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In order to analyse marine clutter amplitude statics and dynamically fit the optimal standard model 

for a particular data set extracted from a surveillance region, this research article aims to design a 

software module. There exists many theoretical and experimental work on understanding sea clutter 

behaviour & different statistical models used for representing amplitude distributions, such as Log-

normal distribution, Weibull Distribution and K-Distribution. This research paper intends to study 

the statistical characteristics of unprocessed amplitude returns from E-band coastal surveillance 

radar after application of Sensitivity Time Control and Analogue-to-Digital conversion. The 

histogram of unique data samples (de-correlated in space) in a chosen analysis area is computed. 

This data is used to obtain a fit with standard distributions mentioned above. The shape & scale 

parameters of standard distributions are estimated & Probability density function of those 

distributions are computed. Root Mean square error value is computed for each estimated model 

data with respect to the histogram of original dataset. The model with least Root Mean Square Error 

value is the best fit for given sampled data. The estimated parameters for the best statistical fit for 

sea clutter in a particular sector is then passed on to detection module in order to determine the sea-

clutter model based detection threshold level.  

 

Keywords: Sea Clutter Amplitude Statistics, Log-normal distribution, Weibull Distribution, K-

Distribution formatting, Sensitivity Time Control (STC), Analogue-to-Digital Conversion, 

Probability Density Function (PDF), Root Mean Square Error(RMSE), Range & Azimuth.  

 

 

1. Introduction 

Marine echoes, often referred to as sea clutter, are radar signals that are backscattered from 

the sea surface and are an inevitable occurrence for radars operating in maritime situations. 

Radar's main objective for some applications, such remote sensing systems, can be to capture 
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this backscatter signal. Sea backscatter is unwanted for other applications and can cause radar 

performance issues. 

The characteristics of Sea clutter can vary significantly depending on geographic location, 

season, and current environmental conditions. While designing the Radar systems these 

characteristics need to be considered to design appropriate signal processing methods for 

performance evaluation in varying situation. 

To achieve this, important step would be to design statistical model for the data of clutter 

returns with more accuracy. Developed models should be able to consider critical 

characteristics of the clutter returns like spatial and temporal behavior. 

Generally, clutter echo is modelled using the variety of properties, such as surface reflectance 

σ0, intensity distribution of clutter. Discrete clutter spikes, the polarisation scattering matrix, 

the clutter return spectrum, and the clutter return spatial variation. Area reflectivity determines 

the average Radar Cross-Section (RCS) (Parthiban et al., 2004; Hui et al., 2015) of the clutter 

echo per unit. 

The statistical behavior of the clutter echo from multiple thickly distributed scatters is 

generally used to characterize sea clutter; however, discrete scatters or isolated clutter spikes 

can also be observed and characterized, and then included into standard distributed clutter 

models. 

In Radar, grazing angle (M, A, Jabeen et al., 2014) is defined as the angle formed between the 

line drawn from the Radar sensor to a target on the surface and a tangent to the earth at the 

desired target's location. Typically grazing angle is less than 100 at the surface of the sea. and 

the area of consideration frequently stretches to the radar horizon. Echo from the sea can 

frequently resemble targets in these circumstances and can be quite challenging to differentiate 

from actual targets. The region where wind causes ocean waves to form. also describes the 

fetch area's length, measured with the wind in its direction. 

How the shape of the maritime clutter reflectance changes with grazing angle as seen in 

microwave Backscatter from the sea surface is due to the multiple reflection caused due to 

rough sea surface. Statistical models for backscattering uses a variety of irregular surface 

descriptions and approximations method to consider the scattering pattern. 

It is possible to simulate scattering from nearby wind-derived waves using Bragg (or resonant) 

scattering (Schoenecker et al.,2016). Longer waves on the sea cause ripples to tilt, which 

modifies the intensity of the scattered signals. This tilt effect is considered while creating 

composite model. 

Clutter reflectivity is commonly expressed as the normalised sea clutter Radar cross section, 

divided by illuminated surface area, σ0.  

Figure 1, depicts how the shape of the maritime clutter reflectance changes with grazing angle 

as seen in microwave radar. Backscatter for a typical I-band radar with respect to wind speed 

around 15 KN is demonstrated in below example (Watts,2013). 
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Figure 1.  Sea clutter reflectivity v/s grazing angle 

The incidence in quasi-specular backscattering is almost vertical (Watts, 2008; Rosenberg et 

al.,2019). When viewed from a completely flat surface, in quasi-specular region backscatter 

varies inversely with roughness of the sea surface, peaking at perpendicular incidence. At 

medium grazing angles, the reflectance shows less dependence on grazing angle, as this 

sample below around 50˚ from grazing illustrates; this region is sometimes called the plateau 

region. It is found that in interference region, which is often approximately 100 from grazing 

(critical angle) depending on roughness of sea surface, the sea reflectivity declines much 

quicker with decreasing grazing angles. 

 

2. Amplitude Statistics of Sea Clutter: 

The E-band radar, which solely uses the received signal's envelope for signal processing, is 

the one being examined in this investigation. Non-coherent statistics can be characterised 

using the envelope of the return which follows a square law detector of the radar return power. 

The mean clutter power is represented by the area reflectivity σ0. A single radar resolution 

cell's instantaneous power output ranges around this mean value. The PDF of the returns 

describes this variation. 

The fluctuations are mostly caused by two factors: 

• Firstly, depending on the grazing angle, rough surface, sea state, density of ripple, and 

supplementary multiple factors responsible with the flow of long waves. Backscatter caused 

due to small local areas fluctuates significantly around the mean of reflectivity. 

• Secondly, numerous tiny structures (commonly referred to as scatters) inside a radar 

resolution patch scatter, moving in relation to one another and interfering with the scattered 

signal (sometimes called speckle). 

Speckle is frequently explained as the product of a Gaussian scattering (Xue et.al.,2019) 

statistics-exhibiting uniform field of several random scatters. The PDF of these clutter returns 

amplitude, E, is represented by the Rayleigh distribution: 

P(E) = 
2E

x
exp(

−E2

x
)
 ; 0 ≤ E ≤ ꚙ         (1) 
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where the average value of E, 〈E〉 = (√π  x)/2; the mean square 〈En〉 = x; and the higher 

moments  

〈En〉 = x n
2⁄  γ(1 +  

n

2
); 

             By using a square-law detector, intensity of returns (Watts, 2008) PDF can be obtained 

as follows: 

P(z) = 
1

x
exp(

−z

x
)
 ; 0 ≤ z ≤ ꚙ                             (2) 

here z = E2, (z) = x & 〈zn〉 = n! xn 

When grazing angles exceed around 10˚ and dimensions of range cell is much bigger compared 

to wavelength sea swell, clutter is commonly defined as speckle with a Rayleigh distributed 

amplitude on radars with low spatial resolution. 

When a radar employs frequency agility, clutter echo often has very small temporal 

decorrelation durations between 5 and 10ms and are rather heavily decorrelated from pulse to 

pulse. With increased radar resolution and at lesser grazing angles, the clutter amplitude 

distribution is observed to have an extended tail and the clutter returns are sometimes described 

as becoming spiky. 

The high-resolution clutter amplitude has aspects of temporal and spatial correlation that are 

different from the speckle distribution and exhibit deviations from the Rayleigh distribution. 

Specifically, clutter no longer decorrelates with frequency agility, and correlation durations 

that were formerly milliseconds now reach seconds. 

2.1 Sea Clutter Amplitude Statistics Nature  

Measurements of low grazing angle, high-resolution sea clutter returns have revealed two 

critical parameters of the intensity fluctuations. 

First, a spatially fluctuating mean level is produced by set scattering of data points of with the 

long sea surface waves and wave complexity of the ocean. This property is independent of 

frequency agility and has a lengthy correlation time, because the clutter return in any resolution 

cell has numerous scatters, there is also a second speckle component. This can be related by 

using frequency agility or the scatters relative motion. 

2.2 Coherent Features of Sea Clutter in Radar 

Targets with a high enough radial velocity (Raynal, 2010) can be distinguished from clutter 

by coherent radars using Doppler processing. Nevertheless, the Doppler shifts of certain 

interesting targets won't differ all that much from the clutter's Doppler spectrum. Under such 

circumstances, for each potential situation, the designer of radars must have a complete 

knowledge of properties the Doppler spectrum. 

 

3. Low Grazing Angle Statistics 

Many models of the distribution of marine clutter amplitude have been created in an effort to 

functionally represent the observed distributions. The following are the three most popular 
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models namely Lognormal distribution, Weibull distribution, K distribution. 

3.1. The Log-Normal Distribution 

For the lognormal (Crisp et al.,2009; Ding et.al.,2020) the probability density function (PDF) 

of intensity z is as follows: 

P(z) = 
𝟏

√𝟐𝜫𝝈𝟐𝒛 𝒆𝒙𝒑
(−

(𝒍𝒐𝒈𝒆
[𝒛]

−𝝁)𝟐

𝟐
)

 ; 𝒛 > 𝟎                          (3) 

µ → scale parameter , σ → shape parameter. 

The distribution's mean (µ) and variance (σ2) are taken from a Gaussian (Yunhan Dong,2004) 

or normal distribution, of loge[z]. When low grazing angles are detected by a high resolution, 

horizontal polarisation radar, the statistics of sea clutter are similar to those of the log-normal 

distribution. (ϕ < 5˚). 

In general, the dynamic range of the real clutter distribution is typically overestimated by the 

Log-Normal model and underestimated by the Rayleigh model. 

From the perspective of detection, the Rayleigh distribution represents the best situation, 

whereas the Log-Normal distribution represents the worst-case scenario.  

3.2. Estimation of Parameters for Log-Normal Distribution 

The Maximum Likelihood (ML) estimate is a commonly used method for parameter 

estimation since it yields the best parameter estimates without requiring any prior knowledge 

about the data. 

The joint PDF is the product of the marginal PDFs if 'n' independent samples Z1, Z2..., Zn are 

taken from a distribution with 'm' parameters θ1, θ2, θ3… θm. 

The most likely collection of parameter values given the observed data is the ML estimate, 

which maximises the likelihood function's value. The ML estimate will maximise the log-

likelihood function as well because the logarithm function is a monotonic function. 

∑ 𝑳𝒏𝒏
𝒊=𝟏 (µ, 𝝈𝟐; 𝒛𝒊)                                                     (4) 

ML estimations of the parameter are obtained by taking the derivative of equation (4) with 

respect to the parameters µ & σ2, and setting each to zero. 

𝝁̂𝑴𝑳= 
𝟏

𝒏
∑ 𝒍𝒏𝒏

𝒊=𝟏 (𝒛𝒊)                                                     (5) 

𝝈̂𝑴𝑳= ∑ [𝒍𝒏
𝒏

𝒊=𝟏
(𝒛𝒊) − 𝝁̂𝑴𝑳]𝟐                                      (6) 

An accurate estimate of σ2 is provided by equation (6), albeit it is biased. This defines an 

impartial appraisal of a2: 

(𝝈̂𝑴𝑳)𝒖𝒏𝒃 = 
𝟏

(𝒏−𝟏)
∑ [𝒍𝒏

𝒏

𝒊=𝟏
(𝒛𝒊) − 𝝁̂𝑴𝑳]𝟐                   (7) 
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3.3. The Weibull Distribution 

The Weibull PDF (Xueli et.al.,2019) is a distribution with two parameters, of which the 

Rayleigh distribution is a particular instance. The skewness of the distribution is related to the 

first parameter of the distribution, the shape parameter, while the distribution is scaled by the 

second value, the scale parameter. 

When there is low grazing angle or high resolution, the Weibull PDF is recognised to depict 

marine debris fairly well. When shape and scale parameters are estimated correctly, the 

necessary spikiness and power characteristics of the returning echo signal can be simulated. 

The Weibull model has a PDF (Watts, 2008): 

P(z) = 
𝜸

𝝎̅
(

𝒛

𝝎̅
)

𝜸−𝟏
𝒆𝒙𝒑 (−(

𝒛

𝝎̅
) γ) ; z ≥ 0; γ ≥ 0; 𝝎̅  ≥ 𝟎  (8) 

where the scale parameter is denoted by 𝝎̅ and the shape parameter by γ. 

3.4. Estimation of Parameters for Weibull Distribution 

The ML estimates do not provide closed form solution. An iterative estimation method 

proposed by Menon provides estimates resulting in the selection of a false alarm rate for every 

value of γ and ω. The estimators are:  

𝜸̂𝑴𝒆𝒏={{
𝟔

𝝅𝟐

𝒏

𝒏−𝟏
[

𝟏

𝒏
∑ (

𝒏

𝒊=𝟏
𝒍𝒏(𝒛𝒊)𝟐 − (

𝟏

𝒏
∑ 𝒍𝒏 (𝒛𝒊))

𝒏

𝒊=𝟏

𝟐
]}𝟐      (9) 

𝝎̂=exp[
𝟏

𝒏
∑ 𝒍𝒏(𝒛𝒊) + 𝟎. 𝟓𝟕𝟕𝟐𝒏

𝒊=𝟏 𝜸̂𝑴𝒆𝒏
−𝟏]                                (10) 

3.5. The K-Distribution 

Sea clutter can be limited by the K-distribution, as demonstrated by the statistical outcomes of 

numerous tests conducted in the last few years. Under the radar beam, the received signal is 

interpreted by the K-distribution as a superposition of returns from several independent 

scatters. 

Two prominent components that have distinct correlation times and contribute to the amplitude 

distribution are revealed by analysis of the sea clutter data. 

Due to a scattered bunching connected to the long sea waves and swell structure, the spatially 

variable mean level is the first component. This is a frequency agility-insensitive component 

with a lengthy correlation time. The second "speckle" component arises from the clutter's 

numerous distributed characteristic in any range cell. 

This can be related by using frequency agility or the scatters relative motion. 

The speckle component of the compound K distribution has an exponential PDF of amplitude 

z with average x (Parthiban & Madhavan. et.al., 2004). 

P(z|x) = 
𝟏

𝒙
 𝒆𝒙𝒑−

𝒛

𝒙                                                        (11) 

 where a gamma PDF modulates x. 
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𝑷𝒄(𝒙) =  
𝒃𝒗

𝜞(𝒗)
𝒙𝒗−𝟏𝒆𝒙𝒑−𝒃𝒙                                           (12) 

 Using the parameters v for shape and b for scale (Watts & Rosenberg, 2013). 

In contrast to other models, comparison reveals that: 

• When the shape parameter of the k-distribution equals infinity, it reduces to the 

Rayleigh distribution. 

• Compared to the k-distribution, the Log-Normal distribution is consistently spikier. 

• The k-distribution and the Weibull are equal when the shape parameter is set to 0.5. 

Both distributions are quite similar throughout a wide range of shape parameter values; for 

higher values, the k-distribution is somewhat spikier than the Weibull, and for lower values, it 

is slightly less spiky. 

3.6. Estimation of Parameters for K-Distribution 

In real clutter, estimating local statistics directly and setting a threshold appropriately is the 

best method for adaptive detection. It is obvious that the accuracy achievable will rely on the 

size of the clutter patch used to estimate the statistics and the response rate needed in settings 

that change over time, like the transition from land to shallow waters in the sea. 

The total amplitude of the sea clutter returns in the K-distribution model (Baker, 1986) is given 

by two independent random variables as below: 

𝒂 = 𝒚. 𝒗                                    (13) 

where  𝑲𝒗−𝟏 (c𝒂) is vth order modified Bessel function of second kind, and c = √𝝅𝒅 is scale 

parameter. 

• The K-distribution decreases to the Rayleigh distribution when its shape parameter 

reaches infinity. 

• Compared to the K-distribution, the Log-Normal distribution normally shows more 

spikes. 

• Weibull distribution and the k-distribution are the same when the shape parameter is 

set to 0.5. 

3.7. RMS Error Calculation to find best fit 

A regression models that fits well yields projected values in radar applications that are in close 

agreement with the observed data values, particularly in the low Pfa region (i.e., Pfa < 0.1). 

Clutter statistics (Crisp & Rosenberg. et.al., 2009; Zhao et.al., 2023) can be evaluated for 

model fit using the Root Mean Square Error (RMSE). 

MSE = 
∑ (𝑷𝒊

𝒛−𝑷𝒊
𝒆𝒔𝒕)

𝟐𝑲

𝒊=𝟏

𝒌
                                      (16) 

where 𝑷𝒊
𝒛  denotes the measured frequency of a clutter sample with an amplitude falling 

between 𝒊𝒕𝒉and For the statistical model, 𝑷𝒊
𝒆𝒔𝒕is the estimated number of occurrences in the  
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𝒊𝒕𝒉 interval. The low Pfa region of the statistical model is divided into K intervals. 

In practice, as the histogram offset is removed we can achieve Pfa < 0.1 by calculating RMSE 

between observed occurrences and estimated occurrences, by leaving first 10 -15 intervals for 

the calculation. 

The statistical model giving least RMSE is the best fit for given dataset.  

 

4. Proposed Sea Clutter Model Based Detection 

A non-Rayleigh distribution is found to govern the weather clutter seen by an S-band radar. 

To reduce this kind of noise and identify targets, a new CFAR circuit must be designed. Our 

advantage will be economic in nature if we can implement the new CFAR circuit by changing 

the LOG/CFAR circuit that has already been applied in real-world scenarios. Results show 

that for many tiny data including goals, the log-normal distribution fits the data the best. 

4.1. Log-Normal Threshold Calculation: 

For lognormal distributions (Baker,1996), the probability density function (PDF) of the 

intensity z provided is known to exist by: 

𝑷𝑳𝑵(𝒛) =  
𝟏

𝒛√𝟐𝝅𝝈𝟐
𝒆𝒙𝒑 (−

𝒍𝒐𝒈𝒆
[𝒛]−𝝁𝟐

𝟐𝝈𝟐 ) ; z > 0 … from equation (3) 

where µ & u are the scale and shape parameters, respectively. 

Assuming that a comparator converts the signal z < Th to z = 0 when a threshold level Th is 

applied to the signal z that follows the distribution provided by Equation (3), the false alarm 

probability PN is as follows: 

𝑷𝑵 =  ∫ 𝑷𝑳𝑵(𝒛)𝒅𝒛 =  
𝟏

𝟐
−

𝟏

𝟐
𝒆𝒓𝒇 (

𝒍𝒏(𝑻𝒉)

√𝟐𝝈
)

∞

𝑻𝒉
                     (17) 

From equation (17), we can obtain an expression for calculating Th by fixing the value of PN 

& obtaining maximum likelihood estimate of shape parameter. A list of values of threshold 

obtained for various values of false-alarm probability and shape parameter estimate is shown 

below. 

Table 1: Calculation of Threshold for various values of PN (Probability of false alarm) using 

Log-Normal shape parameter estimate 𝒖𝒆𝒔𝒕. 

PN Th (expression) uest Th (value) Th 

10-4 exp(3.719* aest) 1.15 
72.0132 + (fixed 

offset) 
181 

10-3 exp (3.09 * aest) 1.15 
34.9354 + (fixed 

offset) 
144 

10-2 exp(2.3263*aesT) 1.15 14.516 + (fixed offset) 124 
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4.2. Weibull Threshold Calculation: 

The Weibull model has a PDF: 

𝑷𝒘𝒃(𝒛) =  
𝜸

𝝎̅
(

𝒛

𝝎̅
)

𝜸−𝟏
𝒆𝒙𝒑 ((

𝒛

𝝎̅
)𝜸) ; z ≥ 0; 𝜸 ≥ 0; 𝝎̅ ≥ 0 from equation (8) 

where the scale parameter is 𝝎̅ and the shape parameter is γ. 

For Weibull clutter (Raynal,2010), the correlation between the threshold to mean and false-

alarm probability can be computed using 

𝑷𝑵 =  ∫ 𝑷𝒘𝒃(𝒛)𝒅𝒛
∞

𝑻𝒉
= 𝒆𝒙𝒑 {− (

𝑻𝒉

𝝎̅
)

𝜸
}                         (18) 

where b is the characteristic and γ is the form parameter value (63.2 percentile value) i.e. 

0.632* 𝝎̅.  

A typical experimental calculation is shown in table below: 

Table 2: Calculation of Threshold for various values of PN (Probability of false alarm) using 

Weibull shape & scale parameter estimates yest & 𝒘𝒆𝒔𝒕. 

PN Th (expression) yest w  est 

      Th 

(after adding 

offset (31)) 

10-4 9.21^ (1/γ)*0.632*𝝎̅ 1.17 28.3 150 

10-3 9.21^ (1/γ)*0.632*𝝎̅ 1.17 28.3 124 

10-2 9.21^ (1/γ)*0.632*𝝎̅ 1.17 28.3 97 

4.3. K-Distribution Threshold Calculation 

We know that the overall amplitude of k-distributed clutter (D. J. Crisp, L. Rosenberg, 2009) 

is 

𝒇𝒌(𝒛) =  
𝟐𝒄

𝜞(𝒗)
(

𝒄𝒂

𝟐
)

𝒗
𝝂𝑲𝒗−𝟏

(𝒄𝒂) from equation (12) 

where c = √𝜋d is the scaling parameter and 𝐾𝑣−1(𝑐𝑎) is the 𝑣𝑡ℎ order modified Bessel function 

of second type. 

The average level of clutter in this instance is                                         

<E> = √
𝜋

𝑑

𝛤(𝜗+0.5)

2∗𝛤(𝜗)
 

The relationship between false-alarm probability[3] and CFAT multiplier 𝛼𝐹𝑇 is: 

𝑃𝐹𝐴 =
2

𝛤(𝑣)
 𝛼𝐹𝑇                                                      (19) 

From equation 19, we can compute Threshold for given PFA where 𝛼𝐹𝑇 = Threshold / mean 

clutter level. 

 

 



                                                                  Adaptive Sea-Clutter Model Based… R. Navya et al. 246  
 

Nanotechnology Perceptions Vol. 20 No. S6 (2024) 

4.4. System Interfacing Block Diagram 

 

Figure 2. Signal flow diagram 

4.5. Structure of Input Data to Clutter Analysis Module 

 

 

Figure 3. Representation of input dataset chosen for analysis 

Figure (3), represents the structure of data received at the input of sea clutter processing 

module. The maximum unambiguous range for PRF = 1800Hz is around 80km. This range 

scale is divided into 8192(8K) range resolution cells. The azimuth angle is divided into 

4096(4K) azimuth cells and an ACP signal is received at the beginning of each azimuth cell. 
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247 R. Navya et al. Adaptive Sea-Clutter Model Based....                                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S6 (2024) 

 

Figure 4. Decimation of values in dataset of analysis area for de-correlating sea clutter 

Analysis for sea clutter is done for samples in first 10km range as strength of sea clutter returns 

is significant in first 5–10 km from coastline as shown in Figure (4). 

Analysis dataset is decimated in both range bins and azimuth bins in order to de-correlate sea 

clutter and a histogram of resulting dataset is used for estimating parameters of standard sea 

clutter models as described in previous sections. 

 

5. Results and Discussion 

Matlab Analysis of one scan data obtained from s-band radar is plotted is as shown 

 

Figure 5. Polar chart of one scan data 
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Figure 6. Histogram of one scan data with PDF of Log-Normal, Weibull, & K-Distribution 

Estimates 

As shown in above Figure 5. Polar chart depicts the sea clutter return amplitude intensity at 

near range for the data set under consideration. Aa explained in previous sections histogram 

of the data set is generated as shown in Figure 6.  

On the same set of data which is decimated in both range bins and azimuth bins RMSE is 

determined for each statistical model as shown in Figure 7. With this analysis result it is found 

that Log-Normal model is Best fit for the considered data set. 

 

Figure 7. Root Mean Square Error Goodness of Fit Test Results for Selected Data of 

Analysis Area 
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Figure 8. Flowchart of implementation 

5.1 Implementation Results 

 

Figure 9. Polar chart before & after applying Log-Normal Threshold 
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Figure 10. PPI showing analysis area without & with application of log-normal threshold 

 

Figure 11. Histogram of recorded data with PDF & values of estimates 

Once the calculated threshold is applied the input data set, clutter returns for the give region is 

reduced drastically as shown in Figure 9 and Figure 10. Figure 11 depicts the histogram of 

data set under consideration with PDF & values of estimates for each statistical model. 

 

6. Conclusion 

To validate the developed sea clutter models, a sufficient number of experimentally acquired 

data samples that meet the following criteria must be obtained: 

• In order to eliminate the speckle component by averaging when determining the 

correlation length of the large-scale effects, each data set needs to contain several hundred 

returned pulses from each range bin. 
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• Several hundred returned pulses from each range bin are required in each data set to 

provide sufficient independent samples for analysis following subsampling, which eliminates 

data correlation. 

• The ideal antenna beam shape must be chosen to minimise any impact on recorded 

data. 

• To reduce the impact of noise on clutter characteristics, recorded data should have a 

high clutter-to-noise ratio. 

Therefore, by validating these models for amplitude data collected during each scan, the 

system may adjust the detection threshold adaptively to suit the conditions of the sea. 
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