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Cardiovascular disease (CVD) remains a leading cause of mortality and morbidity worldwide. 

Furthermore, it is projected that worldwide, cardiovascular disease is the primary cause of death 

and loss of disability-adjusted life years. Over time, wealthy countries have seen a decrease in the 

rates of cardiovascular death, while the burden of cardiovascular disease has significantly 

increased in low-income and middle-income countries. The main clinical method for identifying 

irregularities in cardiac function is through the utilization of a standard 12-lead electrocardiogram 

(ECG) apparatus. The general public can be screened and physicians can receive additional 

evaluations through automated 12-lead ECG machines. Nonetheless, a manual ECG interpretation 

necessitates both expertise and time. In today's rapidly changing world, accurate diagnoses of 

cardiac abnormalities are crucial for patients' well-being. This paper mainly focuses on the 

classification of Normal ECG, Atrial flutter, Anteroseptal infarct, and Aortic Valve cardiovascular 

diseases using Artificial Intelligence techniques. For this study, a dataset of 19140 ECG signals 

was extracted from the MIMIC-IV-ECG dataset. The original dataset contains more than 15 

classes whereas for this study and the authors considered the following four classes namely 

Normal ECG, Atrial flutter, Anteroseptal infarct, and Aortic Valve. Each class identified 

represents the diagnosis of a particular set of ECG signals. Pre-processing was done on each ECG 

signal to prepare it for feature extraction using wavelet transform. A correlation matrix was used 

to select features after the feature extraction. Four algorithms namely “Random Forest (RF), K-

Nearest Neighbour (KNN), Gradient Boosting (GB), and Artificial Neural Network (ANN)” have 

been compared on the dataset to analyze the performance. ANN scored better than the other 

models. The performance accuracy is RF - 93.15%, KNN = 91.90%, GB – 92.42%, and ANN – 

94.50% respectively.  

 

Keywords: Cardiovascular disease (CVD), Artificial Intelligence, Artificial Neural Network 

(ANN), ECG Signal, Normal ECG, Atrial flutter, Anteroseptal infarct, Aortic Valve.  

http://www.nano-ntp.com/
mailto:er.arvee@rediffmail.com


                                      Prediction and Classification of Normal ECG…. Francis Densil Raj V et al. 49   
 

Nanotechnology Perceptions Vol. 20 No.S7 (2024) 

1. Introduction 

Cardiovascular abnormalities encompass a wide range of conditions that affect the heart and 

blood vessels. These abnormalities can vary in severity and can have a significant impact on 

an individual’s overall health and well-being. It is essential to accurately detect and classify 

these abnormalities to provide appropriate treatment and interventions. One method for 

detecting and classifying cardiovascular abnormalities is through the use of 

electrocardiography. Electrocardiography is a non-invasive technique that records the 

electrical activity of the heart. This allows healthcare professionals to assess the heart’s 

rhythm and identify any abnormalities. 

In the field of medical diagnostics, electrocardiogram classification plays a vital role in 

identifying various cardiac abnormalities and conditions. Accurate classification of 

electrocardiogram signals is crucial for diagnosing and monitoring heart conditions. 

Traditional methods of ECG classification have relied on manual analysis and domain 

expertise, which can be subjective and time-consuming. With the advancements in deep 

learning techniques, there has been a growing interest in using these methods to classify 

ECG signals automatically and accurately. Deep learning models have shown promising 

results in various aspects of ECG classification and prediction [1]. 

 

 

Fig. 1. ECG Signal [5] 

Electrocardiography (ECG) is a widely used diagnostic tool that records the electrical 

activity of the heart, providing valuable insights into cardiac function. One of the key 

features of an electrocardiogram (ECG) is the presence of the PQRS waveform, which 

reflects the depolarization and repolarization processes within the heart. The P wave 

represents atrial depolarization, the QRS complex signifies ventricular depolarization, and 

the T wave corresponds to ventricular repolarization.  

The analysis of the PQRS waveform can offer crucial information about the heart's health 

and reveal any underlying abnormalities [6][7]. For instance, changes in the morphology, 
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duration, or timing of these waveforms can indicate various cardiac conditions, such as 

arrhythmias, conduction disorders, or myocardial ischemia [8].  

Several studies have explored the techniques for ECG signal processing and analysis to 

improve the detection and classification of PQRS waveform abnormalities. One approach 

involves the use of wavelet transformation to remove noise and artifacts from the ECG 

signal, which can enhance the accuracy of T and P waves detection [6][9]. Another method 

focuses on recognizing and reducing interference on 12-lead electrocardiograms to ensure 

high-quality ECG recordings.  

By leveraging advanced signal processing algorithms and robust feature extraction 

techniques, researchers have developed automated systems for the recognition of 

cardiovascular diseases based on the analysis of the PQRS waveform. These advancements 

have the potential to assist clinicians in the early diagnosis and management of cardiac 

conditions, ultimately improving patient outcomes [6][7][8][9]. 

Deep learning models can automatically learn informative feature representations from raw 

ECG data, eliminating the need for handcrafted features. These models can process the raw 

signal data and extract relevant features in an end-to-end manner, leading to improved 

performance in classifying different types of abnormalities such as normal ECG, atrial 

flutter, anteroseptal infarct, and aortic valve issues. Source: Recently, deep learning has been 

successfully implemented in various domains such as computer vision, natural language 

processing, and speech recognition [2]. With the application of deep learning techniques, 

researchers have explored different methods to automatically classify ECG signals. 

These methods often involve the use of convolutional neural networks or recurrent neural 

networks or a combination of both. Deep learning techniques have the potential to 

revolutionize ECG classification by improving accuracy, efficiency, and the ability to handle 

large intra-class variations. By automatically extracting and learning features from ECG 

signals, deep learning models can enhance the diagnostic accuracy of cardiac diseases and 

reduce the possibility of an unexpected cardiac arrest [3]. 

The advantages of using deep learning algorithms in ECG classification are evident 

Firstly, deep learning models can handle large amounts of data and learn from it, allowing 

them to capture complex patterns and relationships within the ECG signals. This enables 

them to accurately classify different types of abnormalities and improve diagnostic accuracy. 

Additionally, deep learning models can adapt and learn from new data, making them more 

robust and versatile compared to traditional methods. Furthermore, the end-to-end nature of 

deep learning approaches eliminates the need for manual feature extraction, reducing 

subjectivity and saving time. Moreover, deep learning algorithms have been shown to 

outperform traditional machine learning approaches in various studies. They have proven to 

perform better in terms of specificity, sensitivity, and classification accuracy. Therefore, the 

application of deep learning techniques in ECG classification holds great promise for 

improving the accuracy and efficiency of diagnosing cardiac abnormalities such as normal 

ECG, atrial flutter, anteroseptal infarct, and aortic valve issues [4]. By leveraging the power 

of deep learning techniques, such as convolutional neural networks and recurrent neural 

networks, researchers have been able to achieve remarkable results in automatically 

classifying ECG signals. The classification of normal ECG, atrial flutter, anteroseptal infarct, 
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and aortic valve issues using deep learning techniques has the potential to provide accurate 

and timely diagnoses, enabling early intervention and improved patient outcomes. In 

conclusion, deep learning techniques have emerged as a promising approach for the 

classification of ECG signals [5]. 

They have the potential to revolutionize ECG classification by improving accuracy, 

efficiency, and the ability to handle large intra-class variations. The use of deep learning 

techniques in ECG classification, including the classification of normal ECG, atrial flutter, 

anteroseptal infarct, and aortic valve issues, has shown significant promise in improving 

diagnostic accuracy and efficiency [3]. It is crucial to remember that even though deep 

learning techniques show great potential, further research and validation are needed to ensure 

their reliability and effectiveness in real-world settings. 

This research compares a DL algorithm with multiple ML algorithms using a labeled 

collection of ECG signals to categorize them into four groups: Normal, Atrial Flutter, Aortic 

Valve, and Anteroseptal Infarction. The MIMIC-IV v1.0 dataset was refined to create a 

dataset consisting of 19,140 ECGs. Each category within the dataset corresponds to the 

diagnosis of a specific group of ECG signals: Normal, Atrial Flutter, Aortic Valve, and 

Anteroseptal Infarction. Prior to extracting features, each ECG signal underwent pre-

processing. Following feature extraction, features were chosen based on a correlation matrix. 

This study involves the comparison of four algorithms using the provided dataset. 

In conclusion, the classification of Normal, Atrial Flutter, Aortic Valve, and Anteroseptal 

Infarction conditions using deep learning techniques has shown great promise in improving 

diagnostic accuracy and treatment outcomes for cardiovascular diseases. By leveraging the 

power of deep learning algorithms, this study has made significant advancements in the 

classification of Normal, Atrial Flutter, Aortic Valve, and Anteroseptal Infarction conditions 

based on ECG signals. These advancements have the potential to revolutionize the 

assessment and treatment of patients with valve disorders, since deep learning algorithms 

have the potential to replicate or replace the multimodal evaluation and decision-making 

process currently conducted by healthcare professionals, leading to more efficient and 

precise diagnosis and treatment plans. Four algorithms namely “Random Forest (RF), K-

Nearest Neighbour (KNN), Gradient Boosting (GB), and Artificial Neural Network (ANN)” 

have been compared on the ECG signals to analyze the performance. ANN is better than the 

other models. The performance accuracy is RF – 92.7%, KNN = 83.8%, GB – 83.2%, and 

ANN – 93.5% respectively. In recent years, deep learning techniques have played a crucial 

role in the classification of Normal, Atrial Flutter, Aortic Valve, and Anteroseptal Infarction 

conditions, allowing for improved accuracy in the diagnosis and treatment. 

 

2. Related Work 

In our proposed study, the authors would like to predict and classify Normal ECG, Atrial 

Flutter, Anteroseptal Infarct, and Aortic Valve cardiovascular diseases from ECG signals. 

Some of the previous work is discussed here. 

The purpose of the study by Bhatt et al. focuses on utilizing machine learning techniques for 

effective cardiovascular disease (CVD) prediction, crucial for accurate diagnosis and 

prognosis in clinical settings. Various models such as random forest, decision tree classifier, 

multilayer perceptron, and Xgboost were employed, with the multilayer perceptron 
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demonstrating the highest accuracy of 87.28%. Feature selection methods and model 

comparison highlighted the importance of selecting appropriate algorithms to enhance 

prediction outcomes. Additionally, the study emphasizes the potential of machine learning in 

improving diagnostic accuracy and treatment planning for CVD patients, showcasing the 

significance of advanced algorithms in medical decision-making processes [10]. 

The research paper by Hassaballah et al. introduces an automatic arrhythmia classification 

approach for ECG heartbeat classification in smart healthcare systems, integrating 

metaheuristic optimization (MHO) with machine learning (ML) classifiers [2]. By 

optimizing the search parameters of classifiers like SVM, kNNs, GBDT, and RF, the 

proposed approach significantly enhances classification accuracy to 99.92% and sensitivity 

to 99.81%, outperforming existing methods through experiments on various databases [11]. 

The research paper by Ahmed explores Electrocardiogram (ECG) signal classification using 

deep learning methods like Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) networks. By investigating these techniques, the study aims to improve the 

accuracy and effectiveness of diagnosing various cardiac conditions through the analysis of 

ECG signals. The integration of CNN and LSTM models showcases a promising approach to 

enhancing ECG signal classification [12]. 

The study by Lee et al. developed an AI-enabled ECG model to detect obstructive coronary 

artery disease (CAD) using data from 4951 patients who underwent coronary angiography 

(CAG) [4]. The AI model, incorporating age, gender, and ECG data, showed comparable 

performance to traditional cardiovascular risk factors (CVRFs) with an AUC of 0.70 [4]. The 

model outperformed cardiologists in F1 score and was validated on an external cohort [4]. 

Combining ECG and CVRFs improved the AUC to 0.72, suggesting the model's potential as 

a clinical tool for identifying patients needing further diagnostic tests [13]. 

The study performed by Roy et al. investigates the use of deep learning and machine 

learning algorithms for detecting valvular heart diseases, achieving high accuracy with a 

modified Xception network model, which outperformed other models like LeNet-5, AlexNet, 

and VGG16 [5]. The study also found SVM and Random Forest to be the most effective 

among machine learning methods [14]. 

The paper by DİKER and AVCI focuses on the feature extraction and classification of 

Electrocardiogram (ECG) signals to diagnose heart disorders using a deep learning method. 

It employs a CNN for automatic feature extraction and an Extreme Learning Machine (ELM) 

for classification, attaining an accuracy of 88.33%, sensitivity of 89.47%, and specificity of 

87.80%. The study uses the publicly available PTB Diagnostic ECG database and compares 

the ELM's performance with other classifiers like k-NN, SVM, and Decision Trees, 

demonstrating superior results with the ELM [15]. 

This study by Thilagavathy et al. details a robust approach for real-time ECG signal enquiry 

and organization, employing “Discrete Wavelet Transform and Support Vector Machine 

(SVM)”. The approach comprises ECG signal preprocessing, feature extraction, and beat 

classification, achieving an impressive average classification accuracy of 98.67% on the 

MIT-BIH arrhythmia database. By utilizing level 4 estimated factors with Daubechies (db2) 

filter, the SVM classifier successfully categorizes ECG beats into six heartbeat types, 
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demonstrating significant potential for accurate ECG signal processing and classification 

[16]. 

Bhyri et al.'s study combines LabVIEW and wavelet transform to extract ECG features and 

diagnose diseases. For low resolution signals, a technique for R-peak detection using 

daubechies (db6) wavelet and Haar wavelet is devised. Important characteristics such as 

heart rate, ST segment, T-wave amplitude and length, Q-wave width, R-wave width, and 

frontal plane axis are extracted for heart disease diagnosis, addressing conditions like 

tachycardia, bradycardia, ventricular hypertrophy, and myocardial infarction. The study 

utilizes CSE ECG database and data from “S.G.G.S. Institute of Engineering and 

Technology” [17]. 

The study by Elias et al. focuses on utilizing deep learning techniques for 

electrocardiographic analysis to detect left-sided valvular heart disease. The study discusses 

the development of a deep learning model that demonstrates high performance in diagnosing 

a variety of left-sided valvular heart diseases, providing a promising approach for accurate 

and efficient disease detection. The model's effectiveness highlights the potential of artificial 

intelligence in improving cardiovascular disease diagnosis and patient care [18]. 

An approach by Sawano et al. a developed a deep learning-based artificial intelligence 

algorithm for diagnosing significant aortic regurgitation (AR) using electrocardiography 

(ECG). The dataset consisted of 29,859 paired ECG and echocardiography data, including 

412 AR cases. A multi-input neural network model outperformed a 2D-CNN model, 

demonstrating a significantly greater area under the receiver operating characteristic curve. 

The system intensive on the QRS composite in leads I and a VL when detecting AR. This 

innovative approach shows promise for sensing AR using 12-lead ECG data [19]. 

The research paper by Kwon et al. focused on developing an artificial intelligence (AI) 

algorithm to detect mitral regurgitation (MR) using electrocardiography (ECG). The 

algorithm was trained and validated using a large dataset of ECGs from two hospitals, 

demonstrating high accuracy in detecting MR. By analyzing 12-lead and single-lead ECGs, 

the AI algorithm identified key ECG regions crucial for MR diagnosis, offering promising 

results for early detection and prevention of MR progression [20]. 

The work by Tabassum et al. focuses on predicting cardiac diseases through 

Electrocardiogram (ECG) analysis using support vector machine (SVM). With excellent 

individual accuracies ranging from 83.3% to 88%, ECG measures such as heart rate, QRS 

complex, PR interval, ST segment elevation, and ST interval are used to identify arrhythmias 

such “atrial fibrillation, sinus tachycardia, myocardial infarction, and apnea”. The proposed 

method relies on time domain features extracted from ECG signals to model and identify 

various heart conditions effectively [21]. 

The study by Kwon, Lee, et al. developed and validated a deep learning-based algorithm 

combining a multilayer perceptron (MLP) and convolutional neural network (CNN) to detect 

significant aortic stenosis (AS) using 12-lead and single-lead ECGs. The algorithm 

demonstrated high accuracy, with AUCs of 0.884 and 0.861 for internal and external 

validation, respectively. The T-wave axis, age, and QTc were identified as the most 

important variables, and the sensitivity map showed the algorithm focused on the T wave of 

the precordial lead [22]. 
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The paper by Ramachandran et al. presents a hybrid model combining Convolutional Neural 

Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Fully Connected 

Layers (FCL) to classify electrocardiography (ECG) signals, particularly addressing the 

challenge of unbalanced datasets. Using data from the MIT-BIH arrhythmia record, the 

model achieved high accuracy and robustness in detecting ECG abnormalities, 

outperforming existing methods. The architecture includes three convolution blocks, batch 

normalization, and exponential linear units (ELUs) for consistent activation costs. The 

approach converts 1D ECG signals into 2D images to enhance feature extraction and 

classification accuracy [23]. 

In order to assist doctors in identifying individuals who might have gone undiagnosed with 

severe aortic stenosis (AS) and prioritizing these results for subsequent clinical assessment, 

Thomas et al.'s study proposes a Diagnostic Precision Algorithm. A deidentified dataset of 

1,147,157 echocardiogram results from 35 universities served as the basis for the algorithm's 

development. Aortic valve area [AVA], jet velocity [JV], and mean pressure gradient [MPG] 

are the three standard Doppler indices that must be present, with at least one of them in the 

severe AS range (according to the AHA/ACC criteria) and a recorded assessment of the 

severity of AS.  

A decision tree technique was utilized to create a Severe AS Index, which calculates the 

probability that a patient with comparable results would be diagnosed with severe AS, based 

on the division of the reports into training/validation and test datasets. When it came to 

determining the probability of a severe AS diagnosis and using that information to prioritize 

doctor follow-up for patients who might not yet have a serious diagnosis, the algorithm 

performed remarkably well [24]. 

Our work proposes a straightforward and efficient approach to extract characteristics from 

ECG data and compare them using three machine learning techniques and one deep learning 

algorithm. The literature study is utilised to categorise ECG signals into four distinct classes: 

Normal, Atrial Flutter, Aortic Valve, and Anteroseptal Infarction conditions. These classes 

are selected using the MIMIC-IV v1.0 dataset, which has not been extensively. 

 

3. Materials and Methods 

This particular section of the research paper is dedicated to the comprehensive discussion 

and elucidation of the processes involved in data collection, feature extraction, and the 

proposed method which forms the crux of the study.  Subsequently, the process of feature 

extraction, which involves the identification and extraction of pertinent characteristics or 

attributes from the collected data, will be elaborated upon in a thorough manner. Moreover, 

the section will delve into the intricacies of the proposed method, outlining the theoretical 

framework, algorithms, and procedures proposed by the researchers as a novel approach to 

addressing the research problem at hand. 

3.1 Data Collection 

This study have used the MIMIC IV dataset obtained from the publicly available database 

pysionet.org. The dataset contains approximately 800000 electrocardiograms collected from 

160000 patients. These ECG were of 12 Leads and 10 seconds of length. The dataset also 

came with a detailed measurement in the form of CSV file that contains subject_id, study_id, 
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report 1 to report 8, rr_interval, qrs_axis and so on. From the dataset authors filtered report 0 

and report 1 and then grouped together based on particular condition. For the study purpose 

from the above said dataset a subset was created with 19,140 ECGs.  

Table 1. Dataset Summary 

Feature Description 

Sample Population 9000 patients 

Total Observations 19140 ECG signals 

Patient_id A subject identifier that is unique across every record in the MIMIC-IV 

database. 
Trail_id The study in which the diagnostic ECG is associated with can be 

determined by an identifier. 
report_0 to report_8 An ECG machine-generated cardiology report in text format. There will 

be a varying number of report numbers, with potentially empty rows 

separating them. 
rr_interval It is the time interval between two successive R-waves, which are the 

prominent upward deflections in the ECG waveform. (msec) 
p_onset The point on the ECG where the P wave starts, marking the beginning of 

atrial depolarization.(msec) 
p_end The completion of the P wave in an ECG signal, marking the end of 

atrial depolarization. (msec) 
qrs_onset It marks the beginning of ventricular depolarization, which is the 

electrical activity that triggers the contraction of the ventricles in the 

heart. (msec) 
qrs_end The QRS end refers to the point in an electrocardiogram (ECG) 

waveform where the QRS complex transitions into the ST segment. 

(msec) 
p_axis The P axis is the mean electrical direction of atrial depolarization 

represented by the P wave on the ECG. (degrees) 
qrs_axis It refers to the net direction of the electrical activity of the heart during 

ventricular depolarization, specifically during the QRS complex. (-90 - 

+180 degrees) 
t_axis The T axis in ECG refers to the orientation of the electrical vector 

representing ventricular repolarization, specifically the T wave. 

(degrees) 

After the selection process, the dataset contains approximately 9000 subjects and 19140 

records. In the total 19140 records, 13398 were used for training and 5742 were used for 

testing. Each category within the dataset corresponds to the diagnosis of a specific group of 

ECG signals: Normal, Atrial Flutter, Aortic Valve, and Anteroseptal Infarction. The 

summary of the dataset is given in Table 1. 

For better understanding of the dataset, the selected classes are visualized in figure 2. 
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Fig. 2. Class Distribution 

 

3.2 Data Preprocessing 
3.2.1. Signal Filtering 

Signal filtering is a fundamental method utilized in the realm of electrocardiogram (ECG) 

signal processing, playing a pivotal role in the precise detection and examination of cardiac 

activity. The ECG signals, which serve as representations of the heart's electrical activity, 

frequently encounter a myriad of noise and interference sources. These undesirable elements 

can occur from a variety of origins including power line disturbances, muscle contractions, 

baseline drift, and motion artifacts. It is paramount to implement effective signal filtering 

techniques to separate the genuine cardiac signal from these external disruptions, 

consequently amplifying the dependability and accuracy of subsequent diagnostic 

assessments. The process of signal filtering aims to enhance the quality of ECG data by 

eliminating unwanted noise and artifacts, thus facilitating a clearer interpretation of the 

underlying cardiac activity patterns. By employing advanced filtering algorithms and 

methodologies, researchers and healthcare professionals can optimize the analysis and 

interpretation of ECG signals, thereby improving diagnostic outcomes and patient care. 

 
3.2.2. Baseline Wandering 

The selection of the Daubechies wavelet (db4) for signal decomposition is crucial in signal 

processing applications. The db4 wavelet stands out for its exceptional suitability for 

analyzing biomedical signals, mainly attributed to its optimal balance between smoothness 

and localization properties. When decomposing an ECG signal, it is recommended to 

decompose it into distinct low-frequency and high-frequency components at multiple levels. 

This multi-level decomposition strategy proves to be highly effective in isolating the low-

frequency baseline wandering component within the ECG signal. Following the 

decomposition process, it is essential to segregate the detail coefficients representing the 

high-frequency components from the approximation coefficients representing the low-
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frequency components. To further enhance the isolation of the low-frequency baseline 

wandering, it is common practice to nullify the detail coefficients at each level, thereby 

retaining only the approximation coefficients that effectively capture the baseline wander. 

The subsequent step involves signal reconstruction utilizing the modified coefficients, where 

the low-frequency approximation coefficients are preserved while the high-frequency details 

are eliminated.  

 

Fig. 3. Baseline Wandering Removal 

This reconstruction procedure plays a pivotal role in restoring the baseline of the signal 

without the interference of high-frequency cardiac activities. By subtracting the 

reconstructed baseline from the original noisy ECG signal, the operation effectively 

eliminates the baseline wandering, thereby preserving the integrity of the high-frequency 

cardiac signal within the ECG data.  

This comprehensive approach to signal processing not only aids in noise reduction but also 

ensures the accurate extraction of relevant physiological information embedded within 

biomedical signals. The utilization of advanced wavelet techniques, such as the Daubechies 

wavelet (db4), in signal decomposition processes showcases the significance of applying 

sophisticated mathematical methods in biomedical signal analysis. The process is shown in 

Fig. 3. 

The db4 wavelet has specific filter coefficients h[k] and g[k]. These coefficients are derived 

from the wavelet's scaling and wavelet functions, and their formula is given in equation (1) 

and (2).  

Low-pass filter coefficients h[k] for db4: 
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High-pass filter coefficients g[k] for db4: 

𝑔[0] =
1−√3

4√2
,  𝑔[1] =

−(3−√3)

4√2
,  𝑔[2] =

3+√3

4√2
,  𝑔[3] =

−(1+√3)

4√2
   (2) 

 

3.2.3. Noise Removal – High-Frequency 

Determining the appropriate cut-off frequency represents a crucial stage within the realm of 

signal processing. In the realm of processing electrocardiogram (ECG) signals, it is common 

to select a cut-off frequency around the range of 40-50 Hz to efficiently eliminate high-

frequency noise, a typical procedure in the domain. This procedure involves the creation of a 

low-pass filter, with Butterworth Filter Design. It distinguishes itself by maintaining a flat 

frequency response, rendering it a preferred choice across many applications due to its 

reliability and performance. The transfer function H(s) of an N-order Butterworth filter is 

given in equation (3). 

𝐻(𝑠) =
1

√1+(
𝑠

𝜔𝑐
)

2𝑁

   (3) 

 

After determining the cut-off frequency, the subsequent step involves conducting wavelet 

decomposition on the ECG signal, a process that demands the selection of a suitable wavelet, 

such as the Daubechies wavelet, and the identification of the necessary level of 

decomposition essential for the analytical procedures. Following this stage, thresholding 

procedures are implemented to eliminate any traces of high-frequency noise present in the 

signal, with the decision on whether to employ soft or hard thresholding approaches 

contingent on the specific requirements of noise reduction dictated by the task at hand. 

Following this, the developed low-pass filter is applied to the ECG signal to further bolster 

the noise reduction efforts. The wavelet decomposition phase is reiterated to ensure a 

comprehensive elimination of noise, underscoring the critical nature of selecting the 

appropriate wavelet type and decomposition level. Thresholding techniques are reintroduced 

to fine-tune the noise reduction process, with the selection between soft and hard 

thresholding strategies being tailored to match the unique noise characteristics exhibited by 

the signal. 

The refined ECG signal, now stripped of high-frequency noise elements, is subject to 

optional smoothing through the utilization of a filter to address any residual noise artifacts 

that may persist. The role of visualization is paramount in the assessment process, with the 

filtered ECG signal graphed alongside the original signal to facilitate a comparative analysis 

of the efficacy of noise reduction techniques employed. In order to gauge the enhancement in 

signal quality in a quantitative manner, the signal-to-noise ratio (SNR) is computed, 

furnishing invaluable insights into the success of the noise reduction methodologies 

deployed. 

Ultimately, the resultant output comprises the filtered ECG signal, now devoid of high-

frequency noise, and deemed appropriate for subsequent analysis or diagnostic purposes. The 
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methodical approach of selecting the cut-off frequency, crafting filters, conducting wavelet 

decomposition, applying thresholding, and assessing signal quality through SNR calculations 

ensures a thorough and robust methodology for noise reduction in ECG signal processing 

and is shown in Fig. 4. 

 
Fig. 4. Noise Removal – High-Frequency 

 
3.2.4. Feature Extraction 

Various characteristics can be derived from ECG signals across different domains, as 

evidenced in prior studies [9, 19, 23]. Key domains encompass time, frequency, time-

frequency, and decomposition. This research focuses on time domain attributes, extracting 

21 features from each ECG signal lead, resulting in a total of 252 features (21 features 

multiplied by 12 leads). The initial step involved the detection of R-peaks, serving as a 

reference for identifying Q and S waves. The QRS complex detection commonly employs 

Discrete Wavelet Transform (DWT). The current investigation utilizes the Haar wavelet for 

R-peak detection. R-peaks were identified by initially decomposing the signal by one level 

into low and high frequency components. The low frequency components approximate the 

original signal, while the high frequency components carry details on high frequency 

elements. Given the high-frequency nature of the R wave, emphasis was placed on the high-

frequency component. To highlight the R wave's location, the high-frequency component 

was squared. Additionally, a threshold of 1.5 times the standard deviation of the signal was 

applied to filter out peaks exceeding the threshold amplitude. As the signal was decomposed 

by one level, the high-frequency signal became half the length of the original signal, 

necessitating upsampling by 2^1 to align with the original signal's scale, with 1 denoting the 

decomposition level utilized. With the signal obtained, the original R peak was detected as 

follows. 

The act of distinguishing the ECG signal is carried out to accentuate the QRS complex. This 

process aids in bringing attention to the swift alterations within the signal, which are 

distinctive of the QRS complex as given in equation (4).  

𝑦(𝑛) = 𝑥(𝑛) − 𝑥(𝑛 − 1)  (4) 

By squaring the differentiated signal, the peaks are further highlighted while smaller signal 

fluctuations are subdued. The same is achieved using equation (5).   
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𝑦(𝑛) = [𝑥(𝑛)]2   (5) 

The squared signal is then integrated over a dynamic window to produce a more even signal 

where the QRS complexes are more conspicuous. The identification of the R peaks within 

the identified QRS complexes involves locating the highest value within each detected QRS 

complex window by applying equation (6). 

𝑦(𝑛) =
1

𝑁
∑𝑖=0

𝑁−1  𝑥(𝑛 − 𝑖)  (6) 

The R peak is identified from the resultant signal with the following steps. 

• A window consisting of 39 data samples is carefully chosen both before and after the 

estimated position of an R-peak in the signal under analysis.  

• In this selected window, the precise positions of the lowest and highest amplitudes are 

identified through thorough examination.  

• Furthermore, within this specific window, the position corresponding to the amplitude 

with the highest magnitude is pinpointed if its absolute value surpasses that of the amplitude 

with the lowest magnitude within the same window.  

• Conversely, if the absolute value of the highest amplitude does not exceed that of the 

lowest amplitude within the window, then the location of the smallest amplitude is deemed 

more relevant and is thus selected.  

• This critical process of detecting R peaks is elegantly illustrated in Figure 6, providing a 

visual aid to better understand the intricate steps involved in this crucial stage of signal 

processing.  

• The deliberate selection of a 39-sample window before and after the approximate R-

peak location is fundamental in ensuring accurate detection and analysis.  

• Identifying the minimum and maximum amplitudes within this window is essential for 

subsequent computations and interpretations of the signal characteristics. 

• The strategic choice between the location of the highest and lowest amplitudes based on 

their absolute values within the window significantly impacts the precision and reliability of 

R-peak detection algorithms. 

• The visual representation of this detection process in Figure 5 serves as a valuable 

reference for researchers and practitioners in the field of signal processing, offering insights 

into the methodology and considerations involved in this critical stage. 
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Fig. 5. R Peak Detection 

After the identification of the R-peak positions in the signal, the process of locating the Q 

and S waves became straightforward and facilitated. In order to pinpoint these particular 

waves, a window of 39 samples is employed for analysis purposes. The identification of the 

Q-wave position entailed determining the position of the lowest amplitude within a window 

of 39 samples to the left of each R-wave location. Moreover, the localization of the S wave 

involved identifying the position of the smallest amplitude within a 39-sample window 

extending to the right from the R-wave location. 

Subsequent to identifying the location of the Q wave, the task of pinpointing the P waves 

involved locating the maximum magnitude (or amplitude) within a 65-sample window to the 

left of the Q wave. Additionally, the determination of the T wave location was established by 

identifying the maximum amplitude within a range of 100 frames to the right of the S wave. 

 

3.2.5 Feature Selection 

The file containing machine measurements that accompanied the dataset included 9 ECG 

features, and these features were left unchanged in their original state. However, the 

rr_interval features were excluded from the pool of 252 features that were extracted because 
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they were already present in the machine measurements file. In addition, a correlation matrix 

was formulated with the objective of identifying which features exhibit correlations among 

themselves. By defining a correlation threshold of 0.6, any pair of attributes demonstrating a 

correlation above 0.6 had one of them taken out, leading to a selection of 21 attributes. 

Afterwards, these 21 handpicked qualities were integrated with the initial 9 qualities, 

resulting in a grand total of 30 qualities in the dataset. This process ensured that only non-

repetitive and uncorrelated features were considered for further analysis and modeling 

purposes. 

 

4. Proposed Method 

This research employs four distinct algorithms for modeling the selected characteristics, 

namely Random Forest (RF), K-Nearest Neighbours (KNN), Gradient Boosting (GB), and 

Artificial Neural Network (ANN). 

In the conducted research, the Random Forest algorithm was utilized in the MIMIC IV 

dataset to process the initial machine measurement characteristics presented in a csv file 

format. Subsequently, the same algorithm was applied to the extracted features from the 

data. Both approaches exhibited discrepancies in terms of the training accuracy and the 

testing accuracy. To address this issue, the analysis involved the elimination of the rr interval 

derived from the ECG signals, as well as the exclusion of correlated features within the data 

signals. The ideal execution was seen when the overall number of estimators applied in the 

Random Forest model was altered to either 300 or 600. Notably, the Random Forest 

Classifier demonstrated a commendable accuracy rate of 93.15% when employing 300 

estimators. This finding underscores the significance of parameter tuning and feature 

selection in enhancing the predictive capabilities of the Random Forest model. The results 

suggest that refining the input features and tuning the algorithm parameters are crucial steps 

in optimizing the performance of machine learning models like Random Forest. 

Furthermore, these results emphasize the role of preprocessing techniques in enhancing the 

overall efficiency and accuracy of predictive modeling algorithms. 

The K-Nearest Neighbor method, a fundamental technique in machine learning rooted in 

supervised learning principles, operates on the premise of similarities between new and 

existing data points. By assigning new data to the category most akin to current ones, it 

leverages all available data for classification based on similarities. This method, known for 

its adaptability, is versatile for regression and classification tasks, though primarily used for 

classification challenges. As a non-parametric algorithm, the K-Nearest Neighbor does not 

assume any underlying data patterns. It is recognized as a diligent-learner as it retains 

information from the training set, acting on it at the classification stage. By preserving the 

dataset during training and categorizing new data based on similarity, this algorithm can 

effectively classify incoming data. The classification accuracy depends on the choice of the 

number of neighbors, such as in the case where the K Neighbors Classifier yields a score of 

91.90% with 2 neighbors. 

In this research, we investigated the utilization of the gradient boost algorithm in forecasting 

cardiovascular disease using the MIMIC IV dataset, an extensive electronic health record 

repository. The MIMIC IV dataset encompasses a vast array of data concerning patient 

characteristics, medical background, test results, and clinical consequences. Data 
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preprocessing was conducted, involving the selection of pertinent attributes and handling 

missing data. Subsequently, the gradient boost algorithm underwent training on the refined 

dataset, and its efficacy was assessed through diverse metrics such as accuracy, precision, 

recall, and F1-score. The outcomes demonstrate that the gradient boost model achieves a 

prediction accuracy of 92.42%, alongside an area under the receiver operating characteristic 

curve of 96.6%. This investigation underscores the capacity of the gradient boost algorithm 

to precisely predict cardiovascular conditions like Normal, Atrial Flutter, Aortic Valve, and 

Anteroseptal Infarction. 

The developed algorithm is an ANN comprising 8 layers, with a total of 7 hidden layers, 

including 6 dense layers and one dropout layer incorporated into its structure. The input 

shape of the algorithm is connected to the initial hidden layer within the network. The 

Rectified Linear Unit (ReLu) functions as the activation function for the 7 hidden layers, 

whereas the SoftMax function is employed as the activation function for the output layer. 

The model is compiled using categorical cross-entropy as the loss function, the Adammax 

activation function, and accuracy as the evaluation metric. Moreover, the model underwent 

training for 200 epochs, using a batch size of 16 instances. To enhance the training process, 

the model is equipped with both a model checkpoint and early stopping callbacks. The model 

checkpoint callback is responsible for saving the model's weights and biases whenever there 

is an enhancement in a specified model metric. Conversely, the early stopping callback 

continuously evaluates a specific metric and halts the training procedure if there is no 

improvement observed over a predefined number of epochs, also known as patience. A 

schematic representation of the model architecture is depicted in Figure 6. 

 
Fig. 6. Model Architecture 
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5. Results and Discussion 

The model resulting from the application of each algorithm was employed in analyzing the 

test dataset. This process involved utilizing various evaluation metrics such as the "confusion 

matrix", "accuracy", "precision", "recall", "f1-score", and "AUC ROC" to assess the 

predicted labels of the test dataset. The confusion matrix is a vital tool that showcases the 

classification model's performance in a structured table format, regardless of whether it is a 

binary or multiclass classification issue. Furthermore, the confusion matrix serves as the 

cornerstone for deriving essential performance metrics like accuracy, f1-score, and precision. 

These metrics are pivotal in assessing the effectiveness and efficiency of the classification 

models under examination. Significantly, the confusion matrices for each of the four models 

established in this research endeavour are shown in Figure 7. The visual representation 

provided by the confusion matrices offers valuable insights into the classification 

performance of the models. Furthermore, the analysis of these matrices enables a 

comprehensive understanding of how well the models are able to classify the data points 

accurately. The evaluation of diverse metrics derived from the confusion matrices helps in 

ascertaining the strengths and limitations of the various models. Overall, the utilization of 

these evaluation techniques contributes to a thorough assessment of the classification 

algorithms' performance in handling the test dataset. 

 

Fig. 7. Confusion Matrix ('Anteroseptal Infarction': 0, 'Aortic Valve': 1, 'Atrial Flutter': 2, 

'Normal': 3) 

The x-axis represents the classes that are actually observed, while the y-axis denotes the 

classes that are predicted by a model. Each cell within the matrix corresponds to a specific 
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pair of predicted and actual classes, illustrating the frequency of instances where the 

prediction does not align with the ground truth. It is evident that the values present along the 

main diagonal indicate the number of instances where the predicted and actual classes match. 

By summing the values along this diagonal, the authors obtain the total count of accurately 

predicted records, whereas summing the remaining cells, excluding the diagonal, reveals the 

number of misclassifications.  

For instance, considering the confusion matrix of an Artificial Neural Network (ANN), the 

cell (0, 0) signifies that 1699 instances were correctly predicted as Anteroseptal Infarction. 

Furthermore, cell (1, 0) highlights those 21 instances were erroneously classified as 

'Anteroseptal Infarction' when they actually belong to the class 'Aortic Valve'. This analytical 

framework provides a comprehensive overview of the model's performance in differentiating 

between classes and offers insights into the nature of prediction errors that occur. The 

structured arrangement of the confusion matrix facilitates a detailed analysis of the model's 

capabilities and shortcomings in classifying data accurately. Understanding the distribution 

of predictions across various classes enables practitioners to fine-tune models and enhance 

their predictive accuracy for real-world applications. Evaluating the confusion matrix is 

crucial in assessing the effectiveness of classification algorithms and guiding improvements 

to optimize model performance for diverse datasets. 

Remember or sensitivity, conversely, shows the proportion of accurate positive records 

among the total positive records based on a specified threshold. Precision, however, points to 

the percentage of true positive entries among the overall entries classified as positive based 

on a specific threshold. However, memory or reactivity indicates the fraction of correct 

positive instances within the total positive instances depending on a specified threshold. The 

F1-score, a metric that integrates precision and recall, offers a well-balanced evaluation of a 

model's performance. Moreover, the "Area Under the Curve (AUC)" of the "Receiver 

Operating Characteristic (ROC)" curve, commonly referred to as AUC ROC, is a significant 

metric in evaluating classification models. The ROC curve visually represents the trade-offs 

between True Positive Rate and False Positive Rate for varying threshold values, offering 

insights into model performance. An integral metric in evaluating classification models is the 

AUC ROC, which denotes the Area Under the Curve of the Receiver Operating 

Characteristic curve. The ROC curves for each model formulated in the investigation are 

delineated in Figure 8, exhibiting a visual juxtaposition of their performance in terms of true 

positive and false positive rates at various thresholds. 
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Fig. 8. ROC Curves 

After an exhaustive review of the ROC curves showcased above, it is evident that both the 

Artificial Neural Network (ANN) and Random Forest (RF) models demonstrate curves that 

are positioned closest to the top-left corner of the graph in relation to the other models. After 

an in-depth evaluation of the ROC curves shown above, it is obvious that both the Artificial 

Neural Network (ANN) and Random Forest (RF) models showcase curves that are 

positioned closest to the top-left corner of the graph when contrasted with the other models. 

Furthermore, it is noteworthy that both the ANN and RF models boast an impressive AUC 

score of 0.99. This high AUC value signifies that these models excel in accurately 

identifying positive classes while effectively steering clear of false positive classifications. In 

essence, the proximity of the ROC curves to the top-left corner and the exceptional AUC 

values of 0.99 for both the ANN and RF models collectively indicate their superior 

performance in distinguishing positive classes with a minimal rate of false positives. 

Consequently, these findings underscore the robustness and reliability of the ANN and RF 

models in the context of classification tasks. 

Table 2. Performance of the Models 
Model/Me

tric 

Precision Recall F1 score Accuracy 

(%) 

AUC ROC 

ANN 93.6 93.5 94.23 94.50 98.7 

RF 92.8 92.7 92.6 93.15 99.2 

GB 92.12 92.42 92.15 92.42 96.6 

KNN 86.4 91.90 91.20 91.90 94.5 
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The outcomes related to the performance metrics of each model are detailed in Table 2. 

Upon examination, it is apparent that the Artificial Neural Network (ANN) demonstrates a 

noteworthy accuracy rate of 94.5%, a precision score of 93.6%, a recall rate of 93.5%, an f1-

score of 94.23%, and an outstanding Area Under the Receiver Operating Characteristic 

Curve (AUCROC) value of 98.7%. These statistics collectively indicate that ANN 

outperforms other conventional machine learning algorithms in the dataset under 

examination. Furthermore, a graphical representation in the form of a bar graph is displayed 

in Figure. 9 to visually illustrate the accuracy levels linked with each model under scrutiny. 

This visualization serves to aid in the comprehension of the relative performance of the 

models in a single view, thereby fostering a more intuitive understanding of their specific 

capabilities and limitations within the given dataset. In general, the precise numerical values 

and the visual representation collectively provide a thorough understanding of the 

effectiveness and strength of the different machine learning models utilized in the research, 

offering valuable insights for further analysis and decision-making processes in the realm of 

predictive modeling and data analysis. 

 

Fig. 9. Model Accuracy Comparison 

 

6. Conclusion 

The research has performed a comparative evaluation of the effectiveness of three machine 

learning (ML) algorithms, “Random Forest (RF)”, “Gradient Boosting (GB)”, and “k-

Nearest Neighbors (KNN)”, along with a deep learning (DL) algorithm, Artificial Neural 

Network (ANN), on a subset of the MIMIC-IV version 1.0 dataset, which includes four 

distinct categories: Normal, Atrial Flutter, Aortic Valve, and Anteroseptal Infarction. In 

addition, the examination has utilized wavelet transforms for the preprocessing of 

electrocardiogram (ECG) signals and the identification of R peaks, thus providing a basis for 

detecting other fundamental ECG features. Moreover, a straightforward and efficient 

approach has been utilized to identify the peaks of the remaining ECG waves. In conclusion, 

the recommended Artificial Neural Network (ANN) model has displayed superior 

performance over traditional Machine Learning (ML) algorithms, reaching an accuracy rate 

of 94.50% and an Area Under the Receiver Operating Characteristic curve (AUC ROC) of 

98.7%. Moreover, the Random Forest (RF) algorithms have demonstrated notable outcomes 

with an accuracy of 93.15% and an AUC ROC of 99.2%. This inquiry marks an initial step 
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in the categorization of normal, atrial flutter, aortic valve, and anteroseptal infarction within 

the MIMIC-IV v1.0 dataset. Prospective research endeavours aimed at enhancing model 

efficacy could involve the implementation of multi-input models that assimilate both the 

extracted features and raw ECG signals. Additionally, alternative forms of ECG signal 

representation could be incorporated into the multi-input model or assessed individually to 

evaluate the efficacy of diverse algorithms across the MIMIC-IV series of datasets. 

 

 

References 

1. D. KC, C. Zhang, C. Gniady, A. P. Sandeep and S. K. Sharma. "SIM-ECG: A Signal 

Importance Mask-driven ECG Classification System". Jan. 2021. 

2. W. Cai, S. Hu, J. Yang and J. Cao. "Automatic 12-lead ECG Classification Using Deep Neural 

Networks". Dec. 2020. 

3. S. Liu, X. Su, Q. Yao and G. Chen. "Automatic classification and detection of 12-lead 

electrocardiogram signal classification with Fourier convolutions". Aug. 2023. 

4. Z. Li and H. Zhang. "Automatic Detection for Multi-Labeled Cardiac Arrhythmia Based on 

Frame Blocking Preprocessing and Residual Networks". Mar. 2021. 

5. G. Fennessy, “ECG rule of fours,” Life in the Fast Lane • LITFL, Dec. 23, 2020. 

https://litfl.com/ecg-rule-of-fours/ 

6. Y. Yan, J.-W. Zhang, G.-Y. Zang, and J. Pu, “The primary use of artificial intelligence in 

cardiovascular diseases: what kind of potential role does artificial intelligence play in future 

medicine?,” PubMed, vol. 16, no. 8, pp. 585–591, Aug. 2019, doi: 10.11909/j.issn.1671-

5411.2019.08.010. 

7. D. Gala, H. Behl, M. Shah, and A. N. Makaryus, “The role of Artificial intelligence in 

improving patient Outcomes and Future of healthcare Delivery in Cardiology: A Narrative 

Review of the literature,” Healthcare, vol. 12, no. 4, p. 481, Feb. 2024, doi: 

10.3390/healthcare12040481. 

8. F. Mohsen, B. Al-Saadi, N. Abdi, S. Khan, and Z. Shah, “Artificial Intelligence-Based 

Methods for Precision Cardiovascular Medicine,” Journal of Personalized Medicine, vol. 13, 

no. 8, p. 1268, Aug. 2023, doi: 10.3390/jpm13081268. 

9. Ł. Ledziński and G. Grześk, “Artificial intelligence Technologies in Cardiology,” Journal of 

Cardiovascular Development and Disease, vol. 10, no. 5, p. 202, May 2023, doi: 

10.3390/jcdd10050202. 

10. C. M. Bhatt, P. Patel, T. Ghetia, and P. L. Mazzeo, “Effective heart disease prediction using 

machine learning techniques,” Algorithms, vol. 16, no. 2, p. 88, Feb. 2023, doi: 

10.3390/a16020088. 

11. M. Hassaballah, Y. M. Wazery, I. E. Ibrahim, and A. Farag, “ECG heartbeat classification 

using machine learning and metaheuristic optimization for smart healthcare systems,” 

Bioengineering, vol. 10, no. 4, p. 429, Mar. 2023, doi: 10.3390/bioengineering10040429. 

12. Ahmed, “Electrocardiogram signal classification based on deep learning techniques,” Research 

Square (Research Square), Jun. 2023, doi: 10.21203/rs.3.rs-3093804/v1. 

13. Lee, Y., Hsieh, M., Chang, C., Tsai, Y., Chou, R., Lu, H. H., & Huang, P. (2023b). Improving 

detection of obstructive coronary artery disease with an artificial intelligence-enabled 

electrocardiogram algorithm. Atherosclerosis, 381, 117238. 

https://doi.org/10.1016/j.atherosclerosis.2023.117238. 

14. T. S. Roy, J. K. Roy, and N. Mandal, “Classifier identification using deep learning and 

machine learning algorithms for the detection of valvular heart diseases,” Biomedical 

Engineering Advances, vol. 3, p. 100035, Jun. 2022, doi: 10.1016/j.bea.2022.100035. 



                                      Prediction and Classification of Normal ECG…. Francis Densil Raj V et al. 69   
 

Nanotechnology Perceptions Vol. 20 No.S7 (2024) 

15. DİKER and E. AVCI, “Feature Extraction of ECG Signal by using Deep Feature,” journal-

article, 2019. [Online]. Available: https://doi.org/10.1109/ACCESS.2019.2922929 

16. R. Thilagavathy, R. Srivatsan, S. Sreekarun, D. Sudeshna, P. L. Priya, and B. Venkataramani, 

Real-Time ECG signal feature extraction and classification using support vector machine. 

2020. doi: 10.1109/ic3a48958.2020.233266. 

17. C. Bhyri, S. T. Hamde, and L. M. Waghmare, “ECG feature extraction and disease diagnosis,” 

Journal of Medical Engineering & Technology, vol. 35, no. 6–7, pp. 354–361, Jul. 2011, doi: 

10.3109/03091902.2011.595530. 

18. Elias, P., Poterucha, T. J., Rajaram, V., Moller, L. M., Rodriguez, V., Bhave, S., Hahn, R. T., 

Tison, G., Abreau, S. A., Barrios, J., Torres, J. N., Hughes, J. W., Perez, M. V., Finer, J., 

Kodali, S., Khalique, O., Hamid, N., Schwartz, A., Homma, S., . . . Perotte, A. J. (2022b). 

Deep Learning Electrocardiographic Analysis for detection of Left-Sided Valvular Heart 

Disease. Journal of the American College of Cardiology, 80(6), 613–626. 

https://doi.org/10.1016/j.jacc.2022.05.029 

19. Sawano, S., Kodera, S., Katsushika, S., Nakamoto, M., Ninomiya, K., Shinohara, H., 

Higashikuni, Y., Nakanishi, K., Nakao, T., Seki, T., Takeda, N., Fujiu, K., Daimon, M., 

Akazawa, H., Morita, H., & Komuro, I. (2022b). Deep learning model to detect significant 

aortic regurgitation using electrocardiography. Journal of Cardiology, 79(3), 334–341. 

https://doi.org/10.1016/j.jjcc.2021.08.029 

20. J.-M. Kwon, K.-H. Kim, Z. Akkus, K.-H. Jeon, J. Park, and B.-H. Oh, “Artificial intelligence 

for detecting mitral regurgitation using electrocardiography,” Journal of Electrocardiology, vol. 

59, pp. 151–157, Mar. 2020, doi: 10.1016/j.jelectrocard.2020.02.008. 

21. T. Tabassum, M. Islam, and Department of Electrical & Electronic Engineering, KUET, 

Khulna-9203, Bangladesh, An approach of cardiac disease prediction by analyzing ECG 

signal. 2016. 

22. Kwon, J., Lee, S. Y., Jeon, K., Lee, Y., Kim, K., Park, J., Oh, B., & Lee, M. (2020b). Deep 

Learning–Based algorithm for detecting aortic stenosis using electrocardiography. Journal of 

the American Heart Association. Cardiovascular and Cerebrovascular Disease, 9(7). 

https://doi.org/10.1161/jaha.119.014717 

23. Ramachandran, D., Kumar, R. S., Alkhayyat, A., Malik, R. Q., Srinivasan, P., Priya, G. G., & 

Adigo, A. G. (2022b). Classification of Electrocardiography Hybrid Convolutional Neural 

Network-Long Short-Term Memory with Fully Connected Layer. Computational Intelligence 

and Neuroscience, 2022, 1–10. https://doi.org/10.1155/2022/6348424. 

24. Thomas, J. D., Petrescu, O. M., Moualla, S. K., Dobbles, M., Hays, J. C., Rodriguez, E., & 

Barnhart, G. R. (2022). Artificial intelligence to assist physicians in identifying patients with 

severe aortic stenosis. Intelligence-based Medicine, 6, 100059. 

https://doi.org/10.1016/j.ibmed.2022.100059. 

25. Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for Multi-Class Classification: an 

Overview. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2008.05756. 

 

 

 

  

 


