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1. Introduction 

In deep learning, recurrent neural networks (RNNs) have become the dominant architecture, 

especially for tasks involving sequences like speech recognition, natural language 

processing, and time series forecasting. These networks are ideally suited for sequences 

because they naturally capture temporal relationships. Nevertheless, despite its potential, 

training RNNs successfully is still challenging due to difficulties like the disappearing and 

ballooning gradient problems, particularly in situations where there are long-term 

dependencies. 

Backpropagation through Time (BPTT) is the traditional method for training RNNs [1]. By 

considering the RNN as a deep feed-forward network with shared weights, BPTT unfolds the 
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Recurrent neural networks (RNNs) have been shown to be highly effective for sequence-based 

tasks in recent years. However, because of long-term dependen-cies and the infamous 

disappearing and expanding gradient concerns, training RNNs presents unique difficulties. 

Backpropagation through Time (BPTT), his-torically used to optimize these networks, shows its 

limits in more complicated situations. This research presents a unique BPTT modification known 

as FO-BPTT (Fractional-Order BPTT). FO-BPTT improves stability and convergence by 

addressing some of the inherent constraints of ordinary BPTT and utilizing the robust 

mathematical framework of fractional-order calculus. Our exhaustive tests on several datasets 

show that FO-BPTT performs better than its conventional cousin in several benchmarks. 

Furthermore, our results point to a significant role for fractional order in shaping learning 

dynamics, opening up new avenues for hyperparameter optimization. This study not only lays the 

road for improved RNN training but also suggests that fractional-order calculus may be helpful in 

other neural network paradigms.  
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RNN over time. However, the gradients calculated by BPTT either vanish or expand as the 

depth (measured in time steps) of this unfolded network rises, making the network 

challenging to train. To address this, several initiatives have been launched, including 

architectural modifications like LSTM (Long Short-Term Memory) and GRU (Gated 

Recurrent Units), as well as optimization methods like gradient cutting. However, there is 

still potential for development, especially in the optimization algorithm. 

Fractional-order calculus, a fascinating area of mathematics, presents an intriguing path in 

this situation. Traditional calculus only works with derivatives and integrals of integer 

orders, while fractional-order calculus expands this idea to non-integer orders, opening up 

new possibilities for neural network optimization. The essence of FO-BPTT lies in its ability 

to capture the memory and dynamics of sequential data with greater granularity [2]. By 

introducing fractional-order derivatives into the backpropagation process, the algorithm 

adapts the learning rates across time steps, potentially mitigating issues associated with 

exploding or vanishing gradients. This adaptability is particularly advantageous in scenarios 

where long-term dependencies or subtle patterns are crucial for effective model training [3-

5]. This study investigates how to include fractional-order calculus into the BPTT algorithm, 

leading to the formulation of the Fractional-Order BPTT (FO-BPTT) proposal. 

This paper explores the conceptualization of FO-BPTT, its theoretical foundations, and its 

real-world applications. We seek to shed light on its benefits over the conventional BPTT 

and its potential to revolutionize RNN training through intensive testing. As we proceed with 

this investigation, we expect to uncover additional opportunities for using fractional-order 

calculus's capabilities in the larger field of neural network training. 

 

2. Background and Related Work 

2.1 Brief Review of RNN Architectures 

The Recurrent Neural Network (RNN) is the fundamental building block of deep learning 

sequence modelling. RNNs feature connections that loop back, in contrast to conventional 

feed-forward networks, which enables them to keep a "memory" of prior inputs in their 

internal state [6]. They are suitable for jobs like text creation and time-series forecasting 

because of their recurring nature, which enables them to handle sequences of different 

lengths. 

Standard RNNs do have certain drawbacks, however. When managing lengthy sequences, its 

structure is vulnerable to the well-known problems of vanishing and bursting gradients [7]. 

More complex RNN variations have been created to address these issues. These two well-

known changes, the Long Short-Term Memory (LSTM) and the Gated Recurrent Unit 

(GRU) are made to capture long-term dependence better [8]. 

2.2 Standard BPTT and its Limitations 

The Backpropagation Through Time (BPTT) technique is often used while training RNNs 

[9]. BPTT is a backpropagation modification often employed in feed-forward networks and 

is made specifically for RNNs because of its recurring nature. The RNN is time-unfolded, 
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and the backpropagation algorithm is then applied to the structure that has been time-

unfolded. 

However, the depth of this unfolding network increases with the sequence's length. The 

difficulties of disappearing and bursting gradients are exacerbated by this increasing depth, 

making it challenging to train RNNs on lengthy sequences. In order to address these issues, 

several strategies have been put forth, such as gradient cutting and skip connections, 

although they are more like temporary fixes than permanent answers. 

2.3 Existing Modifications to BPTT 

There have been several attempts throughout time to enhance or change BPTT. Truncated 

BPTT, for example, reduces computing overhead by breaking sequences into smaller parts, 

but at the cost of some long-term dependence modelling. The Real-Time Recurrent Learning 

(RTRL) technique, which updates weights at every time step but is computationally more 

expensive, is another significant method [10]. 

When training deep networks, including RNNs, several adaptive optimisation techniques, 

including Adam, RMSProp, and AdaGrad, have been developed to enhance the convergence 

qualities. However, rather than altering the gradient calculation itself, these strategies 

emphasise the adaptive learning rate more. 

2.4 Introduction to Fractional-Order Derivatives and their Applications 

The ideas of differentiation and integration from integer orders to real or complex orders are 

extended in fractional-order calculus. A new degree of flexibility is introduced by this 

generalization, which has been used in physics, engineering, and control theory to increase 

modelling capabilities and resilience. 

Fractional-order calculus in machine learning and optimization has recently gained 

popularity [11]. The potential of fractional-order gradient descent to improve the training of 

feed-forward neural networks has been demonstrated in preliminary research. Fractional 

derivatives present an attractive opportunity for enhancing the training dynamics of deep 

learning models, notably RNNs, due to their capacity to capture non-local interactions and 

memory effects. 

 

3 Fractional-Order Calculus 

3.1 Definition and Mathematical Properties 

Integer-order derivatives are dealt with in ordinary calculus when the order of differentiation 

is a whole number. This idea is expanded in fractional-order calculus to include derivatives 

and integrals of non-integer orders. The Riemann-Liouville definition is frequently used to 

define the fractional derivative: 

 Dαf(t) = 
1

Γ(n−α)
∫

f1(τ)dτ

(t−τ)α−n+1 

t

0
  (1) 
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Where: 

• α is the order of the fractional derivative and is a real number 

• Γ represents the gamma function. 

• n is the smallest integer greater than α 

Using the Riemann-Liouville method, the function f′ is integrated against a power-law 

kernel. The fact that this kernel exists demonstrates the "memory" that fractional-order 

systems have by nature. 

3.2 Earlier Applications in Optimization and Control 

Due to its intrinsic capacity to capture the dynamics of systems more comprehensively, 

fractional-order calculus has found applications in several different fields. When a system 

displays unusual behaviors or long-term memory effects, fractional-order controllers 

frequently outperform integer-order equivalents. 

The optimization of complicated systems is one such application. The addition of flexibility 

provided by the fractional-order differential equations allows the optimization algorithms to 

avoid local minima and provide more accurate results. 

The fractional gradient in optimization can be described mathematically as: 

 ∇αJ(θ)=−ηDαL(θ)  (2) 

Where: 

• ∇αJ(θ) is the fractional gradient of the objective function J. 

• L is the loss function. 

• η is the learning rate. 

3.3 Fractional-order Gradient Descent in Feedforward Networks 

In order to optimise neural networks, applying the idea of fractional-order derivatives is a 

promising option. Using the negative gradient of the loss with respect to the weights, the 

traditional gradient descent approach updates the weights for feedforward networks. The 

following can be used to describe introducing a fractional-order gradient descent: 

 θt+1=θt−η∇αL(θt) (3) 

Where: 

• θt represents the weights of the network at iteration t. 

• ∇αL(θt) is the fractional-order derivative of the loss function L with respect to the 

weights θt. 

According to preliminary experiments on feedforward networks, this fractional-order 

gradient descent can offer more robust convergence features, mainly when the loss landscape 

is rocky or contains a lot of local minima. 
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4 Fractional-Order BPTT (FO-BPTT) 

4.1 Algorithm Formulation 

Given an RNN described by the state transition: 

 ht=f(Wxt+Uht−1+b) (4) 

 

The conventional BPTT computes the gradient ∇L of the loss function L using the chain rule 

over time steps, where xt is the input at time t, ht is the hidden state, and W, U, and b are 

trainable parameters. 

The fractional-order derivative is used in FO-BPTT to alter the gradient computation. The 

update rule is expressed as follows: 

 θt+1=θt−η∇αLt(θt) (5) 

 

Where ∇α represents the fractional-order gradient and η is the learning rate. 

4.2 Theoretical Justification for FO-BPTT 

FO-BPTT was primarily inspired by fractional derivatives' "memory-preserving" capability. 

Since RNNs naturally deal with sequences and temporal dependencies, having a derivative 

that captures both local and more distant or historical behavior is preferable. 

The Riemann-Liouville fractional derivative is an integral mathematical operator that can 

capture non-local interactions. This helps mitigate problems like the disappearing gradient 

problem when gradients need to be spread across lengthy sequences. 

Table 1. Comparison with Standard BPTT in Terms of Stability and Convergence 

Metric/Algorithm Standard BPTT FO-BPTT 

Convergence Speed Moderate 
Faster (due to memory 

effect) 

Stability in Training 
Can fluctuate with  

long sequences 
Enhanced stability 

Robustness to 

Initializations 
Sensitive More robust 

Sensitivity to 

Hyperparameters 
High Reduced 

Handling of Long 

Sequences 
Often problematic 

Improved long-term 

gradient 

propagation 
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5 Experimental Setup 

5.1 Datasets and RNN Architectures Used 

Datasets: 

Time-Series Forecasting Dataset (TSFD): A synthetic dataset generated using sine and 

cosine functions with added noise. It has 10,000 sequences each of length 100. 

Sentiment Analysis Dataset (SAD): Extracted from a collection of movie reviews, it 

comprises 50,000 samples labeled either as positive or negative sentiment. Each sample is a 

sequence of words, with sequences varying in length from 10 to 500 words. 

RNN Architectures: 

Standard RNN: Basic recurrent layers with tanh activation. 

LSTM: Long Short-Term Memory layers designed to capture long-term dependencies. 

GRU: Gated Recurrent Units, another variant optimized for long sequences. 

5.2 Training Parameters and Evaluation Metrics 

Parameters: 

• Learning rate (η): 0.001 for TSFD and 0.0005 for SAD. 

• Batch size: 64 for both datasets. 

• Fractional order (α): Varied from 0.5 to 1.5 to investigate the effect of different 

fractional orders. 

• Number of epochs: 50 for TSFD and 30 for SAD. 

Evaluation Metrics: 

• Mean Squared Error (MSE) for TSFD:  

MSE=
1

∑ (yi−yi)N
i=1

, 

Where yi is the actual value and yi is the predicted value. 

• Accuracy for SAD:  

Accuracy= 
Number of Correct Prediction

Total Number of Predictions
×100 

Where: 

• Number of Correct Predictions: The count of instances where the model correctly 

predicted the sentiment (or class) of the text. 

• Total Number of Predictions: The total count of predictions made by the model. 

The accuracy is usually expressed as a percentage. It provides a measure of how well the 

model is performing in terms of correctly classifying instances. 
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5.3 Implementation Details 

The neural networks were implemented using the TensorFlow framework. For the fractional-

order gradient computations, a custom optimizer was developed based on the TensorFlow's 

built-in optimizers. 

FO-BPTT Algorithm: 

1. Unfold the RNN for tt time steps. 

2. Compute the standard gradient ∇L∇L using the chain rule. 

3. Compute the fractional gradient ∇αL∇αL based on the Riemann-Liouville definition. 

4. Update the weights: θt+1=θt−η∇αLt(θt)θt+1=θt−η∇αLt(θt) 

For initialization, the Glorot uniform initializer was employed for the RNN and LSTM 

layers, while the orthogonal initializer was utilized for the GRU layers. 

Regularization, in the form of dropout with a rate of 0.5, was applied between recurrent 

layers to prevent overfitting. 

 

6 Results and Discussion 

6.1 Performance Comparison of FO-BPTT with Standard BPTT 

To understand the performance enhancement brought about by FO-BPTT, we compared its 

results with the standard BPTT on our chosen datasets. 

Table 2. TSFD 

Metric/Algorithm Standard BPTT (MSE) FO-BPTT (MSE) 

Standard RNN 0.045 0.032 

LSTM 0.038 0.028 

GRU 0.039 0.027 

 

Fig. 1. Comparison of Standard BPTT and FO-BPTT 



763 A. Abirami et al. Fractional-Order Backpropagation....                                                                          

 

Nanotechnology Perceptions Vol. 20 No.S2 (2024) 

Table 3. SAD 

Metric/Algorithm 
Standard BPTT 

(Accuracy) 
FO-BPTT (Accuracy) 

Standard RNN 82% 86% 

LSTM 85% 89% 

GRU 84% 88% 

 

Fig. 2. Accuracy Comparison: Standard BPTT vs. FO-BPTT 

The tables 2 and 3 demonstrate an improved performance with FO-BPTT across both 

datasets and all RNN architectures. 

6.2 Analysis of Learning Dynamics and Convergence 

Upon observing the learning curves, FO-BPTT exhibited a faster convergence rate than 

standard BPTT. Particularly for the SAD, FO-BPTT reached its optimal performance after 

just 22 epochs, while standard BPTT required all 30 epochs. 

This rapid convergence can be attributed to the "memory" characteristic of the fractional 

derivatives. FO-BPTT benefits from a broader context, making updates that account for local 

and global aspects of the loss landscape. 

6.3 Impact on Long-term Dependencies and Gradient Issues 

An experiment was designed to probe the long-term dependency modelling of the RNN 

architectures specifically. Sequences of varying lengths (from 10 to 500 for SAD and 10 to 

150 for TSFD) were fed to the models. 

FO-BPTT showed a consistent advantage, especially for longer sequences. It's evident that 

the vanishing gradient problem, typically faced by standard RNNs, was alleviated to a 

significant degree by the fractional-order backpropagation. 

A gradient analysis revealed that the magnitude of gradients in standard BPTT showed sharp 

declines as the sequence length increased, indicating a potential vanishing gradient. On the 

other hand, FO-BPTT maintained a more consistent gradient magnitude across varying 

sequence lengths, proving its robustness to the problem. 
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7 Sensitivity Analysis 

7.1 Impact of Different Fractional Orders 

An integral part of our investigation was understanding how varying fractional orders (αα) 

impact the model's performance. The fractional order, essentially an actual number ranging 

from 0 (representing no differentiation) to 1 (meaning standard differentiation) and beyond, 

can have significant implications for learning dynamics. 

Both datasets evaluated the performance at αα values of 0.5, 0.75, 1, 1.25, and 1.5. 

Table 4. Results for TSFD (MSE) 

α Standard RNN LSTM GRU 

0.5 0.038 0.033 0.034 

0.75 0.035 0.031 0.032 

1 (Standard 

BPTT) 
0.045 0.038 0.039 

1.25 0.034 0.03 0.03 

1.5 0.036 0.032 0.033 

 

Fig. 3. MSE vs. Fractional Order for Different RNNs 

The tables 4. show that the models perform better with a fractional order between 0.75 and 

1.25 compared to the conventional integer-order gradient (BPTT with α=1). 

7.2 Best Practices for Choosing the Fractional Order 

Given the observed sensitivity to varying α, a natural question arises about best practices in 

choosing the fractional order: 

Initialization with Known Domain Knowledge: 

If prior knowledge suggests the data exhibits long-memory properties, starting with α values 
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less than 1 might be advantageous. 

Grid Search 

For an empirical approach, a grid search over a predefined range of α values can help 

ascertain the optimal order for a particular dataset. This approach, however, can be 

computationally expensive. 

Adaptive Approaches 

One could consider methods that adjust αα dynamically during training. For instance, early 

layers of an RNN might benefit from a smaller αα (to capture long-term dependencies) and 

later layers from a value closer to 1. 

Regularization 

Just as dropout or weight decay is used to control network training dynamics, regulating the 

effective range of αα can be a strategy to prevent overfitting or model instability. 

 

8 Conclusion 

In conclusion, this work introduces Fractional-Order Backpropagation through Time (FO-

BPTT) as a novel modification to address the challenges of training Recurrent Neural 

Networks (RNNs). Using fractional-order calculus principles, FO-BPTT offers a promising 

solution to the disappearing and expanding gradient issues associated with Backpropagation 

Through Time (BPTT). The study demonstrates the superior stability and convergence speed 

of FO-BPTT compared to standard BPTT, especially in scenarios involving long-term 

dependencies. We also use this method in other applications [12-16]. 

Through comprehensive experiments on diverse datasets and RNN architectures, including 

standard RNN, LSTM, and GRU, FO-BPTT consistently outperforms its traditional 

counterpart. The algorithm's ability to adapt learning rates across time steps enhances 

stability, initialization robustness, and improved handling of long sequences. The faster 

convergence observed in FO-BPTT is attributed to the "memory-preserving" characteristic of 

fractional derivatives, which allows updates to consider both local and global aspects of the 

loss landscape. 

Moreover, the study delves into the impact of fractional orders on FO-BPTT's performance. 

The sensitivity analysis reveals that fractional orders between 0.75 and 1.25 generally yield 

better results than the conventional integer-order gradient (BPTT with α=1). Exploring best 

practices for choosing the fractional order suggests considering prior domain knowledge and 

employing grid search, adaptive approaches, and regularization techniques. 

This research advances the understanding of RNN training dynamics and introduces 

fractional-order calculus as a valuable tool in optimizing neural networks. The findings open 

avenues for further exploration of fractional-order calculus in broader neural network 

paradigms, suggesting its potential role in shaping learning dynamics. FO-BPTT is a 

promising technique for improving the efficiency and effectiveness of training recurrent 

neural networks, paving the way for future advancements in deep learning. 
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