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The Intelligent Mobile Data Collection (IMDC) framework is presented in this study for use in IoT-based sensor 

networks. Clusters of nearby Internet of Things (IoT) devices and sensors are organised using this approach. A 

gateway node acts as the coordinator of each cluster and is responsible for gathering information from its 

members, processing it, and then sending it on to the main data collector (MDC). In order to examine trends in 

data creation, the framework uses a labelling method called FRL (Very Rare Labels). Time intervals, packet 

numbers, and types are some of the parameters that can be used to classify clusters using these labels. Local 

models that take into account states, actions, and rewards are developed by individual Internet of Things (IoT) 

sensors or devices within the FRL framework using reinforcement learning (RL) approaches. After collecting 

data from various regional models, the gateway compiles it into a global model and returns it to the IoT-Internet 

of Things sensors. In addition, the framework uses cluster categories to find the MDC's sleep length, visitation 

time, and Time Division Multiple Access (TDMA) slots, among other factors. This framework's efficacy in 

lowering latency and energy usage during data collecting and enhancing accuracy is demonstrated by its 

implementation using NS2.  
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1. Introduction 

Modern developments in computing and networking have given rise to the phrase "Internet of Things" 

(IoT) in the last several years [1]. In an IoT system, every item that can be linked to the web over a 

wired or wireless network is considered a part of it. People, machines, or a mix of the two can make use 

of these systems. Internet of Things (IoT) systems often make use of Wireless Sensor Networks 

(WSNs), a flexible technology that can accommodate a wide range of applications and users. Energy 

savings, better resource optimisation, increased urban safety, and improved environmental 

sustainability are all possible outcomes of implementing Internet of Things (IoT) solutions. 

As the Internet moves away from its current state of centralization and towards decentralisation, new 

computational models such as , edge computing, cloud computing and fog computing are being 

proposed. The exponential development of AI and the IoT has piqued the interest of academics [3]. 

An essential feature of the Internet of Things (IoT) is its capacity to gather and process data. Mobile 

data collecting made possible by IoT networks allows for substantial energy savings. The main problem 
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with a mobile sink system is figuring out how to get data from nodes and getting everyone on the same 

page. Issues with preset variables are the only focus of traditional mobile data collection methods [4][5]. 

Improving the efficiency of data transmission can lead to better network performance and lower 

communication expenses. Intermittent power sources necessitate protocols and connections that can 

manage delays. Data throughput over radio connections can be improved by implementing effective 

scheduling algorithms for data transfer. Even in cases by high statistics rates and varied network 

dimensions, data loss can be minimised by optimising data reception rates. The presence of different 

devices is responsible for the decrease in system performance in the current setup [6]. 

The management, retrieval, exploration, and analysis of massive data sets produced by contemporary 

data gathering equipment for smart cities is becoming more and more of a challenge. Among these data 

sources are surveillance networks and consumer videos [8][9]. Data collecting has grown increasingly 

intricate in many IoT ecosystems. The ever-shifting placement of devices presents these systems with 

their greatest obstacle [10][11]. 

1.1 Problem Identification and Objectives 

Efficient data sharing or dissemination systems are crucial for Pervasive Sensing (PS) to guarantee cost-

effective and efficient data distribution across a comprehensive model. Optimising data collection 

requires careful consideration of nodes' latency, energy usage, and storage capacity. Furthermore, a 

dependable system with the ability to manage errors is essential in order to guarantee precise data 

collection. 

It is not feasible to allocate a fixed time slot to apiece node in the network because the rate at which 

packets are generated by different nodes varies. Reallocating slots for each node before every scheduling 

round may not be feasible in real-time scenarios due to the varying quantities and sources of dynamically 

generated packets [3]. 

When using mobile data collectors (MDCs) for data collection, if a cluster does not have any data to 

transmit during a particular time slot, the MDC must either skip that cluster or decrease the amount of 

time spent visiting it [5]. 

The primary goals of this study, derived from the identified issues, can be summarised as follows: 

• Create TDMA schedules for nodes according to their data generation patterns. 

• Develop a sleep scheduling policy for nodes based on their data generation patterns. 

• Establish a visitation schedule for MDCs by analysing the data generation patterns of the nodes. 

• Minimise the delay and decrease the amount of energy used when gathering data. 

 

2. Related Works 

One approach to the problem of how to distribute civic data efficiently in a smart city setting is the 

IPDCA, which was proposed by Walid-Osamy et al. [2]. In order to send data from several Access 

Points (APs) to a central Base Station (BS), the system employs data collectors, also called D-collection 

trucks. The discrete optimisation problem is solved by routing D-collectors using a modified Bat 

algorithm. Optimising resource utilisation is the goal of using a multi-objective suitability purpose to 

pick D-collectors in smart city scenarios. This function takes into account aspects including storage 

capacity, travel distance during collection, and the quantity of D-collectors. The results of the simulation 

show that the suggested approach works. 

With the goal of reducing latency and energy ingesting, Xiang et al. [3] presented a DEEDC system-

based matrix filling theory for efficient data assembly in WSN-Wireless Sensor Networks Using a 

clustering method, the DEEDC scheme determines transmission slots for each cluster while excluding 
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nodes that generate data. Eliminating the need to allocate time periods to specific nodes and preventing 

data duplication, this strategy streamlines the process of gathering random data in a network. 

Cos-mas Ifeanyi Nwakanma et al. [4] measured vibrations in actual time using the G-Link 200 sensor 

and transmitted the data to an online gateway using Long Short-Term Memory (LSTM). Being able to 

sort things into common and uncommon categories is a lifesaver in stressful times. In order to safeguard 

the privacy of its residents, this feature is commonly seen in more current models of smart homes. The 

sensor may also identify excessive or odd vibrations in smart manufacturing settings, eliminating the 

need for intrusive video monitoring. The study offers valuable insights for future analysis of sensor data. 

Sana Benhamaid et al. [5] proposed using Deep Q-learning with experience replay to determine the path 

of a mobile node in cluster-based systems and mobile data collection scenarios. This method adapts to 

significant changes in the environment, such as changes in the amount of data that can be captured, by 

exercise a neural network (NN) to learn about the atmosphere and then selecting an energy efficient 

route for the portable device. 

A modification to ZEAL was suggested by Aya H. Allam et al. [7] to improve the effectiveness of data 

transmission and energy usage in WSNs. An expanded set of subsink nodes as well as a mobile-sink 

node are made available by Improved ZEAL (E-ZEAL) through the utilization of K-means clustering. 

Experimental results obtained by the ns-3 simulator show that E-ZEAL outperforms ZEAL with respect 

to data collection speed, thanks to a 30% reduction in the number of hops and remoteness and an equal 

increase in the lifetime of the network. 

 

3. Proposed Solution 

3.1 Overview 

Designed with IoT sensor networks in mind, this article lays forth a framework for intelligent mobile 

data collection. The framework uses the Frequent, Less Frequent, and Rare Labels (FRL) to examine 

data creation patterns, which include time intervals, packet amounts, and packet kinds. Every Internet 

of Things (IoT) sensor and device is trained individually using reinforcement learning (RL) methods 

under the FRL paradigm. This training incorporates states, actions, and rewards. When these Internet 

of Things (IoT) sensors collect data, they send the characteristics of their local models to the gateway, 

which then combines them into a global model. The Internet of Things sensors are then updated with 

the values from this unified global model. The architecture also uses clustering categories to determine 

MDC visiting times, sleep length, and Time Division Multiple Access (TDMA) slots. 

3.2 System Model 

In this article, we offer an IoT-specific Intelligent Mobile Data Collection framework for sensor 

networks. Temporal, Quantitative, and Rare (FRL) Labels are used to examine data generating patterns 

such as packet amounts, kinds, and frequency intervals. Using RL techniques that incorporate states, 

actions, and incentives, the FRL methodology trains separate models for each Internet of Things (IoT) 

sensor or device. After that, the sensors send the parameters of their local models to the entry, where 

they can be combined into a universal model. The Internet of Things sensors are subsequently given the 

parameters from this combined global model. Mobile Data Collectors (MDCs) sleep for how long, how 

often they visit, and what Time Division Multiple Access (TDMA) slots they are all determined by the 

framework's clustering categories. 

3.3 Basics of FL 

Using Federated Learning (FL) algorithms, a group of people use IoT campaigns, such as smartphone, 

tablet, or laptop to do IoT activities together. With FL, IoT systems at the network's periphery can get 
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extensive intelligence, making them an essential component of the next-gen IoT networks. The reason 

behind this is that training AI and ML with data collected from scattered IoT devices is simply not 

feasible with a single Base Station (BS). The Internet of Things (IoT) and its users can work together 

to train a common global model using Federated Learning (FL), which preserves the raw data on the 

users' devices. As part of FL, every IoT user contributes their own dataset to train a shared local ML 

model. When an Internet of Things device has completed local training, it can send any revisions to its 

model to the base station (BS). After receiving these changes, the base station compiles them into one 

global model. 

 

Figure 1 System Model 

Typically, in a Federated Learning (FL) system, there is one FL server C(|C| ≥ 1), S, and several clients 

that work with it. Each client has their own private dataset, denoted as mU cCc
m


=

. Each client c 

updates the FL server S with its local parameters after training a model mc with its own dataset dc. By 

following a predefined aggregation rule, S gathers all the local models and gets the global model MG. 

Note that this is dissimilar from the conventional cloud-centric training method, wherein all client data 

is centralized and processed to train the model MG dU cCc
D
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Federated Learning (FL) training follows a three-step process, as seen in Figure 1: 

 

Step 1 (Task initialization and model distribution): S specifies the goal model, data requirements, and 

hyperparameters (such batch size) during round M G

0

. when choosing the exact training assignment. 

After that, it sends the initial configuration settings for the tasks and global model to every client that is 

involved. 

 Step 2 (Training and updating local model): During round t, every client c uses its local data to update 

its resident model M
t

G limits based on the global model m
c

t ,. This is the second step, training and 

updating the local prototypical. Finding the optimal limits m
c

t  that reduce the loss function is the goal

)(mL
c

t . Then client c sends the efficient local parameters to client S. 
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Step 3 (Aggregating and updating global model): S collections all the received local models during 

round t to curtail the global loss function. This process is known as updating the global model. After 

that, S updates the universal model and sends it out to the clients for exercise in round 
)(mL
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t   t+1, 
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3.4 Deep Reinforcement -Learning (D R-L) 

Reinforcement learning (R-L) is a mathematical outline that allows computation devices to learn from 

experience by interacting with the environment. 

In the field of reinforcement learning, an agent makes decisions on which actions to take by following 

a predetermined set of rules called a policy. These actions are then carried out within the given 

environment. Afterwards, the agent monitors the changing condition of the environment and is given 

rewards based on that. The agent consistently updates its policy through iterative cycles in order to 

improve its action selections. The agent's behaviour is influenced by the rewards offered by the 

environment, and its objective is to acquire the most effective strategy that maximises the anticipated 

rewards. The learning process of the agent differs depending on the specific reinforcement learning 

approach utilised. 

Deep reinforcement learning (DRL) expands upon the principles of reinforcement learning (RL) by 

incorporating deep neural networks. DRL utilises neural networks to train by using state and reward 

data obtained from actions, in order to determine the most optimal actions founded on the current state. 

In recent years, a multitude of DRL procedures have been introduced. 

3.5 Federated Reinforcement Learning (FRL) Process  

In order to improve reinforcement learning, FRL, which combines FL and RL methodologies [13], 

makes use of data from various settings. When compared to conventional DRLs, FRL performs better 

in situations where observations of the same environment are lacking. So, we use FRL to train the 

patterns of data creation of IoT devices and classify each cluster as either Very Rare, Less Frequent, 

Rare, or Frequent. 

Let K stand for a set that represents a group of people using Internet of Things (IoT) devices to execute 

an IoT job using a FRL algorithm. This involves the following basic steps:In this setup, FRL is used to 

learn how to create data patterns, such as time intervals, packet amounts, and packet types. 

▪ This instructional technique involves two individuals. The Data Client acts as the starting point, 

representing an IoT device. 

▪ Base stations or access points contain Aggregation Servers. 

▪ Internet of Things (IoT) users and the base station can collaborate on training a global model using 

FRL, with the raw data staying on the users' devices. 

▪ Each Internet of Things user, represented as k, contributes their own dataset, Dk∈K, to the training 

of a shared model. Then there's the FL model that learned from the IoT expedient—the local prototypical 

wk. 

▪ When the resident training is over, Internet of Things devices let the base station know by sending 

updates to their local models. The global model wG, a shared model, is formed by combining these 

updates. 

▪ The combination server at the base station can enhance training recital and safeguard user data 

privacy through distributed data training on IoT devices. 

▪ Finally, clusters are put into four groups:  
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(i) Most prevalent 

(ii) Less prevalent  

(iii) Infrequent  

(iv) Extremely uncommon 

3.5.1 FRL Algorithm  

The system's FRL comprises the subsequent key stages.  

i. All devices receive the initial global model from the gateway.  

ii. Using local information like as states, actions, and incentives, each device learns its own model. 

iii. States 

To ensure that an agent carries out the most effective action for a given situation, the state must contain 

relevant information. 

We created the initial value set to incorporate the cluster data.  

iv. Actions 

The actions involve displacing clusters in four cardinal directions, namely left, right, downward, 

upward, on the traffic map.  

v. Rewards 

• Appropriate rewards must be provided for an agent to learn well. 

• A reward is granted when there is a reduction in traffic, and conversely, a negative reward is given 

when there is an increase in traffic.  

• A reward is received if the traffic remains constant, the cluster remains in position, and it has fully 

utilised its network service capacity.  

• If the capability is not utilised, then a negative reward is obtained. 

1. The gateway receives the local model limits (W1,..., Wn) transmitted by the devices.  

2. The gateway is responsible for integrating the model limits into the global model.  

3. Before the global model is considered adequately trained, it is disseminated to the devices again 

with the limits of the combined model, WG. The process is then repeated as before. 

 

4. Experimental Results 

4.1 Mockup Parameters 

The Intellectual Mobile Data Collection utilizing FRL (IMDC-FR-L) system can be applied in NS3 

with the help of Python's FRL module. Table 1 displays the parameters used in the simulation. 

Table 1 Simulation settings 
Number  of Node(s) 20 – 100 

Size of the T-topology 50m * 50m 

MAC- protocol IEEE (802.15.4) 

Traffic -Source CBR and E(Exponential) 

Traffic -Flows 0.6 

Traffic -Rate 50-Kb 

Initial- Energy 15 -Joules 

Transmit -power 0.3 -watts 

Receiving -power 0.3 -watts 

4.2 Comparison Results 

For the purpose of evaluating IMDC-FRL, we compare it to the Intellectual Proficient Data Collection 

Approach (IPDCA) [2]. One of the criteria utilized in the evaluation is the packet delivery ratio. Other 
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metrics include computation cost, average residual energy, and packet drop. For this test, we shifted 

from using 20 nodes to using 100. Here you can view the outcomes of the comparison. 

Table 2 Delivery Ratio output 
Node(s) IMDC-FR-L IP-DCA 

0-20 0.9595 0.9223 

21-40 0.9536 0.9178 

41-60 0.9448 0.9087 

61-80 0.9427 0.9024 

81-100 0.9414 0.8962 

 

Figure 2 Packet Delivery ratio for varying nodes 

The values of the packet distribution ratio for dissimilar numbers of nodes are shown in Figure 2. The 

figure shows that compared to IPDCA, IMDC-FRL has a packet delivery ratio that is 4% higher. 

Table 3 Packet Drop output. 
Node(s) IMDC-FR-L IP-DCA 

0-20 3006 4582 

21-40 5445 7253 

41-60 6212 9465 

61-80 6731 9866 

81-100 7454 10497 

 

Figure 3 Packet Drop for varying nodes 

For different numbers of nodes, Figure 3 shows the packet drop rates. It is evident from the figure that 

IMDC-FRL has a 31% lower packet drop rate compared to IP-DCA. 

Table 4 Results of Computational Cost 
Node(s) IMDC-FR-L (Kb) IP-DCA (Kb) 

0-20 37.8 42.7 

21-40 42.6 45.2 
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41-60 47.8 57.0 

61-80 48.7 63 

81-100 64.6 98.5 

 

Figure 4 Computational Cost for varying nodes 

Computational Cost figures for different node counts are shown in Figure 4. According to the figure, 

IMDC-FRL has an 18% reduced computational cost compared to IP-DCA. 

Table 5 Output of Residual Energy 
Nodes IMDC-FRL (Joules) IP-DCA (Joules) 

20 12.57 11.10 

40 12.74 11.57 

60 13.55 12.33 

80 13.57 12.65 

100 13.73 13.10 

 

Figure 5 Residual Energy for erratic nodes 

For different numbers of nodes, Figure 5 shows the Residual Energy values. It is evident from the 

figure that IMDC-FRL has an 8% higher Residual Energy than the IPD-CA. 

4.3 Classification  Results 

The compare and contrast the classification performance of several techniques, including K-Means 

clustering, classic Federated Learning (F-L), and Federated Reinforcement Learning (FR-L). 

The metrics for specificity, sensitivity, and accuracy for all three ML algorithms in Table 6 and Figure 

6. 

Table 6 Results of Accuracy, sensitivity and specificity 
Metrics(M) FR-L F-L K-Means 

Accuracy 0.95 0.93 0.88 

Sensitivity 0.85 0.78 0.74 

Specificity 0.92 0.88 0.86 
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Figure 6 Results of Accuracy, sensitivity and Specificity 

According to Figure 6, the FRL method has a 2% better precision compared to FL and an 8% better 

accuracy compared to the K-Means Algorithm. In addition, FRL's sensitivity surpasses FL's by 6% and 

exceeds the K-Means algorithm's by 11%. Similarly, the K-Means process has a specificity of 7%, but 

FRL has a specificity that is 3% higher than FL. 

Figure 7 and Table 7 show the outcomes of the three Machine Learning algorithms' Recall(r), 

Precision(p), and F1-score(F1-s) assessments. 

Table 7: Results of Recall, Precision and F1-score 
Metrics(M) FR-L F-L K-Means 

Recall(r) 0.93 0.92 0.88 

Precision(p) 0.45 0.44 0.42 

F1 score (F1-s) 0.62 0.61 0.58 

 

Figure 7. Results of Recall(r), Precision(p) and F1-score(F-1). 

Figure 7 shows that when compared to FL and the K-Means Algorithm, FRL has a 2% higher Recall 

and a 4% higher Algorithm. With a 7% advantage over FL and an 11% advantage over the K-Means 

algorithm, FRL also has superior precision. Not only that, but the FRL's F1-score is 7% better than FL's 

and the K-Means algorithm's is 9% better. 

 

5. Conclusion  

To summarize, the framework suggested for Intelligent Mobile Data gathering (IMDC) in IoT-based 

sensor networks offers a methodical way to increase the effectiveness of data collection and the usage 

of resources. The system efficiently categorizes clusters of IoT devices by arranging them based on 

geographical proximity and use Frequent Reinforcement Learning (FRL) to identify patterns in data 

creation. It then modifies data gathering tactics accordingly. The use of local and global models created 
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using reinforcement learning techniques enables the efficient gathering and distribution of data 

collection parameters, resulting in decreased latency and energy usage. The application of the suggested 

framework in NS2 illustrates its efficacy in improving precision and efficiency. In the future, additional 

research and testing might focus on the ability of intelligent mobile data gathering systems to handle 

larger amounts of data and be used in real-world Internet of Things (IoT) installations. This would help 

to ensure that these systems continue to progress and can be used in an extensive range of practical 

applications. 
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