Certain apps could have different needs when it comes to compatibility, 

performance, or security. Customizing elliptic curve parameters to satisfy these particular 

requirements is possible through the use of a genetic algorithm. Because SIHF is thought to 

be post-quantum safe, quantum computers cannot easily attack it. By ensuring that the curve 

parameters are chosen with future developments in quantum computing in mind, optimizing 

the elliptic curve’s parameters with evolutionary algorithms may further improve its post-

quantum security. Optimizing an elliptic curve’s parameters via a genetic algorithm for use in 

SIHF may result in increased security, greater customisation for particular applications, and 

increased performance. 

To make sure the generated parameters satisfy the necessary security requirements and 

continue to be resilient to current and any future threats, it is imperative to properly validate 

them. Artificial Intelligence (AI), which uses well-known methods like Genetic Algorithms 

(GA)[12], shows great promise in ECC parameter optimization. It is well-known for its 

efficiency in navigating complicated search spaces, especially when looking for the best 

answers in complex environments like ECC parameter optimization. Its inspiration comes 

from biological evolution. The parameters of elliptic curve cryptography have specific 

functions and may be fine-tuned to increase ECC without compromising security. The 

following parameters will be examined in this study: 

 Choice of Elliptic Curve: The curve’s equation E : y2=x3+ax+b and specific constants a 

and b (curve coefficients ) determine the system’s efficiency and security. 

 Field Size : Represented by a prime number (p), the field size affects security and 

computational load. Larger fields enhance security but need careful balancing with efficiency. 

 Generator point G : The method used for representing points (x,y) on the curve affects 

computation speed. 

 Scalar Multiplication : Techniques like the Montgomery ladder or sliding window method 
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enhance ECC operations. The operation Q = kP, where P is a point on the curve and k is scalar, 

can be optimized for efficiency. 

 Group Order n : This represents the number of points on the elliptic curve and plays a vital 

role in the security of the ECC system. 

 Cofactor h : The ratio between the number of points on the curve and the group order n. 

It’s essential in defining the subgroup that is used for cryptographic purposes. 

5.1 Assessment of the Generated ECC Parameters’ Effectiveness: 

a) Protecting against intrusions and following recommended cryptographic procedures 

constitute security. b)Optimality :The degree to which the parameters resemble the optimal 

theoretical solution. 

c) Generalization : Applicability to various curve configurations and real-world situations. d) 

Validity: Adherence to cryptographic and mathematical specifications, such as the avoidance 

of abnormal or single curves. e) Practicality : Taking into account compatibility with current 

systems, computing performance, and real-world applications. 

Genetic Algorithm : To build a genetic algorithm for ECC parameter optimization, the GA.py 

script, also known as the GA App, makes use of the DEAP (Distributed Evolutionary 

Algorithms in Python) module. It starts a population of people, each of whom is a list that 

represents a possible set of elliptic curve parameters in ECC. The constants a and b, the prime 

number p, the group order n, the cofactor h, and the generator point G that represents 

points(x,y) are the parameters. Iterative genetic processes such as crossover, mutation, and 

selection result in the production of new individual generations. 

In order to mutate the individuals and generate prime numbers or perturbing parameters using 

a Gaussian distribution, the script uses a custom mutation function that receives the individual, 

an independent probability indpb (the chance of each attribute to be mutated), and the mutation 

rate. 

Algorithm 1 Custom Mutation Function[17] 

1: function CUSTOMMUTATION(individual, indpb, mutationrate)  

2: degree_of_mutation ←  5 

3: if mutation_rate >0.5 then  

4:  degree_of_mutation ← 10 

5: else 

6:  degree_of_mutation ← 2 

7: end if 

8: if random value between 0 and 1 < mutation_rate then  

9:  for i = 0 to length of individual - 1 do 

10:  if random value between 0 and 1 <indpb then  
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11:   if i = 2 then 

12:  individual[i] ←generate prime number for p 

13:   else if individual[i] is a tuple then 

14: individual[i] ←find generator point using individual[0], individual[1], individual[2]  

15:  else 

16: individual[i] ←individual[i]+ round(value from Gaussian distribution with mean 0 and 

standard deviation degree of mutation) 

17:     end if 

18:    end if 

19 : end for 

20: end if 

21: return individual, 

22: end function 

 

In the context of ECC, the individuals in the population represent different elliptic curves, and 

the fitness function assesses how well they meet the desired criteria. The genetic algorithm 

identifies the best-fitting elliptic curve and generates a file named gaeccparams.txt, containing 

the optimal parameters for ECC optimization. 

aieccutils.py is a utility module that aids AI algorithms like GA in the process of ECC 

parameter optimization. The module’s primary purpose is to facilitate the creation of elliptic 

curves and their associated parameters. 

Genetic algorithms can be an intriguing way to generate elliptic curve parameters, but because 

of the process’s complexity and unpredictability, it’s not a widely used technique. But here’s 

an overview of how we may go about doing this: Choose the elliptic curve’s parameters that 

we wish to create. 
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These usually consist of the base point G, the coefficients a and b of the curve equation y2= 

x3+ax+b, and the prime modulus p. A collection of elliptic curve parameters will be 

represented by each genetic algorithm solution. Create a random beginning population of 

solutions, or parameter settings. Create a fitness function that assesses how well your criteria 

are satisfied by the elliptic curve produced by a given set of parameters. 

Genetic Operators: 

Selection: To choose people (sets of criteria) for the future generation depending on their 

fitness, use selection techniques like roulette wheel or tournament selection. Crossover: 

Recombinate some individuals by crossover to produce offspring. In order to create new 

solutions, two parent solutions must exchange information. Mutation: To preserve genetic 

variety in the population, randomly alter certain people (mutations). Evolution: Continue the 

stages of crossing, mutation, and selection for a number of generations, or until the 

convergence requirements are satisfied. 

Termination: Choose the appropriate time to end the evolutionary process. This could occur 

after a specific number of generations or when the fittest person reaches a level that is 

considered acceptable. Output: The desired elliptic curve is represented by the best individual 

(set of parameters) discovered during the evolution process, which is obtained after the 

algorithm concludes. 



4505 Krishnaprabha R et al. Quantum-Resistant Cryptographic Hash Functions: Leveraging...                                                                                              
 

Nanotechnology Perceptions Vol. 20 No. 7 (2024) 

Algorithm 3: Elliptic Curve Parameter Generation  

 

Validating and understanding the properties of elliptic curves. 

Validating and understanding the properties of elliptic curves is crucial, especially in 

cryptographic applications where they are widely used. 

Here’s an overview to validating and understanding the properties of elliptic curves: 

Curve Equation: An elliptic curve is defined by an equation of the form y2 = x3+ax+b where 

a and b are parameters defining the curve’s shape. Domain Parameters: For cryptographic 

purposes, elliptic curves are defined over a finite field Fp where p is a large prime number. 

Additionally, a base point G and the order n of the base point are defined. The base point is a 

known point on the curve 
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Algorithm 4: Validation and Properties of Elliptic Curve 

  

That generates all other points on the curve through scalar multiplication. 

Weierstrass Form: Elliptic curves are often represented in the Weierstrass form, which is a 
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standard form used for computations and analysis. The Weierstrass form of an elliptic curve 

is given by y2=x3 + ax + b, where 4a3 +27b2 ≠ 0 (ensuring non-singularity).Points on the 

Curve: Points on an elliptic curve satisfy the curve equation. Given a point P=(x,y) on the 

curve, substituting its coordinates into the curve equation should result in equality. 

Point Addition: Elliptic curves have a geometric operation called point addition, which defines 

how to add two points on the curve to obtain a third point. This operation is defined 

algebraically and has properties like associativity and commutativity. Point Doubling: Point 

doubling is a special case of point addition where a point is added to itself. It is an efficient 

operation in elliptic curve arithmetic. Order of the Base Point: The order of the base point G 

is the smallest positive integer n such that nG =O, where O represents the point at infinity. 

Group Structure: The set of points on an elliptic curve forms an abelian group under point 

addition, with the identity element being the point at infinity. Security Properties: In 

cryptographic applications, elliptic curves must possess certain security properties. These 

include the hardness of the elliptic curve discrete logarithm problem (ECDLP), resistance 

against various attacks, and suitability for use in specific cryptographic protocols. Validation: 

Validate the curve parameters, such as a,b,p and G to ensure they meet the required standards 

and security criteria. This may involve checking for curve validity, primality of p, base point 

validity, and other cryptographic considerations. 

We can guarantee the integrity and security of elliptic curves used in cryptographic 

applications by recognizing and verifying these features. 

The parameters of the elliptic curve (a,b,p,G,n,h) are extracted using the fitness function. 

Curve Validation determines if the parameters make a legitimate curve; if not, it returns a 

fitness value of 0. To assess how well the actual order matches the predicted, the Hasse score, 

Hasse’s theorem limits, and the expected order of the curve are computed. An effort is made 

at Pollard’s Rho Attack, where a longer execution time denotes more resistance. 

Algorithm 5: Function to evaluate the fitness of a candidate in GA 

 

To ensure the integrity and authenticity of communications, ecc.py generates and verifies a 
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Hash- based Message Authentication Code (HMAC) for a given message and key using the 

hmac Python package. 

The ECC parameters produced by the GA algorithm vary with each iteration. This is beneficial 

for deployment in any situation where regular adjustments to ECC parameters are necessary. 

Fitness function values are very stable between runs, despite these variations. Here are some 

instances of outcomes from GA algorithm: 

Finding elliptic curves that satisfy certain requirements, including efficiency, security, or other 

desired features, can be facilitated by optimizing the curve’s parameters using a genetic 

algorithm. Using the techniques outlined at the outset of this work, we can create cryptographic 

hash functions using the optimum parameters. We can make sure the generated hash function 

satisfies the required security criteria by doing a security analysis. 

 

6. Construction of Hash Functions using Genetic Algorithm 

It can be creative to create hash functions using a Genetic Algorithm (GA). For several 

applications, including data retrieval, integrity verification, and authentication, hash functions 

are essential in computer science, cryptography, and information security. Natural selection 

and genetics serve as the inspiration for heuristic search algorithms known as genetic 

algorithms. Here’s how a genetic algorithm may be used to create hash functions: 

Algorithm:5 

Define Representation: To begin, provide the representation of a hashf unction. This 

representation might be in any format that works for your challenge, such as a series of 

numbers or characters. 

Define Fitness Function: The fitness function assesses the performance level of a specific hash 

function. This might be determined by a number of factors, including resistance to assaults 

like birthday attacks, computing efficiency, hash value distribution, and collision resistance. 

Primary Population: Produce a hash function initial population. Based on our representation, 

this population should be made up of hash functions that are predetermined or produced at 

random. 

GeneticFunctions: 

Selection: Based on fitness scores, choose hash functions for mating from the existing 

population. better fitness score hash algorithms have a better chance of being chosen. 

Crossover: To produce children, use crossover procedures to certain hash functions. Crossover 

can be as simple as switching components, trading substrings, or using any other technique 

that makes sense for your representation. Mutation: To preserve population variety, randomly 

alter the offspring hash functions. Depending on the representation, this might entail swapping 

out characters, flipping bits, or making other adjustments. Assess Fitness: Using the previously 

stated fitness function, assess the child hash functions’ fitness. Choose the hash functions that 

will endure till the following generation. This might be accomplished through a variety of 

techniques, including roulette wheel selection, tournament selection, and elitism (holding the 

best people). 
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Repeat the process until the convergence requirements are satisfied, or for a predetermined 

number of generations. 

When a suitable hash function is discovered or the maximum number of generations is 

achieved, the procedure  should be terminated. 

Output: Based on the fitness function, the algorithm’s output would be the best hash function 

Algorithm 6 : Pollard’s Rho Attack on an Elliptic Curve 
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Algorithm 7: Initialization of ECC Parameters 
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discovered throughout the evolutionary process. Testing and Validation: To make sure the 

evolved hash function is reliable and efficient, validate its performance using a range of test 

scenarios, such as typical inputs and edge cases. 

 

7. Results and Discussion 

This section presents the performance evaluation, security analysis, comparative analysis, and 

practical implications of the proposed cryptographic hash function. By integrating Ramanujan 

graphs and Genetic Algorithms (GAs), the hash function demonstrates notable computational 

efficiency, security, and practical utility in quantum-resistant applications. 

Performance Evaluation: Computational Efficiency and Memory Usage: 

The hash function was implemented and benchmarked against widely used hash functions like 

SHA-256 and SHA-3.Key metrics include: 

 Hashing Speed: The proposed method exhibited competitive performance, with hashing 

times slightly higher than SHA-256 but significantly faster than many quantum-resistant 

counterparts. 

 Memory Footprint: Due to the sparse structure of Ramanujan graphs and the efficient 

parameter tuning facilitated by GAs, the memory requirements remained within acceptable 

bounds for realworld applications. 

 Scalability: The method scaled efficiently with increasing input sizes, maintaining 

consistent performance across datasets of varying lengths. 

Security Metrics: 

Collision Resistance: 
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Extensive tests were conducted to measure the likelihood of producing the same hash output 

for different inputs. The spectral properties of Ramanujan graphs and the randomized traversal 

mechanisms ensured a high level of collision resistance. No practical collisions were detected 

across large-scale simulations. 

Pre-image Resistance: 

Pre-image resistance was evaluated by attempting to reverse-engineer input data from the hash 

output. The computational infeasibility of finding isogenies between supersingular elliptic 

curves, coupled with the randomized nature of GAs, provided strong resistance against pre-

image attacks. 

Quantum Resistance: 

The security of the proposed hash function against quantum attacks, particularly those based 

on Grover’s algorithm, was analyzed. The inherent complexity of isogeny-based problems and 

the structural robustness of Ramanujan graphs ensured the hash function’s viability in post-

quantum cryptographic systems. 

Comparative Analysis The proposed method was compared with classical hash functions like 

SHA-256 and SHA-3, as well as emerging quantum-resistant hash functions: 

 Collision Resistance: Outperformed classical hash functions by leveraging the spectral gap 

properties of Ramanujan graphs, ensuring enhanced randomness and reduced collision 

probability. 

 Efficiency: While slightly slower than SHA-256 in computational speed, the proposed hash 

function showed better scalability and energy efficiency than quantum-resistant alternatives. 

 Quantum Security: Unlike classical hash functions vulnerable to quantum algorithms, the 

proposed method demonstrated superior resistance to quantum attacks, making it suitable for 

post-quantum cryptographic frameworks. 

 

8. Findings 

The evaluation highlighted several key strengths of the proposed cryptographic hash function: 

 Enhanced Security:The integration of hard mathematical problems, such as isogeny 

computations, ensured robust collision and pre-image resistance. 

 Efficiency: Despite its advanced design, the hash function remained computationally 

feasible, making it viable for practical use cases. 

 Scalability: The method maintained consistent performance across varying input sizesa nd 

complexities. 

Limitations: 

 The computational overhead, while acceptable, is slightly higher than traditional hash 

functions like SHA-256. 

 Further optimizations are needed to fully leverage the potential of GAs in larger-scale 
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implementations. 

Practical Implications The proposed hash function is well-suited for a variety of applications 

requiring secure and efficient cryptographic operations: 

 Blockchain Technology: Its collision resistance and efficiency make it ideal for ensuring 

data integrity and preventing double-spending in blockchain systems. 

 Post-Quantum Cryptography: The method provides a quantum-resistant alternative to 

classical hash functions, addressing emerging security challenges in the quantum era. 

 Digital Signatures:The high level of security offered by the hash function enhances the 

reliability of digital signatures used in secure communication protocols. 

 IoT Security:The lightweight nature of the algorithm makes it a viable option for resource 

constrained IoT devices, ensuring data integrity and secure communication. 

 Major Contributions 

 Novel Hash Function Design: 

This work introduces a hash function based on the mathematical properties of Ramanujan 

graphs, which are known for their sparse yet highly connected structure. By utilizing these 

graphs, the proposed design achieves an optimal balance between collision resistance and 

computational efficiency. 

 Integration of Supersingular Elliptic Curves: 

To enhance security, the collision resistance of the hash function is directly linked to the 

computational difficulty of isogeny problems in supersingular elliptic curves. This integration 

not only strengthens the cryptographic robustness but also ensures the hash function’s 

resilience against quantum attacks. 

 Performance Evaluation: 

The proposed hash function is evaluated for its cryptographic strength, efficiency, and 

practical feasibility. Extensive analysis demonstrates its effectiveness in achieving strong 

collision resistance while maintaining computational efficiency, making it a viable candidate 

for practical implementations in post-quantum cryptographic systems. 

This comprehensive exploration contributes to the growing field of quantum-resistant 

cryptography by addressing key limitations in existing hash functions and providing a robust 

solution tailored for the quantum computing era 

Conclusion In this paper, we have introduced a novel cryptographic hash function that 

integrates the mathematical rigor of Ramanujan graphs with the optimization capabilities of 

Genetic Algorithms (GAs). This innovative approach addresses critical challenges in modern 

cryptography, particularly the need for collision-resistant, efficient, and quantum-secure hash 

functions. By leveraging the spectral properties of Ramanujan graphs and linking collision 

resistance to the computational difficulty of Isogenies in supersingular elliptic curves, the 

proposed method achieves robust security and practicality in post-quantum contexts. 

The performance evaluation demonstrated that the proposed hash function offers competitive 
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computational efficiency, scalability, and memory optimization compared toclassical and 

quantum-resistant hash functions. It also excelled in security metrics, including collision 

resistance, pre-image resistance, and resistance to quantum attacks, making it a viable 

candidate for emerging cryptographic applications. Moreover, the integration of GAs ensured 

optimal parameter tuning, further enhancing its practicality for large-scale deployment. 

The proposed hash function holds significant potential for practical applications, such as 

blockchain technology, digital signatures, and IoT security, where both efficiency and 

robustness are paramount. Despite its strengths, the method incurs a modest computational 

overhead compared to traditional hash functions, which future research could aim to optimize 

further. In conclusion, this work contributes a unique and forward-looking solution to the field 

of post-quantum cryptography, bridging the gap between theoretical security and real-world 

applicability. Future research directions include exploring alternative graph-theoretic 

structures, improving GA optimization for larger datasets, and extending the method’s 

applications to other domains of cryptography. 
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