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Wheat is a major global food crop that provides over 20% of the calories for humans 

worldwide. One of the primary staples for a majority of the world's population, making sure 

that it remains healthy and productive is invaluable. The awareness and early identification of 

wheat diseases are important for preserving crop yield losses, and to curb pathogen 

dissemination. By identifying early on, it helps not just in saving this key food source but also 

to minimize the risk of broad scale outbreaks which may threaten food supply chains. The use 

of extensive chemical treatments are greatly reduced through effective disease management, 

hence reducing the likelihood that any harmful chemicals will end up in products made from 

crops and enter our food chain. In addition, the use of disease detection systems provides 

resistant measures and innovative methods that allow for more sustainable agricultural 

practices by increasing resilience to a greater threat. In this paper, we have applied Ant 

Colony Optimization (ACO) to find out the best hyper-parameters for VGG19 and 

DenseNet121 models. Instead, we have used ACO that has provided us with creating these 

models in a super-performing method which can take the shape of precise and efficient 

training outcomes. It helps increase the accuracy of disease detection along with performance 

improvements in overall models to foster more accurate and scalable solutions for agriculture 

technology. With these developments, we hope to contribute towards the larger objective of 

sustainable and resilient agricultural operations. 

Keywords: Deep Learning, Wheat Disease Detection, Ant Colony Optimization (ACO), 

VGG19, DenseNet121 

 

1 Introduction 

Concerning wheat is a major global crop and an important human food. In its production, it 

occupies the largest cultivation area and ensures food security in many countries around the 

world (Genaev et al., 2021). Parts of the temperate zone are especially dependent, yet 

demand for maize is rising rapidly in industrializing and urbanizing nations. Wheat is also a 

source of protein, with raw wheat being% 13.3 to %15 yet getting you large measures of 

protein if concentrated into wheat gluten ( which are like nutriment or meat), vitamins and 
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minerals(b group especially) dietary fiber(U.S.: fiber )and phytochemicals have potential 

health benefits(roughly favoring your digestive tract). Carbs: Wheat is a great source of 

energy through carbohydrates that we all know for, but it also adds other nutrients to our 

body. Best not to forget that plants provide us with a whole lot more than just proteins, they 

are also rich sources of fiber and smaller amounts of lipids, vitamins (+colors)and minerals 

AND phytochemicals which can be bundled up in all sorts of ways for promoting good 

health... The take home message is you need variety! (Shewry & Hey, 2015). Early detection 

of crop diseases is essential to control its spread and can reduce economic issues in 

sustainable agriculture (Lu et al., 2017) The major factor that leads to poor quality of crop 

and decreased yield is plant diseases. The early detection is much required to overcome the 

worst stage and huge economical loss of agriculture (Gaikwad & Musande, 2017). 

Historically, wheat disease identification was accomplished through manual detection which 

brought problems such as objectivity, inefficiency and low accuracy. Today, with the rise of 

technology-assisted methodologies such as spectral analysis, machine learning and deep 

learning are being increasingly used for wheat disease detection (Fang et al., 2023). Some of 

the methods to check for diseases in wheat are discussed below: Dixit & Nema (2018) came 

up with a process that uses image processing and machine learning techniques based on 

species, visual severity level. The general leading approach starts with image acquisition, and 

proceeds towards preprocessing to prepare the images before analyzing. Then, the 

segmentation step separates the diseased leaf from those leaves and feature extraction 

collects information for these specific regions. This is followed by feature selection which 

picks out the most important features for classification. The second component is machine 

learning, where the classifiers such as Support Vector Machine (SVM), Neural Networks or 

k-means clustering have been utilized to detect and classify these diseases based on extracted 

features. Finally, the paper presents several reviews of both studies and methods 

demonstrating how well different algorithms perform compared to each other as a whole and 

provide insights into what their strengths and weaknesses are. In conclusion, it emphasizes 

that image processing and machine learning have been proven to be a successful combination 

in improving the accuracy and speed of wheat leaf disease detection systems. Detection of 

wheat rust diseases using deep learning models Sood and Singh (2020) discussed a technique 

to detect the disease. It starts from the data augmentation of a small dataset to generate 

synthetic semi-supervised samples due to scarcity in targets. For the problem ResNet50 and 

VGG16 models are used which use transfer learning. For both of the models, images have 

been preprocessed by resizing them to 224x224 pixels before taking a split into training and 

validation in ratio 90:10. The model is fine-tuned with hyperparameters to improve the 

performance: batch size = 32, initial learning-rate of lr=0.01 (with decay), optimizer = adam 

Convolutional Neural Networks (CNN) are employed to build the deep learning models for 

processing raw images and various operations such as convolution, max-pooling and 

activation functions like ReLU etc.. diversely help in feature extraction. It takes the features 

extracted and passes them from a flatten layer to two FC layers, which are concatenated into 

two categories of softmax for leaf rust, stem cyst and healthy wheat. I conducted training and 

validation of the models in an environment powered by a GPU (Google Colab) organism 

with excellent computational resources. The paper also evaluate different sizes of samples 

(100, 3000 and all available images) showing that the most data one can use gives higher 

accuracy on a given size. The Results show that the model VGG16 has higher accuracy 
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compare to ResNet50 and achieve highest classification accuracy of 99.07%. Finally, with 

respect to the efficacy of VGG16 model in this study; future research including additional 

enhancements on features and noise removal techniques can further improve disease 

detection performance. We developed a Fusarium head blight (FHB) prediction model that 

enhanced an existing strategy-based logistic regression with a data-driven k-nearest 

neighbors (KNN)data lab( Li et al., 2022). Remote sensing and meteorological data were 

used to select predictive factors, while logistic regression was applied for determining the 

factor weights of disease occurrence and development. The weights were then used with 

model like KNN to enhance the prediction accuracy. This included the procedure of splitting 

the data into train and test set, cross-validation with n_splits = 5 to find out best equivalent 

"k" value as well evaluation metrics - Accuracy, F1 score and ROC curves. Higher accuracy 

(0.88 and 0.92) and F1 scores respectively of the logistic-KNN model than the traditional 

KNN model. It showed increased specificity and sensitivity, reporting an AUC of the ROC 

analysis. This paper critically demonstrates that bringing disease mechanism insights into 

KNN models can better improve prediction accuracy and stability than not; while the next 

step suggests both improving computational complexity of current phenomenon 

interpretations, as well as developing more refined classification on severity of diseases. 

Cheng et al., 2023: Wheat disease detection improves in this paper with the help of an 

attention mechanism that is equipped within a convolution neural network. Here, this block 

takes in feature keypoints and pulls positional info such as coordinates of points on the 

heatmap itself to create attention maps which along with original features allow our model to 

focus more strongly upon important regions for better feature extraction. This block is 

employed across multiple CNN architectures like ResNet and GoogLeNet in the study; it 

accomplished significant improvements in accuracy e.g., up to 2.7 % on Resnet way deeper 

than before. We validate on the PlantDoc dataset for different plant disease types, and we 

achieve a mAP (mean average precision) of 0.51 which demonstrates strong performance 

across test classes. The accuracy of this attention mechanism is much better compared to 

other architectures like Squeeze-Excitation and so on. The results obtained by the 

implementation, PyTorch-based and validated on different hardware platforms demonstrate 

effectiveness of a new form for real-world applications. 

2 Materials and Methods 

 

2.1 Dataset 

In this paper, a wheat dataset has been utilized comprising a total of 407 images (102 Healthy 

Wheat Images, 97 Septoria Wheat Images, 208 Stripe Rust Wheat Images). The distribution 

of this dataset into training and test dataset is depicted in table 2.1. 

 

Table 2.1 

 

Dataset Division into training and test sets 

Wheat Condition Training Set Images Test Set Images 

Healthy 81 21 
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Septoria 77 20 

Stripe Rust 166 42 

 

A sample image from each wheat condition is depicted below: 

 

 
Fig 2.1 Healthy 

 
Fig 2.2 Septoria Leaf 

 
Fig 2.3 Stripe Rust Leaf 

 

 

2.2 Overview 

The code is designed to train deep learning models using both the DenseNet121 and VGG19 

architectures, with hyperparameters optimized through an Ant Colony Optimization (ACO) 

approach. It begins by setting up directories for training and validation datasets, and specifies 
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image dimensions, batch size, and the number of classes. Data augmentation and 

preprocessing are handled using the `ImageDataGenerator` from Keras, which applies 

transformations like shearing, zooming, and flipping to the training images, while validation 

data is simply preprocessed. The models, either DenseNet121 or VGG19, are created by first 

loading the base architecture without the top fully connected layers and then adding custom 

layers including global average pooling, dense layers, dropout for regularization, and a final 

softmax layer for classification. The ACO algorithm is used to optimize key hyperparameters 

such as learning rate, batch size, and the number of epochs. This is done by initializing a 

pheromone matrix, which is updated iteratively based on the validation accuracy achieved by 

models trained with different hyperparameter combinations. Multiple ants in each iteration 

explore different hyperparameter values, and the pheromone levels are adjusted to guide 

subsequent searches toward more promising configurations. After completing the 

optimization, the best hyperparameters are selected to train the final model, which is then 

saved for future use. This process is applied to both the DenseNet121 and VGG19 models to 

compare their performance and determine the most effective model and hyperparameter 

configuration. The overall process is described in the form of a flowchart in Fig 2.4. 

 

 
Fig 2.4 Overall Process 

 

2.3 CNN Models Used 

The CNN models used in this paper are briefly explained in the following sections. 

 

2.3.1 VGG19 

VGG19 is a model from the Visual Geometry Group (VGG) architecture family that is 

known for being simple, with few hyper-parameters and designed to be used in 

computational imaging tasks. VGG19 is a model that contains 16 convolutional layers, 

followed by three fully connected and five max-pooling ones. It was developed at the Oxford 

Visual Geometry Group. This is because each convolutional layer uses only 3x3 filters with 

stride of length one in order to allow the network to capture fine-grained details without 

pushing up against resource constraints due to parameter saturation. Deeper architecture 

produces deeper representation (crucial patterns) of the image, able to learn complex features 
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and produce better results. VGG19 is simple to use and considered suitable for a wide variety 

of problems due to its depth lieu design:model architecture. Fig 2.5 depicts the architecture of 

VGG19 model: 

 

 
Fig 2.5 VGG-Net Architecture (Bangar, 2022) 

 

2.3.2 DenseNet121 

DenseNet(121) is a Convolutional Neural Network having an impact in increasing gradient 

flow. DenseNet121 is a DNN which can go up to 121 layers with each layer being inputted 

by all its preceding ones creating so-called densely connected blocks, since it falls in the 

DenseNets family and therefore has inherited that name. This way, every layer can learn to 

map only the residual functions and so feature reuse is encouraged across different layers- 

this reduces the number of parameters as well. The network is made up of multiple 

interconnected convolutional layers arranged in blocks interspersed with transition layers that 

decrease the spatial dimensions and number of feature maps. DenseNet121 was introduced 

with the claim of having properties of better gradient flow across different depths which 

helps in training deep networks and also greater image recognition accuracy. Fig 2.6 depicts 

the architecture of DenseNet121 model: 
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Fig 2.6  DenseNet-121 (Ruiz, 2018) 

2.4 Ant Colony Optimization 

An Ant Colony Optimization is a type of metaheuristic algorithm used to solve complex 

optimization problems and this method stimulates the behavior(oop.)ofstream ants. It gets its 

inspiration from the foraging behavior of ants in nature. Ants find the food they look for by 

smelling pheromones on their way. The higher the number of pheromones on a path, the 

more attractive it is for other ants to take that road leading into an auto-catalytic loop where 

over time the shortest path will get strengthened. It is very effective when it comes to 

searching for the good solutions in regular search spaces, huge and complicated ones as 

well.For example;Traveling Salesman Problem (TSP); needs to find out there shortest path 

starting from a city then jumps over other cities and return startin point again. 

Components in the Code 

1. Hyperparameters to Optimize: 

a. Learning Rate (learning_rate): Determines how much to update the model's weights 

with respect to the gradient. 

b. Batch Size (batch_size): Number of training samples used to compute a single gradient 

update. 

c. Epochs (epochs): Number of times the learning algorithm will work through the entire 

training dataset. 

2. Pheromone Matrix: 

a. This 3D matrix represents the desirability (pheromone levels) of each combination of 

hyperparameters. It is initialized with ones, meaning all combinations start with equal 

desirability. 

b. The dimensions of the matrix correspond to the different values of learning rate, batch 

size, and epochs. 

3. ACO Process Flow: 

a. Initialization: 

i. Initialize the pheromone matrix with equal values (all set to 1). 

ii. Set the number of ants (num_ants) and iterations (num_iterations). 
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b. Ants Select Hyperparameters: 

i. Each ant selects a combination of hyperparameters based on the pheromone levels. 

ii. The probability of selecting a specific hyperparameter value is proportional to its 

pheromone level. This is implemented using the select_hyperparameters() function, 

which chooses values for learning_rate, batch_size, and epochs based on their 

respective pheromone levels. 

c. Model Training and Evaluation: 

i. For each selected combination, the model is created and trained using the 

evaluate_model() function. 

ii. The performance is measured by validation accuracy after training. This accuracy is 

used as feedback to update the pheromone matrix. 

iii. Pheromone Update Rule: 

1. The pheromone level corresponding to the chosen hyperparameter combination is 

increased by the validation accuracy, rewarding effective combinations. 

2. This follows the idea that paths leading to good solutions should be reinforced, making 

them more likely to be selected by future ants. 

d. Pheromone Evaporation and Normalization: 

i. After each iteration (where all ants have completed their evaluations), the pheromone 

matrix is normalized. This step simulates pheromone evaporation, preventing 

premature convergence to a suboptimal solution by ensuring that even less explored 

hyperparameter combinations still have a chance of being chosen. 

ii. Normalization is done by dividing each element of the pheromone matrix by the total 

sum of the matrix, ensuring the pheromone levels remain in a probabilistic form. 

e. Iteration: 

i. The process repeats for the specified number of iterations. Over time, the pheromone 

matrix converges towards representing the best hyperparameter combinations. 

f. Final Selection: 

i. After the iterations are complete, the final set of hyperparameters is selected based on 

the pheromone matrix. The most reinforced (highest pheromone level) combination is 

chosen as the optimal hyperparameters. 

4. Final Training with Optimized Hyperparameters: 

a. The model is retrained using the best hyperparameters found by the ACO. This ensures 

that the training process leverages the optimal configuration discovered through the 

iterative optimization. 

5. Saving the Model: 

a. The final trained model is saved, allowing for future use or deployment. 

Detailed Explanation of Key ACO Concepts in the Code 

1. Transition Probability: 

○ When selecting hyperparameters, each ant uses a probability distribution derived from 

the pheromone levels. The higher the pheromone level, the more likely a particular value 

is to be chosen. 

○ This mechanism allows the algorithm to explore different combinations 

while gradually converging on the most promising ones. 
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2. Pheromone Update Mechanism: 

○ The pheromone update is key to reinforcing good solutions. In this code, the 

validation accuracy directly influences how much pheromone is added, meaning that 

better-performing hyperparameters are favored. 

○ Over iterations, this leads to a focus on the best combinations, improving the 

efficiency of the search. 

3. Pheromone Evaporation: 

○ Though not explicitly shown as a decay factor in the code, the normalization step 

after each iteration effectively acts as evaporation, preventing any single combination 

from dominating too quickly. This helps maintain diversity in the search process. 

Advantages of Using ACO Here 

● Adaptive Exploration: Unlike a grid search or random search, ACO adapts over 

time, focusing on the most promising regions of the hyperparameter space. 

● Efficiency: By leveraging collective behavior and positive feedback, ACO can often 

find good solutions faster than exhaustive search methods, especially in large and 

complex search spaces. 

● Global and Local Search Balance: The combination of pheromone reinforcement 

and evaporation helps balance exploration of new possibilities with exploitation of 

known good solutions. 

3 Results 

After utilizing the Ant Colony Optimization to identify the best hyperparameters for the 

training of VGG19 and DenseNet121 models, the best hyperparameters thus obtained are 

depicted below: 

 

 

 
 

The Fig 3.1 depicts the ‘Epochs vs Loss’ and ‘Epochs vs Accuracy graphs’ for the VGG19 

model: 
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Fig 3.1 VGG19 Epochs vs Loss & Epochs vs Accuracy graphs 

 

The Fig 3.2 depicts the ‘Epochs vs Loss’ and ‘Epochs vs Accuracy graphs’ for the 

DenseNet121 model: 

 

 
Fig 3.2 DenseNet121 Epochs vs Loss & Epochs vs Accuracy graphs 

 

Table 3.1  

 

Accuracies & Losses of the Models 

Model Accuracy Validation 

Accuracy 

Loss Validation 

Loss 

VGG19 0.9352 0.9277 0.1466 0.1950 

DenseNet121 0.9568 0.9398 0.1070 0.1824 

 

The following metrics are compared in the Table 3.1: 

Accuracy: How well the deep learning model performs on training data The number of 

correct predictions is the proportion to all trained data, which are known as Accuracy(ACC) 

Accuracy: How many examples you got correct overall on all the labels when compared to 

how many total. The fact that the training accuracy is high - this means the model learned 

well from data in general, but it does not guarantee decent performance on unseen data. 
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Validation Accuracy: The validation accuracy is the proportion of examples for which the 

model correctly predicts its label from a new pool that was not part of your training sample. 

The Investigation regarding how this model did when predicting on its validation set (this 

value is the higher percent of correctly predicted values) Tracking validation accuracy can 

also be an early indicator of overfitting, that is a model does well on training data but not so 

ideally with unseen examples. 

Loss: Loss measures the deviation of prediction made by model from true output. A loss 

function (like cross-entropy for classification, or mean squared error for regression) that 

quantifies the difference between the predicted outputs and actual target values. Training has 

the aim of reducing this loss. A low training loss means the model is fitting well to the train 

data. 

Validation Loss: Validation loss is almost the same as the training loss except that it is 

calculated on validation set. It gives an idea of how well the model would be able to predict 

new unseen data. If the validation loss is much greater than training loss, this might mean 

that the model has been overfitting to the training data and what it learned does not 

generalize well to unseen new input points. 

Monitoring these metrics during training helps in assessing the model's performance and 

deciding when to stop training to avoid overfitting while ensuring good generalization. Table 

3.1  presents a comparison between two deep learning models, VGG19 and DenseNet121, 

based on their performance metrics. The VGG19 model achieved an accuracy of 93.52% on 

the training data and 92.77% on the validation data, with a corresponding training loss of 

0.1466 and a validation loss of 0.1950. On the other hand, the DenseNet121 model 

demonstrated a higher accuracy of 95.68% on the training data and 93.98% on the validation 

data, with a lower training loss of 0.1070 and a validation loss of 0.1824. These metrics 

indicate that DenseNet121 outperformed VGG19 in both accuracy and loss, suggesting better 

generalization and training efficiency. 

4 Conclusion 

This study investigates the integration of Ant Colony Optimization (ACO) with deep learning 

to enhance the performance of two popular architectures, DenseNet121 and VGG19. By 

concentrating on optimizing critical hyperparameters—learning rate, batch size, and the 

number of epochs—the ACO algorithm effectively explores the extensive hyperparameter 

space, identifying configurations that lead to superior model performance. The experimental 

findings indicate that DenseNet121 outperformed VGG19 in terms of both accuracy and loss. 

DenseNet121 achieved a higher accuracy of 95.68% on the training data and 93.98% on the 

validation data, compared to VGG19's 93.52% and 92.77%, respectively. Additionally, 

DenseNet121 exhibited a lower training loss of 0.1070 and a validation loss of 0.1824, 

suggesting better training efficiency and generalization to unseen data compared to VGG19's 

training loss of 0.1466 and validation loss of 0.1950. These results highlight DenseNet121's 

effectiveness in this context and validate the use of ACO for hyperparameter tuning. 

ACO is performing well in this study as its adaptiveness nature allows it to explore the 

hyperparameter space and diversity into a new search path while exploiting recruitment of 

promising solutions. ACO guides the search process to those configurations which have 

higher validation accuracy using Pheromone matrix (which they keep updating iteratively 
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over iterations after each model training). Note that traditional techniques like grid search or 

random search cannot adjust, follow gradient and may take longer to converge as not 

providing any feedback about how well a solution actually performs. ACO also allowed our 

hyperparameters optimization process to dynamically search with the aid of pheromone 

evaporation and normalization procedures, refraining from convergence towards suboptimal 

solutions. This maintained a lot of diversity into the search process, allowing the algorithm to 

continue searching even those configurations which were not so obvious and could perform 

better. These observations have significant practical ramifications for the area of deep 

learning, most notably in those domains where model performance matters. Effective tuning 

of hyperparameters can certainly improve model accuracy and generalization - both 

mandatory for real-world applications, like medical image analysis to autonomous systems or 

natural language processing. The contrast and flexibility of the ACO approach are what make 

it so beneficial to beta developers, experts who want other deep learning models to perform 

at their outermost extremes. This study concludes that combining ACO with deep learning 

does not only improve the prediction performance but allows for a more structured and faster 

method of hyperparameter tuning. Comparing the two figures for model performances, this 

emphasizes how using a compatible architecture choice is just as essential alongside hyper 

parameter optimization(DenseNet121 vs VGG19). Future research might be able to further 

expand on these results, in part by evaluating the ability of ACO to navigate other deep 

learning architectures and tasks, as well tweaking it for use with additional optimization 

challenges. These encouraging results, applied to the field of multiple inputs and outputs for 

deep learning with ACO by this work can open doors for broader use of other practical fields 

as a powerful way to get optimal overall performance in their specific domains. 
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