Exploring Sustainable Synthesis Methods for Nanomaterials and their Integration into Green Supply Chain Practices within Small and MediumSized Enterprises (SMES)

Vishakha Ashish Mankar¹, Dr. Athar Javed Ali², Dr. Chandan Vichoray³, Dr. Anant Deogaonkar³, Dr. Abhijit Rameshwar Gajghate⁴, Dr. Deepa Choudhari⁵

¹PhD Scholar, Shri Ramdeobaba College of Engineering and Management, Nagpur.

²Assistant Professor, Central Institute of Business Management, Research & Development, Nagpur

³Associate Professor, Shri Ramdeobaba College of Engineering and Management, Nagpur. ⁴Associate Professor, Madhukarrao Pandav College of Engineering, Bhandara ⁵Associate Professor, Govindrao Wanjari College of Engineering & Technology, Nagpur

In the context of growing environmental concerns and the need for sustainable development, small and medium-sized enterprises (SMEs) face unique challenges in adopting green supply chain practices. This research explores sustainable synthesis methods for nanomaterials and their integration into the supply chain of SMEs. The study aims to develop a mathematical model that optimizes the adoption of these sustainable practices, considering economic, environmental, and operational factors. By employing eco-friendly synthesis techniques, such as green chemistry principles and renewable energy sources, the research investigates the lifecycle impacts of nanomaterials. The proposed mathematical model will incorporate multi-criteria decision-making to evaluate the trade-offs between cost, environmental impact, and technological feasibility. The model will also consider the specific constraints and opportunities faced by SMEs, such as limited resources and scalability. The outcome is expected to provide a framework for SMEs to make informed decisions regarding the sustainable production and integration of nanomaterials, thereby contributing to a greener supply chain and promoting overall sustainability in the industry. This research has the potential to guide policymakers and industry stakeholders in developing guidelines and strategies for sustainable nanomaterial production and utilization in SMEs.

Keywords: Sustainable synthesis, Nanomaterials, Green supply chain, Small and medium-sized enterprises (SMEs), Mathematical modeling, Green chemistry, Renewable energy, Multi-criteria decision-making.

1. Introduction

The rapid advancement of nanotechnology has opened new avenues for innovation across various industries. However, the environmental and health implications associated with the production and use of nanomaterials has raised concerns. As the demand for these materials continues to grow, there is an increasing need to develop sustainable synthesis methods that minimize environmental impact while maintaining economic viability. Small and medium-sized enterprises (SMEs), which constitute a significant portion of the global economy, play a crucial role in this transition toward sustainable practices. Unlike larger corporations, SMEs often face unique challenges, such as limited resources, scalability issues, and lack of access to advanced technologies. These challenges can hinder their ability to adopt green supply chain practices, including the sustainable production and integration of nanomaterials.

Sustainable synthesis refers to the development of environmentally friendly methods for producing materials, emphasizing reduced resource consumption and waste generation. Nanomaterials are materials engineered at the nanoscale, exhibiting unique properties due to their small size and high surface area. Integrating these materials into a green supply chain involves adopting practices that minimize environmental impact throughout the product lifecycle. Small and medium-sized enterprises (SMEs), which often face resource and scalability challenges, are crucial players in adopting these sustainable practices. Mathematical modeling provides a quantitative framework for analyzing and optimizing processes, including the adoption of sustainable methods. Green chemistry focuses on designing chemical products and processes that reduce or eliminate the use and generation of hazardous substances. Renewable energy sources, such as solar or wind, are integral to reducing the carbon footprint of production processes. Multi-criteria decision-making involves evaluating multiple conflicting criteria, such as cost, environmental impact, and feasibility, to make informed decisions. Environmental impact assesses the effect of a product or process on the environment, while lifecycle assessment evaluates the environmental impacts associated with all stages of a product's life. Eco-friendly practices encompass actions that reduce environmental harm, promoting sustainable production by ensuring that processes are not only efficient but also environmentally benign. Supply chain optimization seeks to improve the efficiency and effectiveness of supply chain processes, supporting sustainability in industry by aligning economic and environmental goals. Finally, policy and guidelines are essential for setting standards and providing direction for industries to adopt sustainable practices, ensuring a cohesive and regulated approach to achieving environmental objectives.

This research aims to address these challenges by exploring sustainable synthesis methods for nanomaterials and their integration into green supply chain practices within SMEs. The focus is on developing a comprehensive mathematical model that can assist SMEs in making informed decisions regarding the adoption of eco-friendly nanomaterial synthesis techniques. The model will consider various factors, including cost, environmental impact, and operational feasibility, to provide a holistic approach to sustainability. By incorporating principles of green chemistry and renewable energy, the study seeks to reduce the lifecycle environmental impact of nanomaterials and promote cleaner production methods. The proposed mathematical model will utilize multi-criteria decision-making to evaluate trade-offs between different sustainability objectives. This approach allows for a balanced consideration of economic, environmental, and social factors, providing SMEs with a practical tool for optimizing their

supply chain processes. The study also aims to identify specific opportunities and constraints faced by SMEs in this context, offering tailored solutions that can be realistically implemented.

Through this research, we hope to contribute to the growing body of knowledge on sustainable nanomaterial production and green supply chain management. The findings will not only benefit SMEs but also provide valuable insights for policymakers and industry stakeholders. By promoting sustainable practices, this study aims to foster a more resilient and environmentally conscious industrial ecosystem.

Theoretical model for challenges of nanomaterials in implementing green supply chain management in SMEs:

The adoption of nanomaterials in manufacturing and product development offers numerous advantages, such as enhanced functionality and performance. However, integrating these materials into green supply chain management (GSCM) poses specific challenges for small and medium-sized enterprises (SMEs). These challenges are shaped by the unique properties of nanomaterials, the complexities of their production and use, and the constraints faced by SMEs. This theoretical model outlines the key challenges in four main areas: economic constraints, technological barriers, regulatory and compliance issues, and environmental and health risks.

1. Economic Constraints

- a) High Initial Investment Costs: Implementing nanomaterial technologies often requires significant upfront capital for specialized equipment, advanced safety infrastructure, and R&D. For SMEs with limited financial resources, these costs can be prohibitive, making it difficult to adopt GSCM practices.
- b) Uncertain Return on Investment (ROI): The long-term economic benefits of integrating nanomaterials and sustainable practices are often uncertain. SMEs may be hesitant to invest in green technologies without clear evidence of ROI, especially when profit margins are tight.

2. Technological Barriers

- a) Lack of Technical Expertise: SMEs often lack access to the specialized knowledge required for nanomaterial synthesis, handling, and integration. This knowledge gap can hinder the development and implementation of safe and efficient processes.
- b) Integration Complexity: Incorporating nanomaterials into existing production processes can be technically challenging. SMEs may face difficulties in modifying or upgrading equipment, optimizing manufacturing processes, and ensuring product quality and safety.

3. Regulatory and Compliance Issues

a) Dynamic Regulatory Environment: The regulatory framework for nanomaterials is continually evolving, with new standards and guidelines emerging as more are understood about their risks and benefits. SMEs may struggle to keep up with these changes, potentially leading to non-compliance.

- b) Lack of Harmonization: There is a lack of standardized international regulations governing the production, use, and disposal of nanomaterials. This can create confusion and compliance challenges for SMEs operating in multiple markets or sourcing materials from different regions.
- 4. Environmental and Health Risks
- a) Uncertain Environmental Impact: Nanomaterials can have unique environmental interactions due to their small size and high surface area. The potential for bioaccumulation and unforeseen ecological effects raises concerns about their lifecycle impacts. SMEs may find it challenging to assess and mitigate these risks within their supply chains.
- b) Health and Safety Concerns: The potential toxicity of nanomaterials, particularly during manufacturing and disposal, poses significant health risks. SMEs may lack the resources and knowledge to implement comprehensive safety measures, increasing the risk of worker exposure and liability.

Challenges in Supply Chain Coordination and Transparency

- 1. Complex Supply Chain Networks: The supply chain for nanomaterials is often complex, involving multiple stages of production, processing, and distribution. SMEs may face challenges in ensuring the traceability and sustainability of nanomaterials throughout the supply chain.
- 2. Transparency and Supplier Collaboration: Achieving transparency in the supply chain is crucial for GSCM. SMEs may struggle to verify the sustainability practices of their suppliers, especially when dealing with specialized nanomaterial providers who may have proprietary processes.

Mathematical Model for Sustainable Synthesis and Integration of Nanomaterials for Green Supply Chain Management in SMEs:

Objective

The objective of this mathematical model is to optimize the integration of sustainable synthesis methods for nanomaterials into the supply chain practices of small and medium-sized enterprises (SMEs). The model considers economic, environmental, and operational factors, aiming to balance cost, environmental impact, and technological feasibility.

Notation and Variables

Let:

- x_i : Binary variable indicating whether synthesis method i is selected (1 if selected, 0 otherwise).
- C_i : Cost associated with synthesis method i (including initial investment, operational costs, and maintenance).
- E_i: Environmental impact score of synthesis method i (measured through lifecycle assessment indicators such as carbon footprint, water usage, etc.).

- T_i: Technological feasibility score of synthesis method i (including factors like ease of integration, scalability, and compatibility with existing processes).
- R: Available resources (budget, workforce, etc.).
- S: Maximum allowable environmental impact score (sustainability threshold).
- F: Minimum required technological feasibility score.

Objective Function

The objective function aims to minimize the total cost while considering the environmental impact and technological feasibility:

$$ext{Minimize } Z = \sum_i C_i x_i$$

Constraints

1. Resource Constraint: The total cost of selected methods should not exceed the available resources.

$$\sum_i C_i x_i \leq R$$

2. Environmental Impact Constraint: The total environmental impact score should not exceed the maximum allowable threshold.

$$\sum_i E_i x_i \leq S$$

3. Technological Feasibility Constraint: The weighted average of the technological feasibility scores of selected methods should meet the minimum required threshold.

$$rac{\sum_{i}T_{i}x_{i}}{\sum_{i}x_{i}}\geq F$$

4. Binary Constraint: The decision variable x_1 should be binary.

$$x_i \in \{0,1\} \quad orall i$$

Multi-Criteria Decision-Making

To account for multiple objectives (cost, environmental impact, and technological feasibility), a weighted sum approach can be applied. The combined objective function becomes:

$$ext{Minimize } Z = lpha \sum_i C_i x_i + eta \sum_i E_i x_i - \gamma \sum_i T_i x_i$$

Nanotechnology Perceptions Vol. 20 No. S6 (2024)

Where:

• α , β , and γ are weights representing the relative importance of cost, environmental impact, and technological feasibility, respectively.

Model Considerations

- 1. Economic Considerations: Include the total cost of adoption, potential savings from eco-friendly practices, and expected ROI.
- 2. Environmental Considerations: Focus on minimizing negative impacts, such as emissions and waste, while maximizing positive outcomes like energy efficiency.
- 3. Operational Considerations: Address the practical aspects of integrating new synthesis methods, such as ease of implementation and workforce training.

Solution Approach

The model can be solved using mixed-integer linear programming (MILP) techniques. Optimization solvers like CPLEX, Gurobi, or open-source alternatives like CBC (COIN-OR Branch and Cut) can be used to find the optimal set of synthesis methods that minimize the total cost while satisfying the constraints.

2. Conclusion

The developed mathematical model provides a structured framework for SMEs to evaluate and select sustainable synthesis methods for nanomaterials. By considering economic, environmental, and operational factors, the model helps SMEs make informed decisions that align with green supply chain practices. The results can guide policymakers and industry stakeholders in developing targeted strategies and policies to support sustainable development in the sector. The developed mathematical model is a valuable addition to the toolkit for promoting sustainable synthesis and supply chain practices in SMEs. It provides a robust analytical foundation for navigating the complexities of green supply chain integration, ultimately supporting the transition towards a more sustainable and resilient industrial ecosystem. The ongoing refinement and application of such models are crucial as the global community continues to address pressing environmental challenges and strives for sustainable development.

References

- 1. An S, Li B, Song D, Chen X (2021) Green credit financing versus trade credit financing in a supply chain with carbon emission limits. Eur J Oper Res 292:125–142. https://doi.org/10.1016/j.ejor.2020.10.025
- 2. Awan U (2021) Steering for sustainable development goals: a typology of sustainable innovation. In: Leal Filho W, Azul AM, Brandli L et al (eds) Industry, Innovation and Infrastructure. Springer International Publishing, Cham, pp 1026–1036
- 3. Bag S, Telukdarie A, Pretorius JHC, Gupta S (2018) Industry 4.0 and supply chain sustainability: Framework and future research directions. Benchmark Int J 28(5):1410–1450.

- https://doi.org/10.1108/BIJ-03-2018-0056
- 4. Bai Q, Gong Y (Yale), Jin M, Xu X (2019) Effects of carbon emission reduction on supply chain coordination with vendor-managed deteriorating product inventory. Int J Prod Econ 208:83–99. https://doi.org/10.1016/j.ijpe.2018.11.008
- 5. Banciu M, Mirchandani P (2013) Technical Note—new results concerning probability distributions with increasing generalized failure rates. Oper Res 61:925–931. https://doi.org/10.1287/opre.2013.1198
- 6. Cabral C, Dhar RL (2020) Green competencies: insights and recommendations from a systematic literature review. Benchmark: Int J 28:66–105. https://doi.org/10.1108/BIJ-11-2019-0489
- 7. Cao E, Yu M (2018) Trade credit financing and coordination for an emission-dependent supply chain. Comput Ind Eng 119:50–62. https://doi.org/10.1016/j.cie.2018.03.024
- 8. Chan APC, Darko A, Olanipekun AO, Ameyaw EE (2018) Critical barriers to green building technologies adoption in developing countries: the case of Ghana. J Clean Prod 172:1067–1079. https://doi.org/10.1016/j.jclepro.2017.10.235
- 9. Chitimiea A, Minciu M, Manta A-M et al (2021) The drivers of green investment: a bibliometric and systematic review. Sustainability 13:3507. https://doi.org/10.3390/su13063507
- 10. Dalenogare LS, Benitez GB, Ayala NF, Frank AG (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394. https://doi.org/10.1016/j.ijpe.2018.08.019
- Dubey R, Gunasekaran A, Childe SJ et al (2016) Towards a theory of sustainable consumption and production: constructs and measurement. Resour Conserv Recycl 106:78–89. https://doi.org/10.1016/j.resconrec.2015.11.008
- 12. Elie L, Granier C, Rigot S (2021) The different types of renewable energy finance: a Bibliometric analysis. Energy Economics 93:104997. https://doi.org/10.1016/j.eneco.2020.104997
- 13. Fletcher R, Dressler WH, Anderson ZR, Büscher B (2019) Natural capital must be defended: green growth as neoliberal biopolitics. J Peasant Stud 46:1068–1095. https://doi.org/10.1080/03066150.2018.1428953
- 14. Gao S, Meng F, Gu Z et al (2021) Mapping and clustering analysis on environmental, social and governance field a bibliometric analysis using Scopus. Sustainability 13:7304
- 15. Khan SAR, Godil DI, Jabbour CJC et al (2021) Green data analytics, blockchain technology for sustainable development, and sustainable supply chain practices: evidence from small and medium enterprises. Ann Oper Res. https://doi.org/10.1007/s10479-021-04275-x
- 16. Li Z-Z, Li RYM, Malik MY et al (2021) Determinants of carbon emission in China: how good is green investment? Sustain Prod Consum 27:392–401. https://doi.org/10.1016/j.spc.2020.11.008
- 17. Lv C, Bian B, Lee C-C, He Z (2021) Regional gap and the trend of green finance development in China. Energy Economics 102:105476. https://doi.org/10.1016/j.eneco.2021.105476
- 18. Mani V, Jabbour CJC, Mani KTN (2020) Supply chain social sustainability in small and medium manufacturing enterprises and firms' performance: empirical evidence from an emerging Asian economy. Int J Prod Econ 227:107656. https://doi.org/10.1016/j.ijpe.2020.107656
- 19. Ososanmi AO, Ojo LD, Ogundimu OE, Oke AE (2022) Drivers of green supply chain management: A close-up study. Environ Sci Pollut Res 29(10):14705–14718. https://doi.org/10.1007/s11356-021-16638-9
- 20. Piyathanavong V, Garza-Reyes JA, Kumar V et al (2019) The adoption of operational environmental sustainability approaches in the Thai manufacturing sector. J Clean Prod

- 220:507–528. https://doi.org/10.1016/j.jclepro.2019.02.093
- 21. Runa A., Zhang X., Wen G., Zhang B., Fu W., and Yang H., Actinomorphic flower-like n-ZnO/p-Fe2O4 composite and its improved NO2 gas-sensing property, Materials Letters. (2018) 225, 73–76, https://doi.org/10.1016/j.matlet.2018.04.087, 2-s2.0-85046783616.
- 22. Singh R. and Singh D., Chitin membranes containing silver nanoparticles for wound dressing application, International Wound Journal. (2014) 11, no. 3, 264–268, https://doi.org/10.1111/j.1742-481X.2012.01084.x, 2-s2.0-84900418826.
- 23. Xing X., Yang Y., Yan Z., Hu Y., Zou T., Wang Z., and Wang Y., CdO-Ag-ZnO nanocomposites with hierarchically porous structure for effective VOCs gas-sensing properties, Ceramics International. (2019) 45, no. 4, 4322–4334, https://doi.org/10.1016/j.ceramint.2018.11.107, 2-s2.0-85056990313.