Nanotechnology Perceptions
ISSN 1660-6795

Www.nano-ntp.com

Human-Al Collaboration via Hybrid
Intelligent System for Safe Autonomous
Driving

J. Jayapradha!, Dr. Ben Sujin. B2, Dr.M.Janaki Rani®, Rayappan
Lotus*, A Fayaz Ahamed®

'Department of Computing Technologies, SRM Institute of Science and Technology,
Kattankulathur, Tamil Nadu 603203, India. jayapraj@srmist.edu.in

PhD, Faculty and Researcher, Computer Engineering, University of Technology and

Applied Sciences — Nizwa, Sultanate of Oman. bensujin.bennet@utas.edu.om
3Pi"0f€SSOI’; ECE Department, Dr-M.G.R Educational and Research Institute, Maduravoyal,
Chennai 95. janakirani.ece@drmgrdu.ac.in
Assistant Professor, Computer Science and Engineering, Vel Tech Rangarajan
Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai.
sjlotusanton@gmail.com
*Assistant Professor, R.M.K Engineering College, Kavaraipettai, Tamilnadu, India.
afd.eee@rmkec.ac.in

The growing penetration of artificial intelligence in applications including autonomous vehicles
and brilliant factory equipment amplifies the risk of catastrophic damages from the execution of
incomplete machine learning algorithms. For providing durable and dependable effectiveness,
Artificial Intelligence (Al) frameworks require massive quantities of thoughtfully curated training
data. However, because the production of training data frequently wants trained manual
annotation, which limits scalability, it is scarce. Thus in this research, we propose a hybrid
intelligent system for a human-machine collaborative environment. This can help humans
interpret the machine and finish any assignments on budget. Considering not all automated
machines can manage occupations by themselves, this human-Al shared effort will have an
immense effect on many different sectors. Human-machine intelligence is blended into human-in-
the-loop computing to establish a hybrid intelligence regarding supplementary habits. Humans
play a role with their dynamic and creative mental abilities, but algorithms are unparalleled in
logic and calculation speed. To acquire high accuracy and confidence in machine learning
methodologies, hybrid cognitive systems are mandatory. To make certain that potential
applications are successful and dependable, designers must establish and reinforce the trust
between humans and Al, starting with being an Al-ready organization and ending with a clear
focus on the benefits a hybrid intelligent system can offer customers. The alliance connecting
humans and technology will become even larger because of the developing trends of technical
innovations and the introduction of artificial intelligence in a growing range of applications.
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driving of autonomous vehicle.

1. Introduction

One of the most intriguing approaches to advocating smart mobility is autonomous driving,
which drastically reduces the potential risks correlated with human behavior and driver
drowsiness. Sensors mounted in the conveyance to keep an eye on nearby objects are vital
boosters for autonomous driving systems. Additionally, prediction and forecast models
leverage sensor data to discover the existing driving state and find out the beneficial route of
action. To lessen the likelihood of compromising the lives of road actors, the models require
to be quite precise and have a minimal processing time. In this application arena, supervised
learning performs far superior to routine identification algorithms. However, a supervised
identification model needs immense constitutes of training data to ultimately identify objects
in a potent, accurate, and verified way. A high-accuracy model for figuring out objects in the
street requirements to comprehending and take consideration numerous factors,
encompassing rain, sunlight, sunsets, midnight, and seasons, and all four of them require
particular parameters for elements like illumination and reflectivity. Meanwhile, public,
precise, reliable, and particularly large quantities of data are challenging to obtain for
particular targets, and the handful that are offered aren't useful for certain level purposes,
making it problematic to derive conclusions from these people. In light of these severe
limitations and failures in high-scale situations picking up objects for autonomous driving is
still an unresolved challenge. In this research, we explain our initial efforts toward a Human-
Al union to help rapid but incredibly precise camera portray segmentation for autonomous
driving. We reveal domain-specific obstacles with image information and the associated
labels, and we discuss how to properly take these issues into thought while composing the
crowdsourcing strategy. To decrease the crowdworkers' occupation and assist them when
they deal with a lot of data, an Al model produces pre-annotations of the shots. In a user
study, crowdworkers who labeled more than 500 real-world photos designed the strategy [1].

The collection of hardware and software innovations designated the human-machine
interface, or HMI, promotes communication between autonomous vehicles (AVs) as well as
humans accessing the road, consisting of passengers. Effective communication and trust can
be fostered in this dynamic tandem by well-designed HMIs that broadcast information,
commands, and objectives both inside and outside of the vehicle. Investigating the human
factor elements of AV interfaces is essential when full self-driving SAE Level 5 continues to
be developed. Figure 1.1 gives the simple architecture of Hybrid human-artificial
intelligence [2].

The first dimension that demands to be declared for the reason to put up hybrid intelligence
systems is the task that requires a solution. Four broad-form task categories have been
defined in this context: action, reasoning, prediction, and recognition. In the beginning,
procedures that belong, assume, objects, images, or natural language can be defined as
recognition tasks. These particular kinds of maneuvers are utilized in self-driving
automobiles as well as alongside automated assistants like Duplex, Siri, or Alexa. Afterward,
prediction tasks are supposed to plan potential events by using historical information such as
market dynamics or stock prices. Reasoning, the third task category, focuses on
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comprehending facts by, for example, inductively establishing (mental) models of
identifiable issues. It enables one to grapple with tricky issues with a tiny quantity of data

[31.

Cognition ability Computing ability

Prior knowledge :> <: Sensitive to data

Fig. 1.1. Hybrid Human-Artificial Intelligence

Difficulties with large-scale execution encompass steep expenses, moral and legal
difficulties, and technological issues. Thus, asking for the utmost security mandates a blend
of Al and the cognitive abilities of humans. It seems as though humans have potential
benefits incorporating adaptation, flexibility, and beneficial adjustment, but when driving,
they are more inclined to become influenced by sensations, drowsiness, or inclement
weather. Studies on partnered driving in real-life situations are beginning to focus on the
associated positive effects and pitfalls. For instance, many magazines highlighted Bluetooth's
data and information fusion gadgets, which endeavor to fully understand the natural world
when driving. These items supplied an integrated driving semi-physical simulation system
that enabled machines and drivers to control the cars to ensure public safety. We envision
that the seamless fusion of Al and human intelligence in H-Al will drastically boost the
intelligence of transportation. With the use of various electronic devices, drivers would be
able to sense situations more accurately and make better decisions. Along with that,
machines would be able to replace human drivers in potentially hazardous situations by
originating synchronized intuitions and cognitive abilities from human drivers [4].

The chronological arrangement of the article is as follows: An extensive evaluation of the
hybrid H-Al for safe autonomous driving will be provided in Section 3. The experimental
results will be examined in Section 4; the navigation, mapping, and scene processing
capacities of the robot will be described in detail and highlighted in Section 5; subsequently,
a technologically sophisticated robotic system for indoor surveillance will be offered in
Section 5.

Nanotechnology Perceptions Vol. 20 No.S7 (2024)



136 J. Jayapradha et al. Human-Al Collaboration via Hybrid Intelligent System....

2. Related Works

[5] This position paper attempts to grant the Al and automated driving social groups an
extensive overview of the barriers and possible futures for research about the issue of
intriguing assignment among the driver and the vehicle in the environment of autonomous
automobiles. The vehicle's Command System is utilized to ensure that sure that information
about the driver and the vehicle is truthful that multiple sources of data are efficient, and that
it appears context and situational awareness are readily accessible to navigate the
unanticipated events that could come up in advance of and throughout the dynamic
delegation phase. It requires attention to craft and finding adaptive and non-intrusive
Human-Computer Interaction procedures to allow the driver an adapted and lightning-fast
control transition to the vehicle. These interaction methods that requires be smooth and
shape-changing, and they must be reinforced by numerous kinds of homemade, multimodal
interaction mechanisms, encompassing speech, gestures, gaze, and haptics. The driver will
also be reminded in instances of an unforeseen or harmful instance with the help of these
multimodal electronics.

[6] We researched an increasing pool of scientific literature published in peer-reviewed
works integrating risk and safety science, human components and training, marine policy,
and ocean and reliability engineering to outline the state-of-the-art research for autonomous
ship systems in this article. Understanding that shipping has become more sophisticated, we
put forward three coursework questions: (1) How have autonomous ship systems currently
enforce human control? (2) What theories, mechanisms, and treatments are being adopted to
overcome design flaws and safety concerns? and (3) which deficiencies in research,
regulatory obstacles, and glitches hold in the method of their actual seen procedure. We
gathered information generated by 42 pertinent, reviewed papers in a systematic review.
Two fundamental scenarios—safety and control—underpinned every verdict despite the
review's broad coverage throughout five distinct fields (marine policy, ocean engineering,
psychology, reliability engineering, and risk science). The two subject matters were closely
linked, with safety being characterized as a property that arises from ensuring machine and
human autonomy in the context of control. In response to this point of view, human
autonomy looks after supervisory goals in the presence of unclear and fluctuating outside
variables, in comparison to machine autonomy implements previously established chores.

[7] A roadblock to acceptance is getting larger as further ASVs are installed and Al-based
navigational gadgets emerge. This is due to the fact citizens are growing cautious
surrounding trust. This is exclusively acute as we possess curbside ASVs, where prototypical
shortcomings could result in unforeseeable possibilities that endanger people. With a
primary emphasis on feasibility for interpretation, understandability, explainability, and trust,
the fundamental values of Explainable Al (XAl) represent a common ideal for various fields
interested in dealing with the issues of fostering enthusiasm in ASVs. Computer scientists
typically set up XAl, with a view of promoting model accuracy and efficiency using a
superior construal of opaque, "black box™ machine learning (ML) models. There are several
kinds of important regulations. First and foremost, the mechanisms that we suggest as
"human-centered XAI" are susceptible to transformation over time, through frontiers of
culture, and in association with progressing cultural norms, as concepts as a result of their
very essence are adaptable. Second, each example that had been presented was taken from
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our investigations or the research that our university's collaborators carried out. This
necessitated an extensive degree of consciousness in this research process, which faced the
risk of frustrating the processes when we realized how our concept had been created. This
work has achieved that design methodologies are changing towards end-user interaction
design as ASVs scale for mass adoption. But not a single of this is taking place based on the
umbrella of an adequately developed sense of sight of what the process of design takes up.
This work's first-degree contribution is the formulation and definition of human-centered
XA, which progresses ASV design toward mainstream adoption.

[8] The advent of Al has altered our lives and our expectations of the future. Machines
containing intelligence have become human companions. People are surfing for new
computational models and approaches to utilize Al in the recognition of ubiquitous
computing and smart machines. Hybrid-augmented intelligence is one of the primary
directions for the future development of Al. Building human-computer connection-based
HITL hybrid-augmented knowledge by combining perception and cognitive aptitudes of
mankind with the device's potential to figure out and retrieve information can enormously
enhance the Al system’s choice proficiency, the different levels of memory sophistication
necessitated to handle multifaceted tasks and responsiveness to complex situations.
Employing experience learning, intuitive reasoning, and other hybrid models, hybrid-
augmented cognitive ability based on CC might tackle the long-lasting planning and
reasoning challenges in the Al study domain.

[9] We outlined the Driver AdvocateTM (DA) system's architecture, underscoring the
manner machine learning and agent technologies are linked together. A high-fidelity driving
simulator functions as the starting point for a prototype system that incorporates some parts
of the architecture. The prototype DA was previously employed in human driving
investigations to ensure that it can be further programmed to modify itself to individual
dissimilarities in the driving approach. Whenever the DA reveals the mandatory equipment,
we are going to test the system in a real car under the real driving scenarios. The tremendous
as well as varied broad spectrum data and knowledge that the DA requires handling puts
forward another obstacle. This stretches from numerical or statistical data (which includes
driving logs accumulated from the simulator, control data being sent to the vehicle's
actuators, etc.) to symbolic knowledge (which is necessary to describe task models and for
planning scenarios and assessments). Although each agent can multiply together with its
representation of the regulation courtesy to our architecture, several agents need to
collaborate on some kind of hybrid reasoning their potential. Again, the DA's enthusiasm for
real-time implies that the efficiency issue could turn out to be vital.

[10] In this paper, we introduce an uncommon consumption mechanism of human pointing
and produce a reinforcement learning framework based on human guidance. We next
propose a technique, named PHIL-TD3, without the objective of strengthening algorithmic
competencies underneath the context of human-in-the-loop reinforcement teaching. To ease
the financial strain on individuals, we additionally present a mechanism for emulating human
behavior. Two demanding autonomous driving tasks were assigned to PHIL-TD3, and the
outcomes of its work are juxtaposed with the identical non-guidance baseline and the highly
powerful human-guidance-based RLs. The experimental data generate three primary
outcomes: 1) The hypothesized PHIL-TD3 could surpass state-of-the-art human-guidance-
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based RLs about asymptotic performance, enhancing efficacy in learning by over 700% and
120% in the two eventualities that are deployed, respectively. 2) In a multitude of
requirements, the chosen PHIL-TD3 exceeds the other model devices in terms of
performance, toughness, and versatility when compared to the two demanding autonomous
driving tasks. 3) The postulated T DQA procedure delivers an important improvement to the
advancement of PHIL-TD3 and has the potential of accurately assessing the variety of
various surveillance by humans, eliminating humans of a portion of their burden.

[11] Perception, prediction, and control tasks were especially tricky in AD systems. DRL is
an attainable likelihood for the future development of AD systems, potentially allowing was
required behaviours to be explained first in emulation and additional refined on real datasets,
instead of being explicitly programmed. In this publish, we provide an introduction of AD
system sections, DRL methodologies and implementations of DRL for AD. We discuss over
the main challenges that ought to be overcome for the reason to enable the DRL to be
increasingly and realistically implemented in AD applications. In contrast a great deal of the
study's subjects discussed in this research report has been performed in simulated locations
the arrival of applications on practical motor vehicle is interesting. The primary obstacles for
creating an effective real-world system would be surpassing crucial challenges include safety
in reinforcement therapy, upgrading data efficiency, and ultimately allowing transfer
learning along simulated conditions.

[12] The current study introduces an unusual reinforcement learning algorithm utilizing
expert demonstrations for the consumption benefit of human prior expertise to enhance the
performance and efficiency of the experiments. More specifically, we pair up copying the
expert's endeavors and improving the Q-function to update the policy network. We
additionally formulate an adaptive experience replay handle which permits our team to
adaptively sample experience from the agent's self-exploration and specialist demonstration
for revising the policy. We investigate the recommended method in a costly, traffic-heavy,
simulated urban roundabout. A careful examination of different RL and IL baselines
demonstrates that our technique functions better in the training process with regard to sample
efficiency. The assessment findings suggest that the suggested strategy helps get to the
destination quickly and with a higher degree of success amount. We further demonstrated
that the success rate is capable of being boosted even more by pairing the RL-based
controller with a rule-based safety controller.

3. Methods and Materials

In conventional DRL applications, for instance autonomous driving, the control of the DRL
agent can be characterized as a Markov decision process (MDP). The MDP is represented
by a tuple N which includes the state space T € S$°, action space B € S™, transition model
U:TxB—-T, reward function S:T X B —» S, and state space (where o and n are the
multifaceted of the state space and action room, respectively; S is the real number set).

N = (T,B,U,S) ()

The agent undertakes an action b,, € B in a state t,, € T at a time step u, and it generates a
reward signals, = S(t,, by,). Then, in compliance with the environmental dynamics
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U(: |ty by); at, the environment develops into a next-step state t,, ., € T. It is complicated to
formulate the transition hazard model U for the surrounding dynamics in the autonomous
driving scenario. As a conclusion, we utilized model-free reinforcement instruction to
manage this objection, which avoids the necessity of grasp the transition dynamics.
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Fig. 3.1. Demonstrates the general development of the H-Al autonomous driving system.

The most significant of the primary difficulties for semi-autonomous driving is always
HMC. We suggest that conflicts happen because of inappropriate human-machine coupling.
As an example, Figure 3.1 demonstrates the theoretical architecture whose services are based
on H-Al. General autonomous driving systems have the luxury of understanding, selecting,
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and regulating. Consider that we separately segregate human-machine interaction as an
autonomous part due to the fact it is extremely crucial to the broader system. The high-level
architecture in the present investigation is constructed with an exceptionally comprehensive
off-policy actor-citric method, TD3. Under the pressure of value network R, the TD3
algorithm updates its action-selection policy as well as determines an unpredictable action
using policy network p. Depending on the Bellman iterative equation, the value matrix
approximates the value of the individual state and action. Next, with the goal to cope with
the overestimation issue along with TD3 forms two value networks, R1 and R2. The target
networks p’, Ry, and R; are implemented to promote learning. For the development of the
human-in-the-loop building structure that lie within our reinforcement learning algorithm,
we combine LfD and Lfl into an equivalent creating it. With that arrangement, individuals
possess the flexibility to determine when they'll enter in, overturn the first rule selection, and
display scenarios in real time. The end result develops an algorithm for online transition
spanning agent discovery and human oversight.

Let I(T,) € S° symbolize the individual's policy. The guidance for human intervention is
generated employing a random event procedure J(T,), considering into thought the driver's
observation of the current parameters. Agent action b,, should therefore be represented like
this:

by =J(T,) - ™™ + [1 = J(T,)] - bR )
bZRE = clip(p(T,|EP) + clip(, =D, D), biow, bign), € ~0(0,7) C)

where p¥man ¢ | js the human-given guidance action, b2RL is the policy network's action,
J(T,) is equal to 0 in the absence of human guidance or 1 in the presence of human action,
indicates £ the policy network's parameters, by,,, and by; 4, are the action space's lower and
upper bounds, respectively, 0 is the noise subject to a Gaussian distribution with a t standard
deviation, and d is the clipped noise boundary. To encourage research in the deterministic
policy, Gaussian noise is stipulated. When a human participant chooses to intervene in an
occurrence during agent training, the mechanism established by Equation (2) fully transfers
the driving control authority to them. The value function, which is calculated from the
assumption of future reward in a similar way, is roughly given by the value network:

R™(t,b) = [Ft~U,b~1T(-|T) [Zﬁo 5j-5j] (3)

where FF[-]~ represents the mathematical expectation, j is the index of the counted time step,
and ¢ is the reduction factor used to determine the relevance of future rewards. Assuming
that the simplified variant of R™(t, b) is R(t, b). Unless specified differently, the superscript
regarding the policy m is neglected.

The Bellman iteration is applied to solve the above expectation, and the predicted repetitive
target of value function z at step u can be determined as follows:

2 = 5y + 6 min Ry (T, o/ (Tusa |2°") |ER) @)

Where k projects the index of two value networks, R, and R, , and z¢" denotes the variables
of the target policy network and, 2Rk the specifications of the target value networks.
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MRE(ERK) = Fr, by s tur)~ELZu — Rie (T, by |ERR)|I?] ()

where F corresponds to the experience replay buffer E, which is comprised of the present
condition of the action, the reward, and the state of the next step; ZRx corresponds to the
expected value; and ZR« is standing for the parameters of the value networks.

To effectively utilize the economic value of the value network, or to enhance control
efficiency in the designated autonomous driving scenario for this study, is the primary
objective of the policy network that decides the control action. As the outcome, the policy
network's loss function in the TD3 algorithm is developed as follows:

MP(EP) = —F[Ry (T, by*")] = —Fr, [Ty, p(Ty|EP)] (6)

About Equation (6), the primary objective of the policy is to mitigate the policy network's
loss function while enhancing the value of the value network. Since the noise in Equation (2)
displays a zero-mean distribution, the unbiased assessment of b2RL is equivalent to that of

p(Ty|EP).
The TD3 algorithm's loss function requires to be altered to consider the human experience

when human guidance (b*™@") appears. Therefore, the result for the network in Equation
(5) can be formulated in the structure that follows:

2
MRk (ERK) = ]F(Tu'bursuvtu+1)~E [(zu - Rk(Tu: b{}umanlng)) ] (7)

For the reason of trying to get rid of the previously referred to inconsistency issue, we add a
human guidance term J to the policy network's loss function that's shown in Equation (6).

Mp (Ep) = IF(Tu'buJ(Tu))"’E{_Rl(Tu’ bu) +](Tu) (p] [bu - p(Tul = Ep)]z} (8)

where ¢; is a factor that adjusts the human supervision loss's weight; b;®" in Equation (6)
may consequently be exchanged with at to compensate for both DRL policy actions and
human actions. When human advising happens, the changed direction is in alignment with
(T, blemany,

Thus, it is suitable to generate a tolerant task mechanism for factor ¢, that is associated with
the trustworthiness of human endeavors. To do this, we recommend the R-advantage as a
permitted evaluation metric, and the postulated weighting factor can be changed as follows:

¢ = o' - {max|exp (Ry (T, by) = Ry(Ty p(TuIE")) 1] - 1} ©)

Where | is the learning episode index and w is an extreme parameter that is slightly smaller
than 1. The chronological decay factor w' illustrates that as the policy function continuously
achieves adulthood, human guidance turns less precise.

The policy network's batch gradient can be measured through Equation (9).
AzpM(EP) = %Zg=1{(_AaR1(T, b)lT:Tu,b=w(Tu)AEpp(T)|T=Tu) + (AEP (<P] |lb —
p(DI?)Ir=r1, b=b,) " J (T)} (10)

where N corresponds to the experience replay buffer E's batch size sample.
Nanotechnology Perceptions Vol. 20 No.S7 (2024)
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Ultimately the human advising component is introduced as follows in which the experience
replay buffer's the beginning stored tuple is tweaked:

E = {Ty, by, sy, Ty41,J (Ty)} (11)

The outcome is in a reworked DRL algorithm that features human guidance attainable in
real-time [13].

4. Implementation and Results
4.1 An overview of the attempts

A human-in-the-loop driving simulator was employed for a series of experiments dealing
with 40 people participating in the envisioned autonomous driving scenarios to evaluate the
viability and practicality of the hypothesized improved DRL with human direction. There
were six typical scenarios for everybody; one was for the proposed method's training process
(associated with Experiment A in the form of E), and the additional five were created to
assess and criticize the designed algorithm's performance. The training scenario incorporated
an intricate driving movement such as unaltered lane shifting and overtaking, as they were
the environment's adapted reward emphasized cautious and transportable driving. The ego
vehicle is required to emerge from the spawn location, stay underneath the road, avoid
hitting any other obstacles, and then ultimately reach the finishing line to successfully
perform the tasks as envisioned in all circumstances. The current episode concluded
instantaneously if the ego vehicle smashed with the boundary of the road or other vehicles in
traffic. A new episode might start with additional generating vehicles concentrating on the
training process. In the testing circumstances, the types, jobs, and speeds of the surrounding
objects are modified to boost the policies' training performance under various conditions
with greater demands. The ego vehicle required to emerge from the spawn location, stay
underneath the road, avoid hitting any other obstacles, and then ultimately reach Experiment
A was conducted to validate the training performance improvement by considering the
proposed approach with alternate human-guidance-based DRL methodologies. For the sake
of comparison, we initially developed all associated baseline DRL algorithms employing the
same form of real-time human guidance. To be clearer, there are three baseline approaches to
DRL.: the Vanilla-DRL procedure (the standard TD3 algorithm without human guidance),
the HIRL (shaped value function, but no modification to the policy function), and the IARL
(fixed weighting factor ¢; pertaining to human guidance in the policy function of DRL). To
promote speedier convergence, supervised learning pre-initializes every single policy
network in these. Please pay attention to the Method Section for wholehearted
implementations of the stated concepts.

4.2 The boosted instruction efficacy of the postulated Hug-DRL strategy

The outcomes illustrated in Figure 4.1, drawn from Experiment A, correspond to the increase
in performance that the proposed Hug-DRL method brought when contrasted to other
advanced human-guidance-based algorithms, among them the Intervention-Aided DRL
(IARL) and Human-intervention DRL (HI-RL), and in addition to the Vanilla DRL without
human guidance (a pure TD3 algorithm). In the context of the experiments, the timestep
reward obtained and the length of time of each episode were recorded and assessed for each
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participant, to assess the training performance throughout a training session under each
method. Both the episodic reward and the duration of the episode were assessed, as shown in
Figure 4.1 and 4.2. The observations suggest the proposed Hug-DRL method exceeded all
other baseline methods. Table 1 shows the training of the different DRL methods
corresponding to each step.

0 Training step
0 0.1 1 2 3 4
-0.2
-0.4
-0.6
° 8 = Hug-DRL
5 —IA-RL
§-1 ——Dr-DRL
) ——Vanilla-DRL
<
-1.4
-1.6
-1.8
-2
Fig. 4.1. Consequences of the different techniques utilised for the episodic training reward.
140

g

% 100 -
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8§ 80 - = Hug-DRL

2% 60 - —IA-RL

g 40 7 ~=Dr-DRL

=2 20 —\V/anilla-DRL

3

0 T T T T T 1
0O 100 200 300 400 500
Training episode

Fig. 4.2. Consequences of the Three Techniques for the Episodic Length.
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Table 1. Hlustration of Training According to the Various DRL Methods

Training steps Four different methods of DRL
Hug-DRL 1A-RL HI-RL Vanilla DRL
0 -0.5 -1 -1 -1.1
0.1 -1.2 -1.1 -1.39 -1.8
1 -0.7 -0.8 -0.8 -0.82
2 -0.45 -0.58 -0.5 -0.55
3 -0.32 -0.42 -0.48 -0.45
4 -0.3 -0.4 -0.43 -0.44

Table 2. Representation of number of training episodes for the particular Al approach

Training episode Four different methods of Al
Hug-DRL IA-RL HI-RL Vanilla DRL

0 35 70 50 30
100 65 65 69 45
200 79 70 73 50
300 85 75 82 60
400 93 82 90 65
500 118 83 101 83

The averaged reward obtained with the proposed approach right through the whole training
procedure was the highest at (N = -0.599, TE = 0.042), by an examination of the statistical
results shown in Fig. 3c. This was followed by the monetary rewards obtained with the 1A-
RL (M =-0.660, SD = 0.033), the HI-RL method (M =-0.697, SD = 0.029), and the Vanilla-
DRL method (M = -0.688, SD = 0.052). Additionally, the one-way ANOVA analysis
provided by Supplementary Table 2 suggested that these variations were statistically
significant, and F(5,37)=28.98. Furthermore, the entire length of the episode—which
specifically determines the ability to achieve the task—was also analyzed in between all
three strategies. The recommended method's mean value (N = 86.2, TE = 6.3) was more
effective when compared to the HI-RL method's (N = 82.6, TE = 7.3), the IARL method's
(N = 89.0, TE = 9.5), and the Vanilla-DRL method's (N = 65.2, SD = 8.6) based on the
analysis of the data presented in Fig. 3d. F(5,37) =15.05, and the statistical significance of
their differences was also established, as demonstrated by the ANOVA analysis. Considering
the asymptotic rewards, the recommendations for Hug-DRL, IA-RL, and HI-RL provide
improved performance of 31.9%, 14.2%, and 7.1%, respectively, as opposed to Vanilla-
DRL. The previous results highlight the extent to which human involvement might enhance
DRL performance [14].
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Fig. 4.3. Observations from the average reward all across the period of a training session
according to different approaches.
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Fig. 4.4. Outcomes on an average period among occurrences during the span of the training
session by implementing various strategies

5. Conclusion

A real-time Hug-DRL methodology was established in this study to train principles in an
end-to-end self-driving technology instance. A modified version of the actor-critic
architecture encompassing revolutionized policy and value networks was drawn up. During
the training phase, humans could come in and correct the agent's erroneous DRL actions in
real-time. The new approach was compared with other state-of-the-art educational
frameworks and validated with forty test respondents through human-in-the-loop tests.
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According to the experimental data, it's evident that the recommended Hug-DRL carries out
significantly on examinations than present-day arrives concerning learning efficiency. Both
the initial education and online fine-tuning periods of the agent's training performance can be
significantly improved by the approach recommended. Given that intermittent human
involvement has little impact on the load for mankind, it can be an effective means of
boosting DRL performance. More precisely, the suggested method greatly reduces the
challenges on the human side. Individuals don't have to be consultants with more thorough
expertise or understanding of particular disciplines. Even though human acts are undesirable,
the DRL can be securely learned and widened as long as it cooperates normally and applies
common sense. The recommended approach exhibits immense potential for implementation
in emerging real-life applications due to these reasons. The high-level framework, the
strategies implemented, and the algorithms developed in this work present quite a bit of
potential for advancement into additional fields incorporating Al and human-Al interaction.
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