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Identifying lung cancer can be done effectively by examining CT scan images. It is necessary to 

have an intelligent diagnostic system. The recent evolution of image categorization systems has 

been influenced by the use of deep convolution neural networks (CNN). In this research work, a 

new hybrid paradigm with images combines a modified deep transfer learning EfficientNet and a 

masked autoencoder for distribution estimation (MADE). By using MADE before classification in 

lung cancer classification can facilitate feature learning, dimensionality reduction, uncertainty 

estimation, handling imbalanced data, transfer learning, and model interpretability, ultimately 

leading to improved classification performance and better utilization of available data. The 

proposed model (Mask-EffNet) works in two phases. In the initial phase feature extraction is done 

by using MADE and the classification of different types is carried out in the subsequent phase using 

a pre-trained EfficientNet model. Mask-EffNet is tested using EfficientNetB7 variation. The 

research is conducted on the "IQ-OTH/NCCD" benchmark dataset, which consists of lung cancer 

patients classed as benign, malignant, or normal depending on whether they have lung cancer or 

not. The model Mask-EffNet attained an accuracy of 98.98% and a ROC score ranging from 0.9782 

to 0.9872 on the test set. We examined the effectiveness for suggested pre-trained Mask-EffNet to 

that of various additional pre-trained CNN designs. The anticipated results show that the Mask-

EffNet based on EfficientNetB7 prevails over different CNNs with regard of both accuracy as well 

as effectiveness.  
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1. Introduction 

The World Health Organization (N.C. Institute, 2023) ranks cancer as the 2nd leading cause 

of global mortality, with lung cancer topping the list in the US, claiming 1.8 million lives 

annually. Early detection through Lung Cancer Detection (LCD) is vital for tailored treatments 

and prognosis. Artificial intelligence aids in overcoming healthcare challenges, reducing 

diagnosis time, and enhancing healthcare quality (WHO, 2023; Anon, 2023a). This research 

investigates the use of artificial intelligence (AI) to assist with traditional lung cancer 

screening using biomedical imaging technique over new breath analysis approaches (Anon, 

2023b; Jaszcz, et al., 2022). In accordance with the automate process of lung cancer 

categorization and eliminate the inherent bias and uncertainty in traditional visual analysis, 

researchers are developing computer approaches. This breakthrough improves the accuracy of 

lung cancer treatments for various forms of the disease. This improves the reliability and 

precision of cancer stage and type determinations and offers in-depth information for patient 

care (Dash, et al., 2022). Recent AI advancements have been a huge boon to the creation of 

automated systems that correctly handle medical imaging data, especially when it comes to 

classifying lung cancer. In addition to improving the overall effectiveness of lung cancer 

classification, these methods may provide more objective and precise results. 

When it comes to diagnosing lung cancer, traditional procedures such as MRI and CT scans 

play a crucial role. By utilising X-rays, CT scans are highly effective in detecting 

abnormalities, such as cancer, in the chest. Although it requires a large amount of data to be 

effective, machine learning, and Convolutional Neural Networks (CNNs) in particular, help 

with picture analysis (Protonotarios, et al., 2022; Chen, et al., 2021b). In spite of difficulties 

in acquiring datasets, deep learning models show potential for reliable cancer categorization, 

which could augment current diagnostic methods while simultaneously decreasing the room 

for human mistake. 

With the enhancement of the previously trained models with fresh datasets, transfer learning 

(TL) overcomes CNN's shortcomings. Some methods involve enhancing already-trained 

layers or creating brand-new ones to facilitate end-to-end training. The use of TL for X-ray 

detection of COVID-19 pneumonia is investigated (Dash, et al., 2023). TL provides a solid 

method to improve model performance and adjust to different medical imaging jobs. 

With reference to healthcare image analysis, TL using EfficientNets has the potential to 

alleviate some of the most common limitations. It is widely known that EfficientNets can 

effectively extract relevant and representative features from images. When it comes to lung 

cancer classification, EfficientNetB7 models that have been pretrained on large datasets like 

ImageNet provide better accuracy and resilience through transfer learning (Liu, et al., 2021; 

Alyasriy, et al., 2020; Panda, et al., 2022).  

When compared to previous deep learning architectures, our method provides the 

computational efficiency necessary for rapid and accurate interpretation of medical images in 

the detection of lung cancer. Medical image analysis is expected to be more effective and 

efficient as a result of this improvement to the classification process.  

This study's overarching goal is to classify CT scans of lung nodules into benign, malignant, 

and normal categories by identifying cancerous cells. To accomplish this categorization, the 
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suggested model, Mask-EffNet, uses two steps. Step one involves feature extraction using 

MADE, however step two involves classifying various classes using a pre-trained 

EfficientNetB7 model. Mask-EffNet is evaluated with different pre-trained models. 

The following are the primary contributions of this article: 

Using MADE and EfficientNetB7, we created a unique masked transfer learning method 

called Mask-EffNet for lung cancer categorization. 

To overcome the skewness of the data, we used the augmentation method to solve the severe 

imbalance problem.  

To extract features, we employed a Masked Autoencoder for The Distribution Estimation 

(MADE). 

To highlight Mask-EffNet's superiority over other classification models, we compared it for 

assessing methods by execution time, computational complexity reveals feasibility.  

When compared to existing approaches, our suggested model Mask-EffNet outperforms them 

and identifies lung cancer from CT scan pictures. 

The paper's remaining sections are arranged in the following manner. Section 2 describes 

various literatures, while Section 3 describes the proposed algorithm. Conclusion and 

discussion of Section 4 on performance metrics are presented in Section 5. Section 6 contains 

a comparative analysis, and Section 7 will have an outline of future work after the paper is 

concluded. 

 

2. Background Study 

Integrating deep learning (DL) and transfer learning (TL) in survival models for lung cancer 

is crucial for adapting to real-world populations' diverse characteristics. Many approach 

optimizes model performance across different domains, addressing variations in variables and 

enhancing prediction accuracy for improved patient outcomes. Few of them are analyzed 

below. 

The article by (Raza, et al., 2023) presents Lung-EffNet, a lung cancer classification predictor 

that utilises transfer learning. Lung-EffNet is developed from the EfficientNet architecture and 

is boosted with additional top layers for improved classification. Lung-EffNet achieves 

99.10% accuracy on IQ-OTH/NCCD dataset, showcasing high ROC scores. Lung-EffNet 

outperforms in terms of accuracy, efficiency, and scalability, compare to other models in a 

clinical setting. 

(Huseiny, et al., 2021) suggests a method for identifying cancerous nodules in CT scans of the 

lungs by employing deep neural networks (NN). Images are normalised and lung areas are 

isolated using basic pre-processing. Then, a modified GoogLeNet is fed into it using transfer 

learning. The system achieves an unprecedented 94.38% accuracy when training on the IQ-

OTH/NCCD lung cancer dataset, outperforming prior benchmarks. An example of the 

usefulness of Deep NNs in medical image processing, this technique improves nodule 

diagnosis in CT images of the lungs. 
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(Dubey, et al., 2023) investigates how well deep TL and ensemble deep learning (EDL) work 

for lung segmentation and COVID-19 classification. Data for the study came from a wide 

variety of Croatian and Italian healthcare facilities. Based on the premise that EDL is superior, 

it tests 12,000 CT slices. Comparing the EDL and TL models using fresh, undiscovered data 

shows that the EDL model obtains better accuracy. The notion is bolstered by this discovery. 

By proving EDL's efficacy on balanced and enhanced datasets, the statistical tests validate its 

reliability and stability. Both the visible and invisible perspectives are supported by these 

findings. 

A DL system for lung cancer prediction using EfficientNetB3, ResNet50, and ResNet101 with 

TL is presented by (Jassim, et al., 2023). Their research looks at how well these models can 

detect lung cancer. Data augmentation guards against overfitting when trained on a dataset 

consisting of one thousand CT lung pictures divided into four categories. Performance is 

improved by score-level fusion and ensemble learning, outperforming current approaches with 

an accuracy of 99.44%. High accuracy and resilience in lung cancer prediction are 

demonstrated in the study, which underlines the efficiency of ensemble TL with diverse 

models. (Wu, et al., 2023) presented STLF-VA, a self-supervised TL framework that uses 

visual attention and entire nodule volumes as features to improve nodule categorization. By 

methodically using 3D unlabeled CT images, it reduces the requirement for labelled samples. 

Strengthening interference resistance is the multi-view aggregative attention module's job. 

Performance on the CQUCH-LND and LIDC-IDRI datasets is higher than that of traditional 

models, according to the evaluation. Clinical chest CT scan analysis can be greatly improved 

with the help of this paradigm, which offers substantial advancements in nodule malignancy 

prediction. 

The BERTL-HIALCCD method for efficient identification of lung and colon cancer (LCC) in 

histopathological images is introduced in the publication of (AlGhamdi, et al., 2023). The 

approach combines computer vision with transfer learning, using a deep convolutional 

recurrent neural network (DCRNN) for recognition and an improved ShuffleNet for feature 

extraction. Parameters of DCRNN are fine-tuned by coati optimisation. Results from 

experiments conducted on a large dataset confirm the effectiveness of BERTL-HIALCCD as 

a cancer detection model. 

For the purpose of classifying CT images of the lung as cancer, (Saleh, et al., 2024) provide a 

CNN that combines TL and random forest. It builds the algorithm, compares its effectiveness, 

and preprocesses the data. The results prove that machine learning is the best tool for 

healthcare, especially for identifying and categorizing diseases. The outcomes demonstrate the 

promise of cutting-edge methods in enhancing diagnostic precision and healthcare delivery 

when contrasted with traditional CNNs devoid of transfer learning. 

In their research, (Mammeri, et al., 2023) suggest a way to use the LIDR-IDRI dataset to 

identify and categorise lung nodules. Bounding boxes are drawn around nodules using YOLO 

v7 for object identification. This helps radiologists trace them across CT slices. We compare 

different input images and find whole images yield the best detection results. For 

classification, we employ transfer learning with VGG16, achieving good performance in 

classifying nodules into benign, suspect, and malignant categories based on radiologists' 

assessments of malignancy. This approach shows promise in enhancing nodule classification 



5 Rakesh Patnaik et al. Enhancing Lung Cancer Diagnosis....                                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

accuracy and improving lung cancer diagnostics. 

CT scans are vital for diagnosing lung cancer, with AI systems using transfer-learning models 

showing promise in improving precision and speed. TL adapts pre-existing models, aiding 

medical data analysis. The study by (Shouka, et al., 2023) examines CNN based TL with 

RESNET, MobileNetV2, Xception, and VGG16, with ResNet yielding the highest testing 

accuracy at 0.94 and a testing loss of 0.16. This highlights potential enhancements in 

healthcare AI accuracy and efficiency. 

A novel framework proposed by (Sharma, et al., 2023) utilizes a customized Densenet-201 

model for precise multi-class lung cancer categorization, employing TL and a residual 

structure. Experiments on the LCS25000 dataset showcase its remarkable 95% accuracy on 

the test set, demonstrating its ability to classify lung cancer types accurately. It also generalizes 

well to the TCGA lung cancer dataset, promising improved diagnostic abilities and patient 

care in pulmonary pathology. 

(Fu, et al., 2023) crafted a 3D deep transfer learning model, differentiating between IAC and 

MIA using CT images of GGNs. MedicalNet pre-training and a fusion model facilitated 

classification, employing TL for predictive modeling, validated internally and externally 

across three centers. With 999 lung GGN images, the model achieved high diagnostic efficacy, 

with accuracies ranging from 78% to 89% and AUCs from 82% to 95%, demonstrating its 

robustness and potential clinical utility. 

 (Ren, et al., 2022) introduce LCGANT, a hybrid framework comprising LCGAN for 

generating synthetic lung cancer images and VGG-DF for classification. Achieving 99.84% 

accuracy, precision, sensitivity, and F1-score, it surpasses other methods in lung cancer 

classification. LCGANT resolves overfitting, demonstrating superior performance and 

promising advancements in lung cancer diagnostic accuracy. 

This study by (Laqua, et al., 2023) aimed to predict PET results from contrast-enhanced CT 

scans using various feature extraction methods. Machine learning models were trained on data 

from 100 lung cancer patients, incorporating traditional radiomics features, deep features from 

EfficientNet-CNN, and a hybrid approach. The random forest model combining both 

approaches have achieved the good performance results, with an AUC of 0.871 and SBS of 

35.8%. This demonstrates the complementary nature of traditional and deep radiomics features 

for non-invasive N-staging in lung cancer, enhancing diagnostic accuracy. 

(Atiya, et al., 2024) introduce a dual-state transfer learning method employing deep CNNs to 

enhance lung cancer classification from CT scans. By leveraging pre-trained models like 

DCNN, VGG16, Inceptionv3, and RestNet50, the proposed model achieves 94% training 

accuracy, with 92.57% validation and 96.12% testing accuracy. Outperforming existing 

models, this approach enhances lung cancer screening precision and effectiveness, showcasing 

the potential of dual-state transfer learning and deep CNNs in medical image analysis. 

In order to diagnose lung cancer, (Humayun, et al., 2022) proposed an approach that uses a 

CAD system with a deep neural network and strong DL algorithms. Data augmentation, 

categorization with pre-trained CNN models, and localization make up the procedure. A 

method for dealing with data scarcity, TL generates a diagnostic tool with fewer parameters 

and less invasiveness than the state-of-the-art models. At the 20th epoch, VGG 16 achieves an 
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accuracy of 98.83% according to the performance metrics, which evaluate the architecture. 

Integrating with interfaces becomes easier and faster after preprocessing increases the model's 

reliability and prediction capacity. This study demonstrates how well TL techniques and 

models perform in medical picture evaluation when the dataset size is large. 

For the purpose of lung cancer detection, (Chui, et al., 2022) provide the MTL-MGAN method. 

While MGAN provides more training data and fills in domain gaps, this method focuses on 

making the most of transferability across source and target domains, making the model more 

adaptable and effective across different datasets and clinical contexts. There is a considerable 

improvement in accuracy compared to related efforts, according to evaluation on 10 datasets. 

Component effectiveness has been validated using ablation studies, which emphasize the 

feasibility of MTL and the bridging potential of MGAN. 

This study by (Saikia, et al., 2022) categorises lung nodules based on CT scan pictures into 

four distinct types, that includes the types of carcinomas like small-cell carcinoma, squamous-

cell carcinoma, adenocarcinoma, and large-cell carcinoma. The suggested hybrid methodology 

combines VGG networks with support vector machine and random forest, leading to a 

decrease in computational complexity. The hybrid algorithms surpass current techniques for 

classifying lung nodules in CT scans, with an accuracy of 98.70%. 

The research by (Nigudgi, et al., 2023) presents a method for classifying lung CT images and 

detecting cancer using transfer learning. A composite model combining the features of 

AlexNet, VGG, and GoogleNet is utilised to extract features, which are then classed using a 

multi-class SVM. Model trained on IQ-OTH/NCCD set, achieving 97% accuracy, 

outperforming others. Dataset split for training and validation. Real-time transfer learning for 

CT lung slice classification. The procedure entails performing pre-processing and 

segmentation through the use of K-means clustering. Additionally, it requires fine-tuning the 

weighted VGG deep network and deploying it using Nvidia tensor-RT for real-time 

applications. The suggested model, which was trained on 19,419 CT slices, demonstrates 

enhanced classification metrics with statistical validation. This model provides improved 

clinical diagnosis without relying primarily on marked annotations. 

The paper by (Dadgar, et al., 2022) presents a hybrid convolutional deep transfer learning 

model that combines different architectures, including VGG16, ResNet152V2, MobileNetV3. 

Various model architectures were constructed and compared after adjusting their 

hyperparameters. The top-performing model, InceptionResNetV2 with transfer learning, 

achieved an accuracy of 91.1%, precision of 84.9%, AUC of 95.8%, and F1-score of 81.5% in 

classifying lung tumours using 1000 pre-processed CT scans.  

(Narin, et al., 2022) utilized data from 601,480 lung cancer patients from SEER and 4,512 

from GYFY. Their primary model trained on SEER was internally validated, externally 

validated with GYFY through transfer learning. Model performance was evaluated using C-

indexes and explored in handling missing data and AI prediction certainty. In the SEER 

training dataset, DeepSurv outperformed the Cox model with C-indexes of 0.792 and 0.714, 

respectively. Testing on GYFY, DeepSurv yielded C-indexes of 0.727, surpassing the Cox 

model's 0.692. DeepSurv exhibited high AI certainty and improved prediction accuracy with 

transfer learning and missing data handling. 
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This study by (Wang, et al., 2020) presents a new residual neural network that can accurately 

classify different forms of lung cancer based on CT data. In order to deal with the lack of data, 

a method called medical-to-medical transfer learning is being investigated. This involves 

initially training on the luna16 dataset and then refining the model on a private dataset from 

Shandong Provincial Hospital. The method achieves an accuracy of 85.71%, which is higher 

than models trained with 2054 labels. It outperforms AlexNet, VGG16, and DenseNet, making 

it an efficient and non-invasive tool for disease diagnosis.  

Table I provides a brief comparison of existing work with the proposed work. 

Table I. Current state of the art model on lung cancer detection 
Author Model Methodology dataset Remarks 

(Raza et al., 

2023) 
Lung-EffNet 

Lung-EffNet achieves 99.10% 

accuracy on lung cancer diagnosis. 
IQ-OTH/NCCD 

Accuracy of 98.10% 

and demonstrates 

high ROC scores 

(Huseiny et 

al., 2021) 

modified 

GoogLeNet 

Pre-processed lung images fed into 

modified GoogLeNet DNN achieve 

94.38% accuracy in nodule 

detection, surpassing benchmarks. 

IQ-OTH/NCCD 
achieves 94.38% 

accuracy 

(Jassim et 

al., 2023) 

EfficientNetB3, 

ResNet50, and 

ResNet101 

A deep-learning system achieves 

99.44% accuracy in lung cancer 

prediction, employing transfer 

learning and ensemble methods. 

1000 CT lung 

images 

achieving 98.44% 

accuracy 

(Wu et al., 

2023) 

self-supervised 

transfer learning 

framework 

Utilizes 3D CT images, enhancing 

nodule malignancy prediction 

accuracy 

CQUCH-LND 

and LIDC-IDRI 

datasets 

Enhances nodule 

malignancy 

prediction with 3D 

CT 

(Mammeri et 

al. 2023) 

Utilizing YOLO 

v7 for object 

detection, VGG16 

YOLO v7 detects lung nodules, 

aiding radiologists, while VGG16 

classifies them accurately 

LIDR-IDRI 

Good nodule 

classification 

performance attained 

(Shouka et 

al., 2023) 

RESNET, 

MobileNetV2, 

Xception, and 

VGG16 

AI using transfer-learning improves 

lung cancer diagnosis accuracy and 

efficiency in CT scans 

IQ-OTH/NCCD 
accuracy at 0.94 and a 

testing loss of 0.16 

(Sharma et 

al., 2023) 

customized 

Densenet-201 

Customized Densenet-201 achieves 

95% accuracy in lung cancer 

classification. 

LCS25000, 

TCGA lung 

cancer dataset 

95% accuracy 

Proposed 

Mask-

EffNet 

Mask-EffNet 
EfficientNetB7 with Masked 

autoencoder 
IQ-OTH/NCCD 98.98% accuracy 

 

3. Materials and Methodology 

The following section describes the dataset and approach used to train the suggested algorithm 

for multi-class lung cancer categorization from CT scans. Figure 1 depicts the general process 

of the suggested methodology. It begins by loading CT scan slices, which then undergo several 

pre-processing steps. Given the challenge of acquiring annotated medical imaging data, data 

augmentation artificially boosts the training instances. This approach leverages transfer 

learning, tailored for lung cancer classification (benign, malignant, and normal). Following an 

introduction, subsequent sections delve into pre-processing, data augmentation, and specifics 

of the suggested model. This comprehensive approach tackles the intricate challenges of 
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medical image analysis and classification effectively.  

 

Figure 1. Flow diagram of the Proposed work 

A. Description of the Dataset 

The studies are carried relying on lung cancer dataset "Iraq-Oncology Teaching 

Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD)" (Alyasriy et al., 2020). It 

was gathered for over three months from their in 2019. Figure 2 represents sample Images 

from IQ-OTH/NCCD dataset. The dataset comprises CT scans from individuals with varying 

lung health statuses, annotated by oncologists and radiologists. It includes 1142 chest CT scan 

images from 126 patients, reflecting diverse demographics. Cases were classified into benign, 

malignant, or normal categories (Fig. 2), with 42 malignant, 20 benign, and 64 normal cases 

examined. Originally in DICOM format with 224 x 224 resolution, later, scans were converted 

to JPEG format for easier accessibility. The collected dataset, accessible through Kaggle, 

provides valuable insights into lung cancer classification. Table II class wise categorization of 

collected dataset facilitating researcher to do research and analysis in the field of medical 

imaging, thereby advancing our understanding of lung cancer detection and diagnosis.  
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Figure 2. Sample Images from IQ-OTH/NCCD dataset. 

Table II. IQ-OTH/NCCD Dataset of different classes 
Type No. of Patients No. of Smples 

Class of Benign 20 122 

Class of Malignant 42 564 

Normal Class 64 456 

All Total 126 1142 

B. Data Pre-processing 

This section describes over the pre-processing steps that were performed on the raw data prior 

to model training and testing. Every image in every group are initially shuffled for impartial 

training before being split into an 80:20 train-test ratio, with 80% of the amount of images 

examined into train set for training operation and 20% samples used for test set for the model 

assessment on undiscovered test instances. Table III summarizes the dataset's class-wise 

distribution following the train and test split. Undesirable elements like background and noise 

in original CT scan images could disrupt training. To mitigate this, the largest lung contour's 

peak points were extracted, eliminating unwanted regions. This process, depicted in Figure 3 

(a, b, c), ensures cleaner data for more effective model training. 

Table III. Training and Testing split-up of 80:20 ratio 
Type of Class Split-up # Sample Total 

Benign 

Training 

97 

897 Malignant 450 

Normal 360 

Benign 

Testing 

25 

235 Malignant 114 

Normal 96 
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(a) 

 

(b) 

 

(c ) 

Figure 3 (a, b, c). Steps applied for cropping unnecessary regions from lung cancer CT scans. 

C. Data Augmentation 

Initially, the dataset of 1142 CT scan segments proved insufficient to effectively train deep 

CNN architecture. To address this, data augmentation techniques were crucially employed. 

Six no of different forms of augmentation techniques, such as horizontal flip, rotation, and 

brightness adjustment, were employed, notably augmenting samples in each class. The 

innocuous class, initially having the fewest images, underwent the most substantial 

enrichment. This ensured a more balanced and representative dataset, essential for training the 

DL model effectively in lung cancer classification. The total amount of CT scan segments for 

every group prior to and following data augmentation is summarized in Table IV.  

Data augmentation technique is exclusively applied to CT scan segments within the training 

set. Figure 4 (a-f) illustrates examples of augmented CT scan segments of lung cancer, 

showcasing the transformations described earlier. This augmentation technique enhances the 

diversity and robustness of the training data, crucial for effective deep learning model training.  

Table IV. Class wise dataset with and without augmentation 
Class Split-up No-Augmentation Augmentation % per class Total 

Benign Training 97 1356 33.5 

4058 Malignant  450 1356 33.5 

Normal  360 1346 33.0 

Benign Testing 25   

235 Malignant  114   

Normal  96   

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e)

 

(f) 

 

(f) 

 

Figure 4 (a-f). Original and augmented lung cancer CT scan slices demonstrate the impact of 

various data augmentation techniques. 

Both train and test set images are compressed to 224 × 224 × 3 resolution, aligning with pre-

trained EfficientNetB7 model input requirements. This resizing minimizes computation during 

training while retaining essential image context. Image resizing guarantees input tensor format 
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matches pre-trained EfficientNetB7 models' requirements, reducing computation during 

training. This process preserves image context, ensuring essential data and characteristics are 

maintained, thus optimizing model performance while minimizing computational resources. 

All the three Class labels are encoded as 0, 1, and 2, ensuring consistent representation across 

sets. 

D. Methods 

This section goes into discussion on the masked transfer learning methodology and the 

suggested fine-tuned framework of the EfficientNetB7.  

1) TRANSFER LEARNING (TL) 

TL is the application of a previously learned model for a new task. Utilizing TL can be trained 

with a little amount of data has become common in DL. As most real-world issues lack a 

significant amount of categorized data to train complicated models, it becomes extremely 

useful in data science. In TL, the generalization of the second task is improved by using what 

was learned in the first task. By relaxing the requirement, the data can be independent, and 

generalization can be accomplished [35]. The general architecture of transfer learning is shown 

in Figure 5. The elaborate concept is to use the information that the model has learned through 

performing a novel job with less labelled data. According to how much the information from 

the previously trained model is applied to the new job, TL may be divided into several 

methodologies. Five typical TL categories are listed below: 

Feature Extraction: The pre-trained model is utilised in this method as a feature extractor. The 

output of the remaining layers is used as a feature instead of the final classification layers of 

the pre-trained model. On top of these collected characteristics, a new classifier is subsequently 

trained for your particular assignment. This is especially helpful if you just have a little 

quantity of data available for the new activity. 

Fine Tuning: In addition to utilizing the characteristics of the previously trained model as a 

starting point, fine-tuning entails enabling some of the layers to be further trained on the fresh 

dataset. When the new task and the original task that the pre-trained model was trained on are 

comparable, this strategy works well. Overfitting must be avoided, though, since too many 

layers of fine-tuning might cause the model to lose its initial expertise. 

Domain Adaptation: When the target domain (new data for the task) and the source domain 

(data on which the pre-trained model was trained) are slightly different, domain adaptation is 

applied. By modifying the model's knowledge to perform well on the target domain, the aim 

is to close the gap between these domains. There are many methods that may be used, 

including adversarial training and domain-specific regularization. 

Multitask Learning: A model is trained on several related tasks at once using multi-task 

learning. The theory behind this is that information acquired from one task might help a person 

perform better on another one. In this method, the model has levels that are shared by several 

jobs as well as layers that are exclusive to each activity. When the tasks have certain 

fundamental characteristics, this can be especially beneficial. 

Zero-Shot Learning: Zero-shot learning is the process of training a model for one task and then 

applying it to another activity for which it hasn't been given any practise data. Similar to many-
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shot learning, few-shot learning permits a limited number of instances from the target task 

during training. These methods can be facilitated by methods like transfer learning using 

language models (using text descriptions). 

The "what to transfer" in learning determines the four settings for the TL process. They include 

methods for (1) instance transfers, (2) feature transfers, (3) parameter transfers, and (4) 

relational knowledge transfers [36]. For DL, TL starts with a previously trained stored model. 

This makes it possible to advance quickly and perform well. It is possible to employ a variety 

of pre-trained CNN models. For image categorization, different models are the designs that 

were employed in the current study. All categorization studies use input images that are 

(100x100x3) (100x100x3) in size. 

 

Figure 5. Architecture of Transfer Learning 

2) MADE, short for Masked Autoencoder for The Distribution Estimation 

MADE is a neural network model specifically created to model the probability distribution of 

data with a large number of dimensions. The MADE variation of auto encoder neural networks 

was introduced in 2015 by Marc'Aurelio andhis team. It is suitable for applications such as 

dimensionality reduction, feature learning, and data production. An organized pattern is 

enforced in the connections between the input and output layers by MADE's use of masks. 

This pattern guarantees that each output unit depends on only a subset of the input units. 

Because of this, MADE is able to model complex, high-dimensional probability more 

efficiently. Density estimation, anomaly detection, and data generation are just a few of the 

successful applications of MADE in fields as diverse as generative modelling, image 

modelling, and natural language processing. All things considered, MADE is an excellent tool 

for understanding data's underlying probability distribution, an essential skill for many 

statistical modelling and machine learning jobs. The MADE architecture is illustrated in 

Figure 6. 
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Figure 6. Architecture of MADE 

The MADE algorithm operates by following: 

The structure of an autoencoder, such as MADE, is composed of an encoder and a decoder, 

similar to a regular autoencoder. Nevertheless, in the MADE model, the encoder and decoder 

are commonly implemented as neural networks.  

Masking is the primary innovation of MADE. When mapping input data to hidden layers, each 

hidden unit is independent of the units to its right, given certain conditions. This is achieved 

by the implementation of meticulously crafted masks that are applied to the weights of the 

neural network.  

Ordering: In order to guarantee the property of conditional independence, a pre-established 

sequence is enforced on the input dimensions. Each concealed unit can only rely on the 

preceding dimensions in the ordering.  

Training: MADE acquires the parameters of its encoder and decoder networks by maximum 

likelihood estimation throughout the training process. The goal is to optimize the log-

likelihood of the training data based on the model parameters.  

Generation: After being trained, MADE can be utilized to produce samples from the acquired 

probability distribution by inputting random noise into the decoder.  

MADE has demonstrated efficacy in predicting intricate probability distributions, 

encompassing multimodal and extremely non-linear distributions. It is utilized in diverse fields 

such as generative modeling, density estimation, and anomaly detection. When it comes to 

modelling data that has a large number of dimensions and extensive interdependencies, the 

architecture of MADE is very useful. Through the imposition of conditional independence 

inside each layer, MADE is able to capture more complicated structures in the data distribution 

than conventional auto encoders are able to do. 

E. Classification using Mask-EffNet:  

EfficientNetB7 is a larger model in the EfficientNet family, offering higher accuracy but 

increased computational resources. It has more layers, wider layers, and operates on higher-

resolution inputs. EfficientNetB7 employs compound scaling, a balance between model size 
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and performance, In order to decrease the quantity of parameters and computations while still 

preserving the ability to convey meaning effectively. In order to reduce the number of 

parameters and computations that are necessary, EfficientNetB7 makes use of efficient 

architectural components. These components include squeeze-and-excitation blocks, 

depthwise separable convolutions, and Swish activation functions. Neural Architecture Search 

(NAS), which automatically examines the space of alternative designs to find the ones that 

perform the best, was utilised in order to uncover the architecture of EfficientNetB7. It is 

possible to use EfficientNetB7 for jobs that need a high level of precision, such as fine-grained 

picture categorization, medical image analysis, and satellite image analysis; however, this 

comes at the expense of additional processing resources. EfficientNetB7 architecture 

comprises a stem block, 7 number of blocks, with a last layer, illustrated in Figure 7 and Figure 

8. 

EfficientNet utilizes even compound scaling for systematical enlargement of the CNN 

architecture, employing fixed scaling coefficients. This method harmonizes the dimensions of 

depth (dh), width (wh), and resolution (rl) of the network by scaling them with a consistent 

ratio, enhancing efficiency and performance. This scaling technique is designed to optimize 

model performance while ensuring efficient use of computational resources. The mathematical 

equation for compound scaling is provided in (1) to illustrate this concept. 

rl = g*phi, wh = b*phi, dh = a*phi           (1) 

for a.b².g²≈2 where, , g ≥1, b ≥1, a ≥1. 

The grid search algorithm determines a, b, and g values. phi, a user-defined parameter, scales 

computational resources. Convolutional operation flops relate directly to dh, wh², and rl²: 

doubling network, while doubling width and resolution quadruples flops. Scaling the network 

via Eq. (1) increases flops by (a.b².g²)*phi; each phi increment doubles total flops. 

 

Figure 7. Stem and final layers of EfficientNetB7 
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Figure 8. Modules in EfficientNetB7 

 

4. Proposed Methodology 

The study employs transfer learning on a masked EfficientNetB7 variant, utilizing lung cancer 

CT scan images. Figure 9 illustrates the masked EfficientNetB7 architecture. Initialization 

with ImageNet weights primes the base model, enabling fine-tuning of the pre-trained 

EfficientNet. The Masked Autoencoder for Distribution Estimation (MADE) and 

EfficientNetB7 are combined for lung cancer classification. This method combines the 

strengths of both techniques, focusing on data preprocessing, training, feature extraction, and 

classification head. Data preprocessing involves obtaining a dataset of lung cancer images with 

annotations indicating the presence or absence of cancerous regions. MADE training is 

performed on the preprocessed images to learn the underlying distribution of the data, while 

feature extraction with EfficientNetB7 is used to extract high-level features. Combining 

MADE and EfficientNetB7 combines the learned representations from both models, capturing 

both high-level semantic features and fine-grained distribution information. The addition of a 

classification head, which consists of completely connected layers activated by softmax for 

binary or multiclass classification, allows for the categorization of lung cancer. With the use 

of tagged data and a suitable loss function, the model is trained comprehensively. Evaluation 

and validation are carried out using several evaluation metrics. On top of that, performance is 

further improved by optimization and fine-tuning. If there is a lack of labelled data, other 

methods like domain adaptation or transfer learning can be investigated. 

To evaluate how well it performs in real-world situations, testing and deployment are carried 

out on a hidden test set. Prior to deploying the trained model in clinical settings, it must be 

tested for regulatory compliance and compatibility with the intended deployment environment. 

Improved accuracy and reliability in identifying malignant regions in lung pictures may result 

from this methodology's efforts to strengthen the lung cancer classification model's 

discriminative capacity and resilience. 
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Figure 9. Proposed Mask-EffNet Model Architecture 

 

5. Results and Discussion 

The evaluation metrics used to assess the efficacy of the proposed work are discussed in detail 

in the next subsection. A thorough understanding of the underlying software and hardware is 

also required before training or evaluating a model. Various matrices are taken into 

consideration when the proposed approach has been accurately evaluated and implemented. 

In this part, we also explore the different hyperparameters and the values that go with them. 

In addition, we present a comprehensive analysis of the data collected using the proposed 

technique, which sheds light on its efficacy and its consequences. The performance of the 

technique and its alignment with planned objectives can be better understood with the help of 

this comprehensive analysis. 

A. Performance Metrics 

The efficacy of medical image classification into three groups is assessed using the same 

performance measures as in the previous section specificity through accuracy, sensitivity, and 

F1 score. To calculate these yield measurements, one uses the following formula: 

Accuracy =  
TN+TP

TP++FP+TN+FN
                           (2) 

Specificity =  
TN

FP+TN
                                     (3) 

Sensitivity (Recall) =  
TP

FP+TN
                       (4) 

Precision =  
TP

FP+TP
                                        (5) 

F1 Score = 2 ∗ 
Recall∗Precision

Recall+Precision
                       (6) 

In this context, the abbreviations TN, TP, FN, and FP represent True Negative, True Positive, 

False Positive, and True Negative respectively. For the purpose of estimating such parameters, 

the confusion matrix is utilized. This matrix provides information regarding the incorrect and 

correct categorization of images across all categories. 
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The ROC Curve: The receiver operating characteristic (ROC) curve is a graphical 

representation of the ROC curve's performance at various thresholds. The approach is 

dependent on two factors, which are the True Positive Rate (TPR) and the False Positive Rate 

(FPR), which are represented by equations (7) and (8), respectively. The ability of the model 

to accurately detect true positives while also minimizing the number of false positives over a 

variety of threshold settings is illustrated by this visualization, which provides useful insights. 

TPR =  
TP

TP+FN
                          (7) 

FPR =  
FP

FP+TN
                          (8) 

B. Experimental setup.  

In order to achieve optimal performance, the mask-EffNet model that has been recommended 

is constructed using the Google Colab Pro framework. This framework makes it possible to 

train and evaluate the model more quickly, which is beneficial for the process of developing 

and testing the strategy that was presented. The experimental configuration employed in this 

research study is outlined below: This work utilizes Python for model training, explicitly 

depend on the Keras package with TensorFlow as its backend tool. Utilizing Google Colab 

pro with T4 GPU which has a substantial 25 GB of RAM, that ensures efficient computation 

and facilitates the execution of complex tasks in machine learning with optimal resource 

utilization. 

C. Hyper-parameters Setup 

In order to optimize the training of the model and to get the required results in classifying lung 

cancer, we performed empirical tests for adjusting several hyperparameters. This include a 

range of elements such as optimizers and batch size. A decay factor of 0.3 was implemented 

to enhance learning rate, and drop connect rate of 0.3 was established to provide further 

regularization during the fine-tuning process, while ensuring that the ImageNet weights remain 

unaffected.. Throughout training, a mini-batch size of 35 was used, with EfficientNetB7 

trained for 100 epochs. Validation sets, comprising 20% of training photos per epoch, aided 

in assessing model efficacy and detecting overfitting. The optimal values for hyperparameters, 

which were determined after fine-tuning and conducting many test cases which are shown in 

Table V. 

Table V. HyperParameters 
Hyper Parameters Values 

Input dimension 224 * 224 * 3 

Dropping Rate 0.3 

Activation Function for output Softmax 

No of Epoch 100 

Size of Batch 35 

Learning Rate 0.3 

D. Analysis of Experimental Results 

This study introduces a novel DL approach for lung cancer categorization, employing the 

Mask-EffNet architecture on CT scan images. The dataset, consisting of 1142 CT scan images 

sourced from 126 patients, includes 122 benign and 564 malignant cases.  
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Data augmentation techniques were applied to augment the dataset. The data was split into 

training and testing sets, maintaining a consistent ratio in both augmented and non-augmented 

scenarios. This methodology ensures a balanced representation of benign and malignant cases, 

facilitating robust training and evaluation of the proposed classification model. Prior to being 

used for training purposes, all of the CT scan pictures underwent pre-processing.  

1) Analysis without Data Augmentation 

The model that was suggested achieved average test accuracy of 98.36%. Table VI presents 

the precise outcomes produced from the Mask-EffNet model with no data augmentation. 

Figure 10 displays the graphical representation of the model efficacy in the absence of data 

augmentation. 

Table VI. Performance of Mask-EffNet without data augmentation 
Types of Lung Cancer Recall Precision F1-Score Accuracy 

Benign 93.22 96.47 94.68 98.14 

Malignant 99.21 98.18 99.53 98.39 

Normal 98.27 97.36 98.45 98.56 

Average 96.90 97.33 97.53 98.36 

 

Figure 10. Performance analysis of the Mask-EffNet without Augmentation of dataset 

A confusion matrix is employed to evaluate the ability of a model of categorization to 

accurately predict outcomes on new, unseen test data. The confusion matrix displays the 

number of estimated designations on the horizontal x-axis for each class, together with their 

corresponding true designations on the corresponding vertical y-axis. In this method, the initial 

step entails comparing the labels predicted by the model with the true labels. Following this, 

correct predictions are tallied. Figure 11 displays the proposed approach's performance 

through a confusion matrix, showing prediction accuracy without data augmentation. This 

matrix offers a comprehensive breakdown of the model's performance, in terms of 

classification evaluation. 
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Figure 11. Confusion matrix without Augmentation 

2) Analysis with Data Augmentation 

The dataset utilized in the present research incorporated data augmentation and comprised of 

4293 lung CT scan pictures sourced from the "IQ-OTH/NCCD dataset".  

Among these, 1356 images were classified as benign, 1356 as malignant, and 1346 as normal. 

Prior to being inputted into the suggested Mask-EffNet model, the photos underwent pre-

processing. The model underwent a fine-tuning process using a dedicated training dataset and 

was subsequently assessed using a separate test dataset. Impressively, it achieved a high test 

accuracy of 98.98%. The ROC score, ranging from 0.97 to 0.98, further attests to its robust 

performance. Mask-EffNet models were constructed using a compound scaling technique, 

ensuring optimal adjustment of depth, width, and resolution while maintaining accuracy and 

minimizing complexity.  

With 6 million features, the model demonstrated exceptional performance on the test dataset. 

Table VII presents a comprehensive overview of the model's outcomes, including those 

incorporating data augmentation. Figure 12 displays the graphical representation of the model 

efficacy in the with data augmentation. Figure 13 displays the proposed approach's 

performance through a confusion matrix, showing prediction accuracy with data 

augmentation. This matrix offers a comprehensive breakdown of the model's performance, in 

terms of classification evaluation. 

Table VII. Performance Analysis of Mask-EffNet with data augmentation 
Types of Lung Cancer Recall Precision F1-Score Accuracy 

Benign 97.22 99.47 95.65 98.93 

Malignant 99.68 99.08 99.53 99.39 

Normal 99.25 98.38 98.15 98.63 

Average 98.71 98.97 97.77 98.98 
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Figure 12. Performance analysis of the Mask-EffNet with Augmentation of dataset 

 

Figure 13. Confusion matrix with Augmentation 

E. Comparison on Lung-EffNet versus previous state-of-the-art methods. 

Mask-EffNet has demonstrated improved analysis in the classification of lung cancer 

operations as compared to other existing models. Mask-EffNet's exceptional performance can 

be attributed to its capability to extract characteristics from the input photos.  

Mask-EffNet employs convolutional and pooling layers, progressively extracting image 

features, enhancing understanding from preceding layers for comprehensive feature 

representation. This iterative process enables the model to capture intricate visual details 

critical for precise categorization. Compared with the existing work, the proposed Mask-

EffNet architecture has demonstrated superior effectiveness and versatility in image analysis 

tasks.  
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The suggested method was evaluated against current models to determine its accuracy. To 

provide an accurate comparison, the train-test split ratio and dataset were kept consistent. To 

provide a fair comparison, we will make sure that the ratio of training data to testing data is 

the same, specifically 80:20. Table VIII contains a detailed examination of the Mask-EffNet 

protocol compared to the most advanced methods available. The comparison table shows 

various methods for achieving high accuracy scores in various evaluation metrics. Some 

methods use CNN, while others use GoogleNet DNN, ShuffleNet with coati optimization, 

ResNet, MobileNetV2, Xception, VGG16, EfficientNet, and Random Forest. The Mask-

EffNet method, which introduces EfficientNetB7 with masked autoencoder, achieves the 

highest accuracy scores, ranging from 97.77% to 98.98%. Other methods use EfficientNet, 

GoogleNet DNN, and ShuffleNet with coati optimization. The Mask-EffNet method 

outperforms others in terms of accuracy with respect to other measure of matrices. Figure 14 

depicts a extensive performance assessment of the suggested work with current state of the art 

models. 

Table VIII. Comparison of different state of the art methods 
References Methodologies Recall Precision F1-Score Accuracy 

Atiya, S , 2024 CNN 97.50 97.78 97.69 97.57 

AL-Huseiny, 2021 GoogleNet DNN 97.14 97.14 97.39 98.02 

AlGhamdi, R., 2023 
ShuffleNet with coati 

optimization 
98.39 98.63 97.39 98.88 

Shouka et al., 2023 
ResNet, MobileNetV2, 

Xception, and VGG16 
97.46 97.18 96.02 97.69 

Raza et al., 2023 EfficientNet 98.24 98.18 97.61 97.78 

Saleh, A. Y., 2024 CNN and Random Forest 98.19 97.50 96.09 98.79 

Chui, K. T., 2023 Modified GAN 97.48 98.16 96.83 95.53 

Humayun, M., 2022 VGG16 and CNN 97.6 97.5 97.25 97.67 

Narin N., 2022 AlexNet and ResNet 98.5 96.8 97.32 98.62 

Mask-EffNet (Proposed) 
EfficientNetB7 with masked 

autoencoder 
98.71 98.97 97.77 98.98 

 

Figure 14. Performance Analysis comparison of the Mask-EffNet with different existing 

work 

93 94 95 96 97 98 99 100
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F. The effect of data splitting 

Multiple tests are being carried out to investigate the influence of various data divisions on the 

effectiveness of the suggested Mask-EffNets. To evaluate the model's efficiency, we varied 

the proportions of training and testing data and thoroughly analyzed the results across different 

splits. These included the initially suggested 80:20 split, along with 60:40, 70:30 and 90:10 

splits, detailed in Table IX. The table presents the results of a model evaluation on different 

data splits for a classification task. The model achieved recall of 97.23%, precision of 97.43%, 

F1-Score of 97.99%, and accuracy of 98.19% for the 60:40 data split. For the 70:30 data split, 

recall was 97.49%, precision of 98.26%, F1-Score of 97.37%, and accuracy of 98.35%. For 

the 80:20 data split, recall was 98.71%, precision of 98.97%, F1-Score of 97.77%, and 

accuracy of 98.98%. For the 90:10 data split, recall was 98.93%, precision of 99.15%, F1-

Score of 98.83%, and accuracy of 99.23%. The highest performance was achieved with the 

90:10 data split, indicating the model's benefit from more training data. Figure 15 depicts the 

efficiency assessment of fine-tuned Mask-EffNets across these splits. Particularly, the model's 

performance was affected through the partitioned data and emphasizing on the significance of 

training set size in transfer learning efficiency.  

Table IX. Evaluation of Mask-EffNet with different data split-up 

Spilt-up Recall Precision F1-Score Accuracy 

60:40 97.23 97.43 97.99 98.19 

70:30 97.49 98.26 97.37 98.35 

80:20 98.71 98.97 97.77 98.98 

90:10 98.93 99.15 98.83 99.23 

 

Figure 15. Performance analysis with various split-ups 
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6. Conclusion and Future Work 

For the early diagnosis of lung cancer from CT scan pictures, the Mask-EffNet hybrid model, 

which combines a masked autoencoder for extraction of essential features and a pre-trained 

EfficientNetB7 for essential classifications, demonstrates promising results. Feature learning, 

dimensionality reduction, uncertainty estimates, imbalanced data management, transfer 

learning, and model interpretability are some of the difficulties that are addressed by the 

model. A ROC score ranging from 0.9782 to 0.9872 degrees and an accuracy of 98.98% were 

some of the impressive results achieved by Mask-EffNet in trials run on the "IQ-OTH/NCCD" 

benchmark dataset. These results shed insight on the potential for improving medical imaging 

diagnostic systems by combining CNN with sophisticated DL techniques. 

Several benefits enhance the efficacy and applicability of the proposed method for use in the 

actual world. The use of pre-trained DNN and TL methods is a major plus. To improve feature 

extraction from CT scan lung cancer datasets, Mask-EffNet taps into the plethora of 

information obtained from large-scale natural image datasets. This strategy improves the 

efficiency and accuracy of lung cancer classification from medical imaging data by speeding 

up model training and applying the learnt representations of pre-existing neural network 

architectures to the current job. This approach successfully reduces the time and computational 

resources needed for training while maintaining high accuracy. The benefits of the proposed 

approach are shown by the experimental results. When compared to other CNN architectures, 

the Mask-EffNet design always comes out on top in terms of efficiency and accuracy. 

Moreover, our results have important consequences for future attempts to diagnose and 

classify lung cancer, particularly using TL in conjunction with EfficientNetB7. New avenues 

for research and development in medical image analysis are opened up by this method. By 

demonstrating the efficacy of Mask-EffNet, employing an efficient design model, our work 

emphasizes the possible influence for improved diagnostic accuracy and efficiency in lung 

cancer detection. These insights provide a foundation for additional research focused on 

improving and expanding the use of TL techniques in healthcare imaging, finally by 

contributing to enhanced patient care and outcomes. 

Future Research 

Our findings bear significant implications for lung cancer diagnosis, especially regarding TL 

with EfficientNets. This approach opens promising avenues for medical image analysis 

advancement. Future research may explore alternative DL architectures alongside transfer 

learning, and enhancing model performance through larger datasets and synthetic data 

generation methods like GANs. Integration of clinical data augments potential research 

avenues. Expanding datasets to include diverse cases and demographics enhances model 

robustness. Future exploration of TL with EfficientNets on larger datasets promises deeper 

insights into model performance across varied scenarios. Augmenting the dataset's size would 

furnish additional evidence of the efficacy of the proposed methodology in real-world 

contexts, fortifying its adaptability and applicability across a myriad of clinical scenarios. This 

comprehensive approach promises to improve the reliability and generalizability of diagnosis 

of lung cancer disease along with their classification.  
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heuristic red fox optimization algorithm. Sci. Program. 2022, 1–8. 

18. Laqua, F. C., Woznicki, P., Bley, T. A., Schöneck, M., Rinneburger, M., Weisthoff, M., ... 

& Baeßler, B. (2023). Transfer-learning deep radiomics and hand-crafted radiomics for 

classifying lymph nodes from contrast-enhanced computed tomography in lung cancer. 

Cancers, 15(10), 2850. 

19. Liu, J., Dong, B., Wang, S., Cui, H., Fan, D.-P., Ma, J., et al., 2021. COVID-19 lung infection 

segmentation with a novel two-stage cross-domain transfer learning framework. Med. Image 

Anal. 74, 102205. 

20. Mammeri, S., Amroune, M., Haouam, M. Y., Bendib, I., & Corrêa Silva, A. (2023). Early 

detection and diagnosis of lung cancer using YOLO v7, and transfer learning. Multimedia 

Tools and Applications, 1-16. 

21. Narin, D., Onur, T.¨O., 2022. The effect of hyper parameters on the classification of lung 

cancer images using deep learning methods. Erzincan Univ. J. Sci. Technol. 15, 258–268. 

22. Nigudgi, S., & Bhyri, C. (2023). Lung cancer CT image classification using hybrid-SVM 

transfer learning approach. Soft Computing, 27(14), 9845-9859. 

23. Panda, R., Dash, S., Padhy, S. and Das, R.K., 2022. Diabetes mellitus prediction through 

interactive machine learning approaches. In Next Generation of Internet of Things: 

Proceedings of ICNGIoT 2022 (pp. 143-152). Singapore: Springer Nature Singapore. 

24. Protonotarios, N.E., Katsamenis, I., Sykiotis, S., Dikaios, N., Kastis, G.A., Chatziioannou, 

S.N., et al., 2022. A few-shot U-net deep learning model for lung cancer lesion segmentation 

via PET/CT imaging. Biomed. Phys. Eng. Express 8, 025019. 

25. Raza, R., Zulfiqar, F., Khan, M. O., Arif, M., Alvi, A., Iftikhar, M. A., & Alam, T. (2023). 

Lung-EffNet: Lung cancer classification using EfficientNet from CT-scan images. 

Engineering Applications of Artificial Intelligence, 126, 106902. 

26. Ren, Z., Zhang, Y., & Wang, S. (2022). A hybrid framework for lung cancer classification. 

Electronics, 11(10), 1614. 

27. Saikia, T., Kumar, R., Kumar, D., & Singh, K. K. (2022). An automatic lung nodule 

classification system based on hybrid transfer learning approach. SN Computer Science, 

3(4), 272. 

28. Saleh, A. Y., Chin, C. K., & Rosdi, R. A. (2024). Transfer Learning for Lung Nodules 

Classification with CNN and Random Forest. Pertanika Journal of Science & Technology, 

32(1). 

29. Sharma, R., Kumar, S., Shrivastava, A., & Bhatt, T. (2023, December). Optimizing 

Knowledge Transfer in Sequential Models: Leveraging Residual Connections in Flow 

Transfer Learning for Lung Cancer Classification. In Proceedings of the Fourteenth Indian 

Conference on Computer Vision, Graphics and Image Processing (pp. 1-8). 



                                                            Enhancing Lung Cancer Diagnosis… Rakesh Patnaik et al. 26  
 

Nanotechnology Perceptions Vol. 20 No. S5 (2024) 

30. U.S.D.o.H.a.H. Services, N.I.o. Health, N.C. Institute, 2023. Cancer treatment. Available: 

http://www.cancer.gov/about-cancer/treatment. 

31. Wang, S., Dong, L., Wang, X., & Wang, X. (2020). Classification of pathological types of 

lung cancer from CT images by deep residual neural networks with transfer learning strategy. 

Open Medicine, 15(1), 190-197. 

32. WHO, 2023. Cancer. Available: http://www.who.int/health-topics/cancer#tab=tab_1. 

33. Wu, R., Liang, C., Li, Y., Shi, X., Zhang, J., & Huang, H. (2023). Self-supervised transfer 

learning framework driven by visual attention for benign–malignant lung nodule 

classification on chest CT. Expert Systems with Applications, 215, 119339. 


