Pitchfork Pendant Equitable Domination In Graphs

Deepak B P1, Puttaswamy2, S Sivakumar3, Ajithkumara4

¹Research Scholar, Department of Mathematics, P E S College of Engineering, Mandya – 571401, Karnataka, India.

²Professor, Department of Mathematics, P E S College of Engineering, Mandya – 571401, Karnataka, India.

³Sr.lecturer, Department of mathematics, B G S P U College, Mandya – 571401, Karnataka, India.

⁴Asst. Professor, Department of Mathematics, Vidyavardhaka College of Engineering, Mysore, Karnataka, India.

Let G=(V, E) be a finite, simple and undirected graph. An equitable dominating set S in G is called a pendant equitable dominating set if $\langle S \rangle$ contains at least one pendant equitable vertex. A subset S of V is a pitchfork pendant equitable dominating set if every vertex $v \in S$ dominates at least j and at most k vertices of

V -S, where j and k are non-negative integers. The pitchfork pendant equitable domination number $\gamma_{pfpee}(G)$ is the minimum cardinality of a pitchfork pendant equitable dominating set of G. In this article pitchfork pendant equitable domination when j=1 and k=2 is studied. Some bounds on $\gamma_{pfpee}(G)$ related to order, size ,minimum and maximum degree of a graph and some properties are given. Pitchfork pendant equitable domination is determined for some known and new modified graphs.

Keywords: Equitable dominating Set (EDS), Pendant equitable dominating Set(PEDS), Pitchfork Pendant equitable dominating Set (PFPEEDS).

2020 Mathematics Subject Classification: 05C38, 05C69

1 Introduction

Let G = (V, E) be any graph with |V(G)| = n vertices and |E(G)| = m edges. Then n, m are respectively called the order and the size of G. The minimum and maximum of the degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A graph G is said to be regular if $\delta(G) = \Delta(G)$. A vertex of degree zero is called an isolated vertex and a vertex of degree one is called a pendant vertex. An edge incident to a pendant vertex is called a pendant edge. The lollipop graph $L_{m,n}$ is obtained by joining a vertex of K_m to P_n by edge. Tadpole graph $T_{m,n}$ is obtained by joining a vertex of C_m to P_n by edge. The daisy graph $D_{m,n}$ is obtained by joining two cycles C_m to C_n by a common node. The graph denoted by $(H_1 \times H_2)$ is the Cartesian product of two graphs H_1 and H_2 with $(H_1 \times H_2) = V(H_1) \times V(H_2)$ (where \times denotes the Cartesian product of sets) and two vertices $u = (u_1, u_2)$ and $v = (v_1, v_2)$ in $V(G_1 \times G_2)$ whenever $[u_1 = v_1]$ and

 $(u_2,v_2)\in E(G_2)$] or $[u_2=v_2$ and $(u_1,v_1)\in E(G_1)$]. If each G_1 and G_2 is a path P_m and P_n then we call $P_m\times P_n$, a $m\times n$ grid graph for our convenience we refer $(P_m\times P_n)$ by $P_{m,n}$ for graph terminology, we refer to [1],[2],[3].

Definition 1.1.[4] A subset S of V(G) is a dominating set of G if each vertex $u \in V$ -S is adjacent to a vertex in S. The least cardinality of a dominating set in G is called the domination number of G and is usually denoted by $\gamma(G)$.

Definition 1.2.[5] A dominating set S in G is called a pendant dominating set if $\langle S \rangle$ contains at least one pendant vertex. The minimum cardinality of a pendant dominating set is called the pendant domination number denoted by $\gamma_{pe}(G)$.

Definition 1.3. [7] A subset S of V(G) is called an EDS if for every $v \in (V-S)$ there exists a vertex $u \in S$ such that $uv \in E(G)$ and $|deg(u)-deg(v)| \le 1$. The minimum cardinality of such an equitable dominating set is called equitable domination number of G and is denoted by $\gamma_e(G)$

If $u \in V$ such that $|deg(u) - deg(v)| \geq 2$ for every $v \in N(u)$ then u is in every equitable dominating set such points are called equitable isolates. I_e denotes the set of all equitable isolates. The equitable neighborhood of u denoted by $N_e(u)$ is defined as $N_e(u) = \{v \in V: |v \in N(u), |deg(u) - deg(v)| \leq 1\}$. The maximum and minimum equitable degree of a point in G are denoted by $\Delta_e(G)$ and $\delta_e(G)$ that is $\Delta_e(G) = \max_{u \in V(G)} |N_e(u)|$ and $\delta_e(G) = \min_{u \in V(G)} |N_e(u)|$. The open equitable neighborhood and closed equitable neighborhood of v are denoted by $N_e(v)$ and $N_e[v] = N_e(v) \cup \{v\}$ respectively. If $S \subseteq V$ then $N_e(S) = U_{v \in S}N_e(v)$ and $N_e[S] = N_e(S) \cup S$. For a detailed treatment of the pendant domination, equitable domination and pitchfork domination reader may referred to [4], [5], [6], [7]. Let S be an EDS in G. Then S is called a PEDS, if $\langle S \rangle$ contains at least one pendant vertex. The pendant equitable dominating set of minimum cardinality is called the pendant equitable domination number denoted b $\gamma_{pee}(G)$. Any PEDS of cardinality $\gamma_{pee}(G)$ is called a γ_{pee} -set. [8]

Definition1.4. An equitable dominating set S in G is a PFPEEDS if every vertex v in S dominates maximum two vertices of V -S and <S >contains pendant vertex. The set S is a minimum PFPEEDS, if it has no proper pitchfork pendant equitable dominating set. The minimum cardinality over all PFPEEDS in G is called pitchfork pendant equitable domination number of G denoted by $\gamma_{pfpee}(G)$

Example 1.1.Consider a graph as shown in the Fig (a). Then, the set $S = \{u_1, u_2, u_4\}$ is a minimum γ_{pe} -set of G and the set $S' = \{u_1, u_2, u_3, u_4\}$ is a minimum pitchfork pendant equitable dominating set of G.

The new domination parameter is defined for all non-trivial connected graphs of order atleast three. Hence, throughout the paper, we assume that by a graph we mean a connected graph of order at least three.

Proposition1.1.Let G be a graph having maximum degree $\Delta_e(G) \le 2$, then $\gamma_{pee}(G) = \gamma_{pfpee}(G)$.

Proof. Let S be a minimum PEDS in G with equitable domination number $\gamma_{pee}(G)$. Since each vertex in S is adjacent to one or two vertices of V-S, the S is a γ_{pfpee} - set

Observation1.1.Let G be a graph having a pitchfork pendant equitable domination $\gamma_{pfpee}(G)$, then

- (i) $|V(G)| \ge 2$
- (ii) $\delta_e(G) \ge 1$ and $\Delta_e(G) \ge 1$
- (iii) $\gamma_{pfpee}(G) \ge 2$
- (iv) $\gamma_{pfpee}(G)=2 \text{ iff } G=P_3 \text{ or } P_4 \text{ or } C_3 \text{ or } C_4 \text{ or } k_{1,2}$

Observation1.2.If P_n and C_n are path and cycle graph then, we have

(1)
$$\gamma_{pe}(P_n) = \gamma_{pfpee}(P_n)$$

(2)
$$\gamma_{pe}(C_n) = \gamma_{pfpee}(C_n)$$

Theorem 1.1. Let G be a graph of size m having a pitchfork pendant equitable domination number $\gamma_{pfpee}(G)$, then

$$\gamma_{pfpee}(G) \le m \le {n \choose 2} + \gamma^2_{pfpee}(G) + (2 - n)\gamma_{pfpee}(G)$$

Proof. Let set S be a γ_{pfpee} -set of a graph G, then

Case1:By the definition of the pitchfork pendant equitable domination, there exist at least one edge from S to V-S, $\gamma_{pfpee}(G) \le m$ which is the lower bound.

Case 2: To prove the upper bound, suppose that G[S] and G[V - S] are two complete subgraphs to be G have maximum number of edges where the number of edges of S and V-S equal to m_1 and m_2 respectively, then

$$m_1 = \frac{|S||S-1|}{2} = \frac{\gamma_{pfpee}(\gamma_{pfpee}-1)}{2}$$

$$m_2 = \frac{|V-S||V-S-1|}{2} = \frac{(n-\gamma_{pfpee})(n-\gamma_{pfpee}-1)}{2}$$

Now by the definition of pitchfork pendant equitable domination, there exist at most two edges from every vertex of S to V–S, then the number of edges from S to V–S is atmost or equal to $2|D|=2\gamma_{pfpee}=m_3$, then the number of edges of G equals to

$$m = m_1 + m_2 + m_3$$

$$\begin{split} &=\frac{1}{2}\left(\chi_{pfpee}^{2}-\gamma_{pfpee}\right)+\frac{1}{2}\left(n^{2}-n\gamma_{pfpee}-n-n\gamma_{pfpee}+\gamma_{pfpee}^{2}+\gamma_{pfpee}\right)+2\gamma_{pfpee}\\ &=\gamma_{pfpee}^{2}-n\gamma_{pfpee}+2\gamma_{pfpee}+\frac{n^{2}-n}{2} \end{split}$$

which is the upper bound in general.

Theorem1.1.Let G be a graph with pitchfork pendant equitable domination number

$$\gamma_{pfpee}(G)$$
, then. $\left[\frac{n}{3}\right] \leq \gamma_{pfpee}(G) \leq n-1$.

Proof. First we have to prove that lower bound , let S be a γ_{pfpee} set of G and v_i , $v_j \in S$ where $v_i \neq v_j$, then we have two cases,

Case1: If $N_e(v_i) \cap N_e(v_j) \cap (V-D) = \phi$ then every vertex in V-S is dominated by exactly one vertex of S. Since S is a $\gamma_{pfpee}(G)$ -set, then every vertex in S dominates at least one vertex of V-S so $\gamma_{pfpee}(G) = \frac{n}{2}$. And every vertex in S dominates at most two vertices of V-S, then we get the result.

Case 2: If $N_e(v_i) \cap N_e(v_j) \cap (V-D) \neq \phi$, then there exist one or more vertice s in V-S which is dominated by the two vertices v_i and v_j of S together, then

$$\gamma_{pfpee}(G) \ge \left\lceil \frac{n}{3} \right\rceil$$
. Therefore we get lower bound, $\left\lceil \frac{n}{3} \right\rceil \le \gamma_{pfpee}(G)$.

The upper bound proved as follows: since every vertex in S dominates at least one vertex and at most two vertices of V-S, then G must contain at least one vertex in V-S that is dominated by all the other n-1 vertices of G which will be belonging to S. Therefore $\gamma_{pfpee}(G) \leq n-1$.

Theorem 1.2.Let G be a connected graph with pitchfork pendant equitable domination then, $\gamma_e(G) \leq \gamma_{pee}(G) \leq \gamma_{pfpee}(G)$.

Proof.From the definition of pitchfork pendant equitable domination, every PFPEEDS is a PEEDS and every PEDS is an EDS.

Corollary1.1.Let G be a graph having a pitchfork pendant equitable domination number then:

(I)
$$\gamma_{pfpee}(G) \ge \left\lceil \frac{n}{\delta_e + 2} \right\rceil$$

(II)
$$\gamma_{pfpee}(G) \ge \left\lceil \frac{n}{\Delta_e + 2} \right\rceil$$

Nanotechnology Perceptions 20 No. 7 (2024) 4603-4611

(III)
$$\gamma_{pfpee}(G) \ge \left[\frac{n}{\delta_e + \Delta_e + 2}\right]$$

(IV)
$$\gamma_{pfpee}(G) \ge \left\lceil \frac{n}{\delta_e^n + 2} \right\rceil$$

(V)
$$\gamma_{pfpee}(G) \ge \left\lceil \frac{n}{\Delta_e^n + 2} \right\rceil$$

(VI)
$$\gamma_{pfpee}(G) \ge \left[\frac{n}{\delta_e \Delta_e + 2}\right]$$

(VII)
$$\gamma_{pfpee}(G) \ge \left[\frac{n}{\frac{\Delta_e}{\delta_e} + 2}\right]$$

2 Pitchfork pendant equitable domination of some families of Graphs

Here, the pitchfork pendant equitable domination is determined for several known and modified families of graphs.

Theorem2.1. Let G be a path or cycle graph with n vertices. Then,

$$\gamma_{pfpee}(G) = \begin{cases} \frac{n}{3} + 1 & if \ n \equiv 0 \pmod{3} \\ \left\lceil \frac{n}{3} \right\rceil, & if \ n \equiv 1 \pmod{3} \\ \left\lceil \frac{n}{3} \right\rceil + 1 & if \ n \equiv 2 \pmod{3} \end{cases}$$

Proof. Let G be a path or cycle graph and let $V(G) = \{v_1, v_2, ..., v_n\}$. We consider the following possible cases here:

Case1: Suppose $n\equiv 0 \pmod{3}$. Then n=3k, for some integer k>0. Then the set $S=\{v_2,v_{3i}|1\leq i\leq k\}$ will be a pitchfork pendant equitable dominating set of G and each vertex in G dominates atmost two vertices of G. Hence, $\gamma_{pfpee}(G)\leq |S|$.

i.e., $\gamma_{pfpee}(G) = \frac{n}{3} + 1$. On the other hand, we have $\gamma_e(G) = \frac{n}{3}$ and any least dominating set of G contains only vertices of degree zero.

Pitchfork Pendant Equitable.... Deepak B P et al. 4608 Thus
$$\gamma_{pfpee}(G) \geq \frac{n}{3} + 1$$
. Therefore, $\gamma_{pfpee}(G) = \frac{n}{3} + 1$.

Case 2: Suppose $n \equiv 1 \pmod{3}$. Then it is easy to check that any γ_e -set in G contains a pendant vertex and each vertex in γ_e set dominates at most two vertices in G. Hence any γ_e –set in G itself a pitchfork pendant equitable dominating set in G.

Therefore,
$$\gamma_{pfpee}(G) = \gamma_e(G) = \left[\frac{n}{3}\right]$$
.

Case3: Proof of this case is analogous to Case 1.

Observation2.1. For a path graph P_n and cycle graph C_n , we have

(1)
$$\gamma_{pee}(P_n) = \gamma_{pfpee}(P_n)$$

(2)
$$\gamma_{pee}(C_n) = \gamma_{pfpee}(C_n)$$

Theorem2.2.Let G be the tadpole graph $T_{m,n}$ where $(m\geq 4)$ and $(n\geq 3)$. Then,

$$\gamma_{pfpee}(T_{m,n}) = \begin{cases} \frac{m}{3} + \left\lceil \frac{n-1}{3} \right\rceil + 1 & if \ n \equiv 0 \pmod{3} \\ \left\lceil \frac{m}{3} \right\rceil + \left\lceil \frac{n-1}{3} \right\rceil, & if \ n \equiv 1 \pmod{3} \\ \left\lceil \frac{m}{3} \right\rceil + \left\lceil \frac{n-1}{3} \right\rceil + 1 & if \ n \equiv 2 \pmod{3} \end{cases}$$

Proof. The tadpole graph contains a cycle C_m joined by a bridge to a path graph P_n then it contains m+n number of vertices and edges .The vertices of C_m can be labeled as $\{u_i; j=1,2,...,m\}$ and also the vertices of P_n as $\{v_i; i=1,2,...,n\}$ such that the vertex $u_1 \in C_m$ is adjacent with the vertex $v_n \in P_n$ and the vertex u_1 dominates n^{th} vertex of P_n and $deg(u_1) = 3$. Let the pitchfork pendant equitable dominating $S=S_1 \cup S_2$ where S_1 is a pendant equitable dominating set of C_m and S_2 is the equitable dominating set of P_{n-1} . According to m we have three cases.

Case1: If
$$m=3k$$
, then let $S_1=\{v_1,v_{3i}\setminus 1\leq i\leq k\}$ and $S_2=\{u_{3i-1},i=1,\dots,n\}$

1,2,...,
$$\left\lceil \frac{n-1}{3} \right\rceil$$
 }. Therefore the set S=|S_1|+|S_2|= $\frac{m}{3}+\left\lceil \frac{n-1}{3} \right\rceil+1$

Case2: If m=3k+1, then any equitable dominating set of C_m contains a pendant Equitable vertex and dominates atmost two vertices and the vertex u_n is dominated

By the vertex $v_1 \in C_m$. Therefore, the set

$$S = \gamma_{\text{pee}}(C_{\text{m}}) + \gamma_{\text{pee}}P(n-1) = \left\lceil \frac{m}{3} \right\rceil + \left\lceil \frac{n-1}{3} \right\rceil$$

Is a minimum PFPEEDS of T_{m.n}

Case3: Proof of this case is analogous to Case 1.

Theorem2.3.For the lollipop graph $L_{m,n}$; m=3,4, $n\geq 2$ we have,

$$\gamma_{\text{pfpee}}(L_{m,n}) = \gamma_{\text{pee}}(K_m) + \left\lceil \frac{n}{3} \right\rceil$$

Proof. All the vertices of K_m can be labeled as $\{v_i; i=1,2,...,m\}$ and the vertices of P_n as $\{u_i; j=1,2,...,n\}$, where the vertex v_i is adjacent with a vertex u_n .

The set $S = S' \cup \gamma_e(P_n)$ will be a minimum PFPEEDS of $L_{m,n}$ where S' is the PEDS of K_m .

Therefore $\gamma_{pfpee}(L_{m,n}) = |S| = \gamma_{pee}(K_m) + \left[\frac{n}{3}\right]$

Proposition2.1.If $G \cong L_{m,n}$, m > 4, n > 3,

then $\gamma_{pfpee}\big(L_{m,n}\big) = \gamma_{pee}(P_n) + \left\lceil \frac{m}{3} \right\rceil$

Theorem2.4.Let G be a wheel graph W_n where $n \ge 6$, then

$$\gamma_{\text{pfpee}}(W_{\text{n}}) = 3 + \left[\frac{n-5}{3}\right]$$

3

Proof. Let W_n be a wheel graph and let us label the vertices of W_n as : $\{v_1,v_2,...,v_{n+1}\}$ where $deg(v_i)=3$ for all i=1,2,...,n and $deg(v_{n+1})=n$. The set $S'=\{v_1,v_2,v_{n+1}\}$ is a PEDS of the graph W_n . Here the vertex v_1 dominates two vertices v_2 and v_{n-1} and the vertex v_{n+1} is equitable isolate. The $setS=\{v_1,v_2,v_{n+1}\}$ \cup $\{v_4,v_5,...,v_{n-4},v_{n-3}\}$ will be a PFPEEDS of W_n .

Therefore,
$$\gamma_{pfpee}(W_n) = |S| = 3 + \left\lceil \frac{n-5}{3} \right\rceil$$

Nanotechnology Perceptions 20 No. 7 (2024) 4603-4611

Theorem2.5. Let
$$D_{m,n}$$
 be the daisy graph ,then $\gamma_{pfpee}(D_{m,n}) = \gamma_{pee}(C_m) + \left[\frac{n-2}{3}\right]$

Proof. The daisy graph contains two cycles C_m and C_n with common vertex. Let us label the vertices of C_m as $\{u_i; i=1,2,...,m\}$ so that the vertices of C_n as $\{v_j; j=1,2,...,n\}$. The set $S=S_1 \cup S_2$ is a γ_{pfpee} -set of daisy graph where S_1 is the PEDS of C_m and S_2 is the EDS of C_{n-2} . Therefore $\gamma_{pfpee}(D_{m,n})=|S|=\gamma_{pee}(C_m)+\left\lceil\frac{n-2}{3}\right\rceil$

Theorem2.6. Let
$$G\cong P_{2,n}$$
 be a grid graph where $n\geq 2$, $\gamma_{pfpee}(P_{2,n})=\left[\frac{2n}{3}\right]$

Proof. If n=2, then its easy to find out the pitchfork pendant equitable domination number of grid graph $P_{2,2}$. If $n \ge 3$, then a minimum PFPEEDS of $P_{2,n}(n \ge 3)$ is presented as follows.

Let n = 3q. Here, we split the set of columns of $P_{2,n}$ into blocks B_i , where $B_i \cong P_{2,3}$ For i=1,...,q. The vertices • enclosed within the round symbol in each of the blocks in the figures represent the vertices to be included for a minimal PFPEEDS D. Let $P_i = \{X_{1,3i-1}, X_{2,3i-1}\}, i = 1,2,...,q$.

Let
$$D = \bigcup_{i=1}^{q} P_i$$
 Therefore $|D| = 2 \left| \frac{n}{3} \right|$

Case1: $n \equiv 1 \pmod{3}$

Consider the set $D_1 = D \cup \{X_{2,n}\}$ (Figure 2.2(a)). This set is a equitable dominating set and induced subgraph of D_1 contains a pendant equitable vertex and each vertex in D_1 dominates maximum two vertices in G. Therefore, the set D_1 is a minimal

PFPEEDS of
$$P_{2,n}.$$
 Hence , $|D_1|=2\left\lfloor\frac{n}{3}\right\rfloor+1=\left\lceil\frac{2n}{3}\right\rceil$

Case2: $n \equiv 2 \pmod{3}$

Here the set $D_2 = D \cup \{X_{1,n}, X_{2,n}\}$ (Figure 2.2(b)) is a minimal PFPEEDS of $P_{2,n}$.

Hence,
$$|D_2| = 2 \left| \frac{n}{3} \right| + 2 = \left| \frac{2n}{3} \right|$$

Case3: $n \equiv 0 \pmod{3}$

In this case ,the set $D_3=D\cup\{X_{1,n-1},X_{2,n-1}\}$ (Figure2.2(c)) is a minimal PFPEEDS of $P_{2,n}$ and $|D_3|=\left\lceil\frac{2n}{3}\right\rceil$

From all the cases ,
$$\gamma_{pfpee}\big(P_{2,n}\big) = \, \left[\frac{2n}{3}\right]$$

Figure 2.1

Figure 2.2

References

- [1] BondyJ.A.and MurtyU.S.R,(1984),Graph theory with application , Elsevier science Publishing Co, sixth printing.
- [2] Haynes T.W., Hedetniemi S.T., and Slater P.J.,(1998) Fundamentals of Domination in Graphs, Marcel Dekker, New york.
- [3] HararyF.,(1969), GraphTheory, Addison-Wesley, ReadingMass.
- [4] Al-Harere M. N. and Abdlhusein M. A., Pitchfork domination in graphs, (2020), Discrete Math. Algorithm Appl. 12(2), 2050025.
- [5] Nayaka S.R, Puttaswamy and Purushothama S,(2020) ,Pendant Domination in Graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 112, pp. 219-230.
- [6] Purushothama.S, Puttaswamy and NayakaS.R, Pitchfork Pendant Domination in Graphs. elsevier publication, 100, pp. 139-142.
- [7] A.Anitha,S.Arumugam and Mustapha chellali,(1998) Equitable domination in graphs, Networks, 32(3), pp 199-206.
- [8] Deepak B.P, Puttaswamy, Sivakumar S. and Nayaka S.R Pendant Equitable dom-ination in graphs, (communicated)