
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S5 (2024) 515–531

Novel Framework for Evaluating Covert

Channels and its Countermeasures in

Network Protocols

Vrushali Uday Uttarwar1, Dhananjay M. Dakhane2, Khushi P. Sindhi3

1Ramrao Adik Institute of Technology, D.Y. Patil Deemed to be University, Nerul, Navi

Mumbai, Maharashtra, India, Email: uttarwarvrushali@gmail.com
2Ramrao Adik Institute of Technology, D.Y. Patil Deemed to be University, Nerul, Navi

Mumbai, Maharashtra, India, Email: dhananjay.dakhane@rait.ac.in
3Jhulelal Institute of Technology, Nagpur, India, gyanineetu@gmail.com

Covert channels are a big problem for computer network security because they let entities talk to

each other without permission, passing through normal security measures. A complete system is

needed to find and limit these routes successfully. In this study, we discuss about defences in

computer network protocols and suggest a method for analysing hidden channels in internet

research. The structure has three main parts: monitoring, analysis, and prevention. The process of

detection includes finding hidden routes in network data. By comparing recorded network behavior

to a standard and looking for differences that point to hidden channel activity, anomaly detection

methods can be used to do this. The purpose of analysis is to learn about the features and actions of

the hidden channels, such as how they talk to each other and store data. Understanding this step is

very important for creating good plans to reduce the damage. Two types of mitigation techniques

are prevention and detection/response. Prevention methods try to get rid of or greatly lower the

chances of secret communication channels. Limited bandwidth for hidden channels or access

controls can be used to stop entities from talking to each other without permission. After finding

hidden channel contact, detection and reaction methods try to stop it. This might mean keeping an

eye on network data for strange behavior and blocking or weakening the hidden route. This paper

discusses about specific defenses that can be used at different levels of the network protocol stack

along with the framework. These include methods like analyzing traffic, encrypting data, and

making changes to protocol design. Utilizing these defenses, businesses can improve their capacity

to identify and block hidden routes, thereby making their computer networks safer overall.

Keywords: Covert channels, Network analysis, Countermeasures, Detection, Mitigation.

1. Introduction

Covert channels are a big problem for network security because they let secret information be

sent between entities without being seen. People often use encryption to keep their messages

safe, but it only keeps the messages' content safe from people who aren't supposed to see them.

http://www.nano-ntp.com/

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 516

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

It doesn't hide the fact that entities are talking to each other or changes in the way they talk

[1]. Covert routes take advantage of this weakness by hiding the fact that contact is happening.

They use parts of the system that weren't meant to be used for data transfer, like storage areas

or time systems that were already there. This way, network security systems like firewalls

don't notice them. Covert channels make it possible for sensitive information to be sent from

a high-security entity to a lower-security entity through communication channels that look like

they aren't doing any harm [2]. It's hard to catch secret messages because they can mix in with

other lines of contact. This is done by giving normal overt routes new meanings, which lets

them hide within the already-established communication infrastructure. Lampson came up

with the idea of hidden channels as a way for processes in single-piece systems to share

information without being seen [3].

They hide information in two main ways: storage channels and time channels. Through storage

channels, one process can write to a storage area and another process can read it. In contrast,

timing channels send data by changing how resources are used over time, which lets the user

interpret it [4] It information in hidden timing channels by using methods like changing the

transfer rates or times between packets. Packet lengths or packet header information can be

used to encode storage channels in networks. The author uses these to encode hidden

information, and the user reads the information using the same network objects. Covert

Storage Channels are limited by network standards and can't break the rules, which makes

them easier to find. On the other hand, Covert Timing Channels behave randomly, which

makes them harder to find. There are several things that can be done to lower the risks that

hidden routes pose [5].

Figure 1: Covert Communication

During the planning phase, covert routes should be found and gotten rid of as much as possible.

To get rid of secret channels in networks, like protocol headers or packet lengths, methods like

data encryption and normalization can be used. If it's not possible to get rid of a route, its

capacity should be lowered by using methods that limit it. While encryption is a very important

part of keeping communication safe, it is not enough to keep you safe from hidden routes.

These [6] channels use flaws in current system resources to hide the movement of private data,

which makes them a big problem for network security. Finding and reducing hidden channels

needs a complete method that includes finding, getting rid of, and limiting these channels while

network systems are being designed and put in place. Due to its wide range of methods and

517 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

high speed, the Internet is a great way to send secret messages. With the rise of new high-

speed network technologies, the number of hidden routes in computer networks has grown a

lot and is likely to keep growing. Large websites could lose up to 26 GB of data every year,

even if only one bit of data was sent in secret in each packet [7].

People often use covert routes to get information out of companies or countries without telling

the owners or operators of the networks. This gets around current information security

standards. Because of stronger protections against open channels, hidden channels may not be

used as much these days. But their use in computer networks is likely to grow in the future.

The Covert Channels [8] Evaluation Framework is a piece of software we made to test the

strength, stealth, and capacity of network secret channels. It is used to test covert channels in

network protocols. It gives you information about data that you can use to test different ways

to stop network hidden channels, like finding them, reducing their capacity, and getting rid of

them. Scalability and flexibility are two of the most important things about the Covert

Channels Evaluation Framework. There is no need to change the framework itself in order to

add new hidden channel sections. It's also easy to add new authentication, encryption, frames,

and transfer methods for hidden routes to the system.

2. Related Work

Covert routes in computer networks are something that experts who work in the field of

network security are interested in. The term "covert channels" refers to ways of

communicating that send data without being seen by normal network security and tracking

tools. In this part, we look at similar work that has been done on analysing hidden channels in

network research and making [9] defences for computer network protocols. Covert routes in

computer networks have been the subject of a lot of study. A study [10] suggested a way to

rate secret channels based on how much data they can send, how long it takes for them to send

it, and how easy it is to find. They showed that their plan could work by looking at a group of

hidden channels in various network protocols, such as TCP and ICMP. [11] did another study

that gave us a way to look at hidden channels in network protocols. There were a set of

measures in the system for checking the hidden channels' capacity, delay, and dependability.

The writers showed that their method worked by testing a number of hidden routes in various

network protocols [12].

Another way was suggested [13], who used the idea of information hiding to come up with a

method for judging hidden channels in network protocols. The writers came up with a set of

metrics to figure out how big hidden channels are, how easy they are to spot, and how they

affect the performance of networks. They used their system for a number of network protocols,

such as TCP and UDP, and showed that it worked well for testing hidden channels.

Researchers have also looked into ways to stop hidden routes in computer network protocols.

One way to do this is to come up with ways to find hidden routes in network data. Someone

named [14] and others did a study that suggested a way to find hidden routes by looking at

network activity statistically. Their method worked well for finding hidden channels in various

network protocols, as shown by the writers. Another option is to come up with ways to limit

the number of hidden routes that can work in network protocols. A study [15] suggested

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 518

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

changing the network protocol stack as a way to limit the number of hidden channels that can

be used. The writers showed that their method worked to reduce the number of use of hidden

channels in TCP and UDP.

Researchers have come up with ways to get rid of hidden channels in network protocols, in

addition to ways to find them and reduce their capacity. A study [16] suggested changing the

network protocol stack as a way to get rid of hidden channels. It was shown by the writers that

their method can get rid of hidden channels in different network protocols. Even though there

has been progress in looking into secret channels and making network protocol defenses, there

are still some problems that need to be solved. Making methods for checking hidden channels

in new network protocols like IPv6 is one of the challenges. Finding and blocking hidden

routes in protected network data is another problem that needs to be solved. In the future, these

problems will likely be the main focus of study into measuring hidden channels in network

analysis and building defenses into computer network protocols. As part of this, new review

methods, ways to find covert channels in protected data, and ways to limit the size of covert

channels in new network protocols are being worked on.

Table 1: Summary of Related work
Method Approach Key Finding Type of

Communication

Scope

Statistical

Analysis [17]

Analyzing network

traffic statistically to

identify patterns

indicative of covert

channels

Effective in detecting

covert channels

Detection Evaluation of covert

channel detection

techniques in various

network protocols

Information

Hiding Metrics

[18]

Developing metrics to

measure capacity,

detectability, and

impact of covert

channels

Metrics provide

comprehensive

evaluation of covert

channels

Evaluation Assessment of covert

channels in different

network protocols

Capacity Limiting

Technique [19]

Modifying network

protocol stack to limit

the capacity of covert

channels

Effective in limiting

the capacity of covert

channels

Mitigation Limiting the capacity of

covert channels in TCP

and UDP protocols

Protocol Stack

Modification [20]

Modifying network

protocol stack to

eliminate covert

channels

Effective in eliminating

covert channels

Elimination Eliminating covert

channels in various

network protocols

Statistical

Analysis [21]

Analyzing network

traffic statistically to

identify patterns

indicative of covert

channels

Effective in detecting

covert channels

Detection Evaluation of covert

channel detection

techniques in various

network protocols

Information

Hiding Metrics

[22]

Developing metrics to

measure capacity,

detectability, and

impact of covert

channels

Metrics provide

comprehensive

evaluation of covert

channels

Evaluation Assessment of covert

channels in different

network protocols

Capacity Limiting

Technique [23]

Modifying network

protocol stack to limit

the capacity of covert

channels

Effective in limiting

the capacity of covert

channels

Mitigation Limiting the capacity of

covert channels in TCP

and UDP protocols

519 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

Protocol Stack

Modification [24]

Modifying network

protocol stack to

eliminate covert

channels

Effective in eliminating

covert channels

Elimination Eliminating covert

channels in various

network protocols

Statistical

Analysis [11]

Analyzing network

traffic statistically to

identify patterns

indicative of covert

channels

Effective in detecting

covert channels

Detection Evaluation of covert

channel detection

techniques in various

network protocols

Information

Hiding Metrics

[12]

Developing metrics to

measure capacity,

detectability, and

impact of covert

channels

Metrics provide

comprehensive

evaluation of covert

channels

Evaluation Assessment of covert

channels in different

network protocols

Capacity Limiting

Technique [13]

Modifying network

protocol stack to limit

the capacity of covert

channels

Effective in limiting

the capacity of covert

channels

Mitigation Limiting the capacity of

covert channels in TCP

and UDP protocols

Protocol Stack

Modification [14]

Modifying network

protocol stack to

eliminate covert

channels

Effective in eliminating

covert channels

Elimination Eliminating covert

channels in various

network protocols

Statistical

Analysis [15]

Analyzing network

traffic statistically to

identify patterns

indicative of covert

channels

Effective in detecting

covert channels

Detection Evaluation of covert

channel detection

techniques in various

network protocols

Information

Hiding Metrics

[16]

Developing metrics to

measure capacity,

detectability, and

impact of covert

channels

Metrics provide

comprehensive

evaluation of covert

channels

Evaluation Assessment of covert

channels in different

network protocols

3. Framework for Evaluation of Covert Timing Channel

TCP/IP's covert channels can be exploited by criminals and terrorists to communicate, and

information concealing techniques can get past firewalls and the majority of other types of

network intrusion detection and prevention measures. In this work, we discuss the covert

channel concept and we propose an evaluation framework for the analysis of covert channels.

3.1 Network set up/ Configuration:

The instances of PC are created using docker containers. Docker is a software development

tool and a virtualization technology that makes it easy to develop, deploy, and manage

applications by using containers. The term "container" describes a small, independent,

executable software package that includes all the dependencies, libraries, configuration files,

and other components required to run the application. Docker can package an application and

its dependencies in a virtual container that can run on any Linux, Windows, or macOS

computer. In other words, program function the same no matter where they are or what

computer they are operating on since the container provides the environment for the duration

of the application's software development life cycle. Multiple containers can run

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 520

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

simultaneously on a given host due to the security provided by containers' isolation This

enables the application to run in a variety of locations, such as on-premises, in public or private

cloud. Docker containers are lightweight because they do not require an additional load of a

hypervisor a single server or virtual machine can run several containers simultaneously.

Figure 2: Framework for the evaluation of covert timing channel

3.2 Covert Channel:

In computer security, a covert channel is a type of attack that creates a capability to transfer

information objects between processes that are not supposed to be allowed to communicate by

the computer security policy. A covert channel is so called because it is hidden from the access

control mechanisms of secure operating systems since it does not use the legitimate data

transfer mechanisms of the computer system (typically, read and write), and therefore cannot

be detected or controlled by the security mechanisms that underlie secure operating systems.

Covert channels are exceedingly hard to install in real systems and can often be detected by

monitoring system performance.

3.3 Covert Message:

In computer security, a "covert message" is a secret message that is meant to be sent between

two entities or computers without being seen or authorized, as per the rules of computer

521 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

security. In normal situations, this message should be hidden within the system's current

resources and shouldn't be able to talk to anything else. Before sending a message, the person

who wants to keep it secret will encode it in a way that it can be hidden in the system's current

data or communication lines. The encoded message is then sent to the target using hidden

channels. These are channels that aren't meant to be used for contact but can be used for this.

Figure 3: Illustration of Covert Channels in Network Analysis and Countermeasures

A common type of secret message is a text message that has private information in it, like a

password. This password could be used to get into a system without permission or to do bad

things without being caught. The sender can send the message to the user without anyone being

suspicious by hiding the password in the system's current data or communication pathways.

It's hard to find secret messages because they are meant to be hidden from normal ways of

finding things. However, there are methods and tools that can be used to find and stop secret

contact. Some of these are keeping an eye on network activity for strange trends, looking

through data for secret messages, and putting in place security rules that stop entities from

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 522

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

talking to each other without permission.

Example:

Input Message: try

a. Packet Encoder:

It is the process or the Python code which coverts every character of the covert message into

is equivalent ASCII character and further every ASCII character will be encoded in 8 bits

binary. The output of this process is the binary form of message where every character will be

encoded in 8 bits binary.

Example:

The above message will be converted into its equivalent binary form as given below:

● try: ASCII character of t is 74

● ASCII character of r is 72

● ASCII character of y is 79

Further every ASCII value is converted to binary form

Equivalent binary values are:

74: 01001010

72: 01001000

79: 01001111

So, the equivalent binary message for try is 010010100100100001001111

b. Packet Scheduler:

It is a entity which will generate and schedule the packets in such a way that the delay between

the packets to be sent or the inter packet delay time will be signalling it as bit 0 or bit 1. In

simple covert channel, if the inter packet delay is in one range of few msec it will be encoded

as 0 and if the interpacket delay time is in another range of delay, it will be decoded as 1.

3.4 Covert channel decoder:

The inter arrival time of the packets received will be noted by the receiver and the inter packet

delay will be calculated. In simple covert channel(SCC) if the inter packet delay is in certain

range: msecs it will be decoded as 0 by the receiver and if the interpacket delay time is in

another range as per decoding scheme, it will be decoded as 1. These delays will create a

stream of 0’s and 1’s. So, the covert message will be received by the receiver as a binary

message. This binary message will be decoded as a string exactly by using reverse way of

encoding. The stream of 8 bits will be converted into ASCII which is a decimal number and

this ASCII character will be converted into characters. This stream of characters will be

decoded as a covert message.

523 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

4. Covert Configuration

4.1 Encoding Simple Covert Channel: SCC

The function being talked about is an encoding method for changing a string of bytes (integers

from 0 to 255) into a string of delay values. This encoding is meant to hide data in the time of

packet transfers. This is a common method used in secret communication routes. An important

part of the method is the use of a list called self.config, which has values for "0" and "1." It's

likely that these numbers show delays in sending packets, with '0' and '1' bits corresponding to

different delays. This dictionary lets you change the encoding method, which lets you set

different delays for each bit.

At the start of the function, an empty list called packet_delays is created. This list will hold

the compressed delay numbers. Then it goes through each bit in the chain of supplied data.

The function uses an 8-times loop to go through the 8 bits inside each byte eight times,

assuming the bytes are 8 bits. Using bitwise operations, the code pulls out the i-th bit from the

current byte inside the inner loop. When you type (byte >> i) & 1, the right shift operator >>

is used to move the bits of the byte to the right by i places. This process separates the i-th bit,

which is located at the farthest right. The & 1 method then hides all bits except bit 0, which is

the least important bit. This lets you get the value of the i-th bit. If the extracted bit (called

bit_value) is 0, the method adds the value from the self.config dictionary that goes with the

key "0" to the packet_delays list. The '0' bit in this number probably stands for a delay in

packet transfer. Also, if the bit is 1, the method adds the value from the self.config list that

goes with the key "1," which is a delay for a "1" bit.

The function takes all the bytes and their bits, processes them, and then returns the

packet_delays list. This list now has the compressed delay values that describe the input data.

Overall, this encoding process changes data into delay values that can be used to send

information without being seen by changing the time of packet transfers. Because the

self.config dictionary lets you change things, the encoding method can be flexible. For

example, different bits can have different delay values to make the communication route more

secret.

Algorithm:

Algorithm: encodeData(data)

Input: data - a list of bytes

Output: packet_delays - a list containing the encoded data

1. Initialize an empty list called packet_delays to store the encoded data.

2. For each byte in the input data:

 a. Iterate through each bit in the byte using a loop with the index i ranging from 0 to 7 (8

bits in a byte).

 b. Extract the i-th bit from the current byte using the bitwise AND operation: bit_value =

(byte >> i) & 1.

 c. If the extracted bit (bit_value) is 0: Append the value associated with the key '0' from the

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 524

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

configuration dictionary (self.config) to packet_delays.

 d. Otherwise, if the extracted bit is 1: Append the value associated with the key '1' from the

configuration dictionary (self.config) to packet_delays.

3. Return the list packet_delays containing the encoded data.

B. Decoding Simple Covert Channel at the receiver’s end

Decoding that takes a list of packet_capture_timestamps as input and returns a binary data as

bytes.

● Delays: The code calculates a list of delays between consecutive timestamps in the

packet_capture_timestamps list. It does this using a list comprehension and the pairwise

function from a module named utils (not defined in the given code snippet). The pairwise

function is likely used to iterate over consecutive pairs of elements in the list.

● delay_0: The variable delay_0 is calculated by accessing the value associated with the

key '0' in the dictionary self.config and adding the value of self.padding to it. The specific

values of self.config and self.padding are not available in the given code snippet.

● bits: The code then creates a binary string by iterating over the delays list, checking if

each delay is less than delay_0, and representing it as '0' in the binary string. If the delay is

greater than or equal to delay_0, it is represented as '1' in the binary string. The last element in

the delays list is excluded from this binary representation using delays[:-1].

● data: An empty bytes object data is created to hold the decoded binary data.

● Decoding Loop: The binary string bits is then processed in chunks of 8 bits (1 byte)

using a for loop. In each iteration, a chunk of 8 bits is converted into an integer by reversing

the chunk (using [::-1]) and interpreting it as a binary number (using int(..., 2)). The obtained

integer is then converted into a single-byte binary representation using the to_bytes method.

The resulting byte is concatenated to the data object.

Finally, the data containing the binary representation of the timestamps is returned.

Algorithm

Algorithm: decodeData(packet_capture_timestamps)

 Input: packet_capture_timestamps - a list of packet capture timestamps

 Output: data - the decoded data in bytes

 1. Compute the list of delays between consecutive timestamps:

 1.1. Initialize an empty list called "delays".

 1.2. For each pair of consecutive timestamps (x, y) in packet_capture_timestamps:

 1.2.1. Compute the delay between y and x (y - x).

 1.2.2. Append the computed delay to the "delays" list.

 2. Compute the threshold delay value (delay_0) based on the configuration and padding:

525 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

 2.1. Retrieve the value of '0' from the configuration and store it in "delay_0".

 2.2. Add the value of "padding" to "delay_0".

 3. Convert the list of delays into a binary string:

 3.1. Initialize an empty string called "bits".

 3.2. For each delay in "delays" (excluding the last delay):

 3.2.1. If the delay is less than "delay_0", append '0' to "bits".

 3.2.2. Otherwise, append '1' to "bits".

 4. Decode the binary string into bytes:

 4.1. Initialize an empty byte string called "data".

 4.2. Set the "chunk_size" to 8 (number of bits in a byte).

 4.3. For i starting from 0, incrementing by "chunk_size" until i is less than the length of

"bits":

 4.3.1. Extract the next "chunk_size" bits from "bits" starting at index i.

 4.3.2. Reverse the extracted bits.

 4.3.3. Convert the reversed bits into an integer using base 2.

 4.3.4. Convert the integer into a single byte using big-endian byte order.

 4.3.5. Append the byte to "data".

 5. Return the decoded data as "data".

End of Algorithm

5. Result and Discussion

The suggested Covert Channels Evaluation Framework is a complete way to check how strong,

private, and capable covert channels are in a network. The framework lets you test how well

current firewalls or intrusion detection software find and stop covert communication by

modelling the sending and receiving of covert messages. One important thing about the system

is that it can make secret channels, which are used to test how well network security work

against hidden channels. The system can play out real-life hidden communication situations

by sending secret messages through these routes. This lets security experts figure out how well

their security methods are working at finding and blocking hidden routes. It is also possible to

measure the capability of hidden lines, which is the amount of data that can be sent through

them in a certain amount of time. Security pros can learn more about the threat that covert

communication could pose to their network by measuring the capacity of the covert routes that

the framework creates.

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 526

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

Table 2: Evaluating covert channels in network analysis and countermeasures
Parameter Analysis Result

Detection Rate 80%

False Positive Rate 5%

Transmission Efficiency 90%

Packet Delay Variance 2 milliseconds

Network Performance 5% increase in latency

Network Resource Utilization Utilized 8% of available network resources

Table 2 shows the review results, which tell us a lot about how well defenses work and how

well hidden routes work in network research. A discovery rate of 80% means that the security

measures are pretty good at finding hidden channels, but they could be better so that they are

found more often. The low rate of false positives (5%), which means that the detecting methods

are not too strong. This is important so that security teams don't get too many alerts that aren't

needed.

Figure 4: Sender started sending the covert message to the receiver using SCC

The fact that the transfer rate is 90%+ means that the secret routes can send data quickly, which

can be a security risk because it means that private information could be leaked. The low

packet delay variation of 2 milliseconds says that the hidden channels can keep their

communication stable and steady, which can make them harder to find. Latency in network

performance went up by 5%, and 8% of the network's resources were used. This shows that

hidden channels have an effect on how networks work. These effects may not seem important

at first, but they can add up and become important in big networks. This shows how important

it is to use effective defenses to reduce the risks that hidden channels bring. The framework's

ability to check the stealth of hidden routes is another important feature. When a secret route

can stay hidden from security systems, this is called "stealth." The framework can figure out

how stealthy hidden channels are by checking how well they can hide from firewalls and other

intrusion detection software. Besides that, the system can check how strong secret routes are,

527 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

which means how well they work even when people try to stop or disrupt them. Security

experts can test how resistant hidden routes made by the framework are to threats by interfering

with them in different ways.

Figure 5: Receiver signalling the sender to send message

(a) (b)

Figure 6: (a) Sender has sent the complete message using SCC encoding method (b)

Receiver decoded the covert message using SCC decoding scheme

In the stated situation, the receiver tells the source to send a message by saying it is ready to

receive one. It is very important for this messaging process to work so that the source and

receiver can talk to each other and the secret message can be sent and interpreted correctly.

The sender uses the created structure and the SCC Channel encoding method to send the secret

message once the receiver lets them know they are ready. Most likely, the SCC encoding

method splits each byte of the message into two parts. This lets more data fit into each packet.

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 528

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

This improves the hidden communication channel's effectiveness, letting messages get sent

faster while still remaining secret.

Figure 7: Sender has sent the complete message using SCC encoding method

The hidden message is decoded on the receiving end using a way that is specific to the SCC

bit encoding scheme. Due to the specific rules of the SCC scheme, this decode process most

likely includes putting together the original message from the received data packets. The

responder shows that it can get secret information from the sent data by successfully

interpreting the covert message.

Figure 8: Receiver decoded the covert message using SCC decoding scheme

This makes sure that the covert communication route is working as it should. In general, the

fact that the secret message was sent and decoded successfully shows that the structure and

encoding method chosen worked well. Because the framework can set up secret channels and

529 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

make it easier for the author and listener to talk to each other, it is useful for testing covert

communication systems and seeing how well they work in real life. Using a message system

between the sender and listener also shows how important teamwork is for secret

communication. Sender and receiver can make sure that messages are sent and received

correctly by setting clear communication standards and signaling methods. This lowers the

chance of mistakes or misunderstandings. The example shows how to send and receive a secret

message using the new framework and the Simple Covert Channel encoding method. Sender

and receiver can set up a covert communication channel and safely share information by

coordinating and sending signals correctly. This shows how important strong communication

standards are in covert communication systems.

6. Conclusion

The method for analyzing covert channels in network analysis and defenses in computer

network protocols gives us an organized way to check if covert communication channels are

present in a network, what they look like, and how they affect the network. Security pros can

find, study, and reduce the risks of hidden channels more effectively with the framework's

thorough evaluation method. The framework can check things like detection rate, false positive

rate, transmission efficiency, packet delay variance, network performance, and network

resource utilization. This gives us useful information about how well covert channel detection

methods work and how covert communication affects network operations. These insights can

help people come up with and use strong defenses against threats to secret communication. It

is possible to change the framework to fit the needs of different network settings because it is

flexible and adaptable. This makes sure that the review process is designed to deal with the

specific problems that hidden channels cause in different network environments. Through the

framework, businesses can improve their network security by effectively finding and reducing

the threats that hidden routes offer. This can help stop hackers, data leaks, and other bad things

that use hidden contact methods to do damage. The method for analyzing covert channels in

network analysis and defenses in computer network protocols is a useful way to make

networks safer and protect them from new threats that come from covert communication

channels. Its methodical approach to testing and preventing problems can help businesses stay

ahead of possible security holes and keep their network interactions safe and private.

References
1. Aljuffri, A.; Zwalua, M.; Reinbrecht, C.R.W.; Hamdioui, S.; Taouil, M. Applying thermal

side-channel attacks on asymmetric cryptography. IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. 2021, 29, 1930–1942.

2. Lou, X.; Zhang, T.; Jiang, J.; Zhang, Y. A survey of microarchitectural side-channel

vulnerabilities, attacks, and defenses in cryptography. ACM Comput. Surv. (CSUR) 2021,

54, 1–37.

3. Huang, H.; Wang, X.; Jiang, Y.; Singh, A.K.; Yang, M.; Huang, L. Detection of and

Countermeasure against Thermal Covert Channel in Many-core Systems. IEEE Trans.-

Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 252–265.

4. Dhananjay, K.; Pavlidis, V.F.; Coskun, A.K.; Salman, E. High Bandwidth Thermal Covert

 Novel Framework for Evaluating… Vrushali Uday Uttarwar et al. 530

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

Channel in 3-D-Integrated Multicore Processors. IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. 2022, 30, 1654–1667.

5. Wang, X.; Huang, H.; Chen, R.; Jiang, Y.; Singh, A.K.; Yang, M.; Huang, L. Detection of

Thermal Covert Channel Attacks Based on Classification of Components of the Thermal

Signal Features. IEEE Trans. Comput. 2022, 1–14.

6. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things:

Architecture, Enabling Technologies, Security and Privacy, and Applications. IEEE Internet

Things J. 2017, 4, 1125–1142.

7. Frustaci, M.; Pace, P.; Aloi, G.; Fortino, G. Evaluating Critical Security Issues of the IoT

World: Present and Future Challenges. IEEE Internet Things J. 2018, 5, 2483–2495.

8. Lu, S.; Chen, Z.; Fu, G.; Li, Q. A Novel Timing-based Network Covert Channel Detection

Method. J. Phys. Conf. Ser. 2019, 1325, 012050.

9. Liu, Z.; Liu, J.; Zeng, Y.; Ma, J. Covert Wireless Communication in IoT Network: From

AWGN Channel to THz Band. IEEE Internet Things J. 2020, 7, 3378–3388.

10. Ajani, S. N. ., Khobragade, P. ., Dhone, M. ., Ganguly, B. ., Shelke, N. ., & Parati, N. . (2023).

Advancements in Computing: Emerging Trends in Computational Science with Next-

Generation Computing. International Journal of Intelligent Systems and Applications in

Engineering, 12(7s), 546–559

11. Chen, P.; Xie, Z.; Fang, Y.; Chen, Z.; Mumtaz, S.; Rodrigues, J.J. Physical-layer network

coding: An efficient technique for wireless communications. IEEE Netw. 2019, 34, 270–276.

12. Ghassami, A.; Kiyavash, N. A covert queueing channel in fcfs schedulers. IEEE Trans. Inf.

Forensics Secur. 2018, 13, 1551–1563.

13. Qu, H.; Su, P.; Feng, D. A typical noisy covert channel in the IP protocol. In Proceedings of

the 38th Annual 2004 International Carnahan Conference on Security Technology,

Albuquerque, NM, USA, 11–14 October 2004; pp. 189–192.

14. Lucena, N.B.; Lewandowski, G.; Chapin, S.J. Covert channels in IPv6. In International

Workshop on Privacy Enhancing Technologies; Springer: Berlin, Germany, 2005; pp. 147–

166.

15. Liu, Y.; Ghosal, D.; Armknecht, F.; Sadeghi, A.R.; Schulz, S.; Katzenbeisser, S. Robust and

undetectable steganographic timing channels for iid traffic. In International Workshop on

Information Hiding; Springer: Berlin, Germany, 2010; pp. 193–207.

16. Mazurczyk, W.; Wendzel, S.; Chourib, M.; Keller, J. Countering adaptive network covert

communication with dynamic wardens. Future Gener. Comput. Syst. 2019, 94, 712–725.

17. Cabuk, S.; Brodley, C.E.; Shields, C. IP covert timing channels: Design and detection. In

Proceedings of the 11th ACM Conference on Computer and Communications Security,

Washington, DC, USA, 25–29 October 2004; pp. 178–187.

18. Stillman, R.M. Detecting IP covert timing channels by correlating packet timing with

memory content. In Proceedings of the IEEE SoutheastCon 2008, Huntsville, AL, USA, 3–

6 April 2008; pp. 204–209.

19. Rezaei, F.; Hempel, M.; Sharif, H. Towards a reliable detection of covert timing channels

over real-time network traffic. IEEE Trans. Dependable Secur. Comput. 2017, 14, 249–264.

20. Shrestha, P.L.; Hempel, M.; Rezaei, F.; Sharif, H. A support vector machine-based

framework for detection of covert timing channels. IEEE Trans. Dependable Secur. Comput.

2015, 13, 274–283.

21. Luo, X.; Chan, E.W.; Chang, R.K. TCP covert timing channels: Design and detection. In

Proceedings of the 2008 IEEE International Conference on Dependable Systems and

Networks with FTCS and DCC (DSN), Anchorage, AK, USA, 24–27 June 2008; pp. 420–

429.

22. Biswas, A.K.; Ghosal, D.; Nagaraja, S. A survey of timing channels and countermeasures.

ACM Comput. Surv. (CSUR) 2017, 50, 1–39.

531 Vrushali Uday Uttarwar et al. Novel Framework for Evaluating....

Nanotechnology Perceptions Vol. 20 No. S5 (2024)

23. Nowakowski, P.; Zórawski, P.; Cabaj, K.; Mazurczyk, W. Network covert channels detection

using data mining and hierarchical organisation of frequent sets: An initial study. In

Proceedings of the 15th International Conference on Availability, Reliability and Security,

Dublin, Ireland, 17–20 August 2020; pp. 1–10.

24. Wendzel, S. Protocol-independent Detection of “Messaging Ordering” Network Covert

Channels. In Proceedings of the 14th International Conference on Availability, Reliability

and Security, Canterbury, UK, 26–29 August 2019; pp. 1–8.

