
Nanotechnology Perceptions  
ISSN 1660-6795 

www.nano-ntp.com  

 

Nanotechnology Perceptions 20 No. S7 (2024) 506–514                                             

S-Pure Rickart Modules  

Hassan Sabti Al-rdeny, Bahar Hamad Al-Bahrani 

 
Department of mathematic. College of Science. University of Baghdad. Baghdad. Iraq 

Email1:hassanalrdeny308@gmail.com  
 

 
In this paper we introduce the concept S.pure Rickart module (or s.p.r-module for short) as a 

generalization of  pure Rickart module. Let S semiradical property and let M, N be two modules. 

We are stating that M is N- s.p.r. module if for every homomorphism f:M→N, ker⁡f is S.pure 

submodule of M. The main goal of studying S.Pure Rickart modules is to describe the properties of 

this type of the class modules and to prove some theories and properties their relationships. Also 

the importance of their applications in constructing algebraic concepts with respect to a special 

classes of S.  
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1. Introduction 

Our research includes studying and describing S. Pure Rickart modules and giving some 

examples and remarks their relationship to some algebraic concepts. As well as their 

importance in applications of module theory, ring theory, and homological algebra. G. Ahmed 

in [1], [2] introduced the concepts pure (dual pure) Rickart modules. A module M is called a 

pure (dual pure) Rickart module if for every homomorphism f: M → M, ker f (Im f) is a pure 

submodule of M.  

N. Hamad and B. AL-Hashmi in [3] introduced semiradical property, A property S is called a 

semiradical property if:  

1- For each module M, there exists a submodule (briefly S(M) ) such that:  

a- A ≤ S(M) for every submodule A  of M  such that S(A) = A. 

b- S(S(M)) = S(M). 

2- If f: M → N is an epimorphism and S(M) = M, then S(N) = N. 

A semiradical property is said to be radical property if  S (
M

S(M)
) = 0, for each module M. 

The following two properties is a radical property. 
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1- S = Snr. For a module M, let S(M) = Snr(M) = ∑ AA≤M
J(A)=A

, where J(A) is the Jacobson 

radical of A, see [4]. It's known that Snr is a radical property, see [3]. 

2- S = Sa. Let M be a module. M is called a semiartinian module (denoted by Sa-module), if 

for every proper submodule A of M, Soc(
M

A
) ≠ 0, see [4]. It’s clear that every artinian module 

is semiartinian. For a module M, let S(M) = Sa(M) = ∑ AA≤M
A is Sa

, Sa(M) is called the 

semiartinian submodule of M. It's known that Sa is a radical property, see [3]. 

While the following three properties are semiradical property, see [3].  

1- S = Z. For a module M, let S(M) = Z(M) the singular submodule of M. Z is a semiradical 

property, see [3].  

2- S = Soc. For a module M, let S(M) = Soc(M), the socle submodule of M. Soc is a 

semiradical property, see [3]. 

3- S = ℳ For a module N, let S(M) = ℳ(N) = ∑ AA≤N
A is regular

,  , ℳ(N) is called semi Broun-

McCoy radical), see [5]. ℳ is a semiradical property, see [3].  

    E. Al-Dhahari and B. Al-Bahrani in [6] introduced the concept S. pure submodule, let N be 

submodule of M. Then N is s. p. closed submodule (S. pure submodule) of M if and only if 

S (
M

N
) = 0.  

    This observation led us to introduce the concepts S. pure Rickart modules. Let S semiradical 

property and let  M, N be two modules. We are stating that M is N- s. p. r. module if for every 

homomorphism f: M → N, ker f ≤s.p M.  

The work comprises three sections. In Section two, we introduce the concept of s. p. r. module. 

We illustrate some examples and provides properties. For instance, we prove that, S(M) = 0 

if and only if M is s. p. r. module see Propo. 2.3.  We show that, M be a faithful module. If M 

is s. p. r. module, then R is s. p. r. ring, see Propo. 2.4. In addition, we prove that M be a 

f. g faithful multiplication module. Then R is s. p. r. ring if and only if M is s. p. r. module, see 

Propo. 2.5. We prove that, when S Cohereditary radical property and M1, M2 be modules. If 

M1 or M2 are s. p. r. modules, then M1 M2 is s. p. r. module, see Propo. 2.6. We show that 

when S radical property and M be a f. g multiplication module. If M is s. p. r. module, then E =
End(M), the endomorphism ring is s. p. r. ring, see Propo. 2.7. We prove that, M1 and M2 be 

modules such that S(M1) = 0 and M has no non trivial S.pure submodule. If M1 is M2-

s. p. r. module, then either Hom(M1 , M2) = 0 or every nonzero homomorphism from M1 to 

M2 is a monomorphism, see Propo. 2.8. In addition, we show that when Hom(M1, M2) ≠ 0. 

If M1 is M2-s. p. r. module, then M1 is Quasi Dedekind. In particular if M1 is s. p. r. module, 

then M1 is Quasi Dedekind, see Coro. 2.9. In addition we give a characterizations for the 

s. p. r. module, see Theo. 2.10. We prove that when S be a hereditary property and M1 be a 

module. Then M1 is M2-s. p. r. module if and only if Hom(M1, M2) = 0, for every module N 

such that S(M2) = M2, see Propo. 2.11. We prove  that R is s. p. r. ring if and only if every 

projective (free) module is s. p. r. module, see Propo. 2.12. We prove that  S(R) = 0 if and 

only if  for each module M is N-s. p. r. module, for every projective (free) module N, see Propo. 
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2.13. 

In section three, we study s. p. r. modules, with respect to a special classes of S. For instance, 

S be a hereditary property and R be ID. If M be a prime module such that S(M) ≠ M, then M 

is s. p. r. module, see Propo. 3.1. In addition, if M is a torsion free (projective, free)  module 

such that S(M) ≠ M, then M is s. p. r. module, see Coro. 3.2 (3.3). We prove that when R be 

ID and R not a field. If M is a non-zero torsion free module, then M is Z(ℳ). p. r. module and 

Soc(R) = 0, see Propo. 3.4. In addition If M be a non-zero projective (flat) module, then M is 

ℳ. p. r. module, Z. p. r. module, Soc. p. r. module and ℳ. p. r. module, see Coro. 3.5. We 

prove that R be ID and M be a flat module. If M is p. r. module, then M is Z. p. r. module. The 

converse is true when R is a principle ID, see Propo. 3.6. We show that R be ID and M be a 

module. If M is Z-regular module. Then M is Z. p. r. module, see Propo. 3.7. In addition if M is 

Z-regular module, then M is Snr. p. r. module, see Propo. 3.8. We show that M be a non-zero 

module. If M is Z-regular, then M is not ℳ. p. r. module, see Propo. 3.9. We demonstrate that, 

M be semisimple projective module. Then M is Z(Snr). p. r. module and not 

ℳ(Soc). p. r. module, see Propo. 3.10. Recall that K is called a pure submodule of module M, 

if K ∩ IM = IK, for every finitely generated ideal I of R, see [7]. Recall that M is called regular 

module if every submodule of M is pure, see [5]. A ring R is a pure simple if 0 and R are the 

only pure ideals of R, see [8]. For a module M, the singular submodule of a module M define 

as Z(M) = {m ∈ M ∶ ann(m) ≤e R}. M is called a singular module if Z(M) = M and M is 

called a nonsingular module Z(M) = 0, see [9]. A submodule N of a module M is called a fully 

invariant submodule if for every f ∈ End(M), , f(N)  N, see [10]. A module M is called a 

Quasi Dedekind module if each 0 ≠ f ∈ End(M),  is a monomorphisem, see [11]. A module 

M is called Co-Quasi Dedekind module if for each 0 ≠ f ∈ End(M), Im f = M, see [12]. A 

module M is called a faithful module if ann(M) = 0, where ann(M) = {r ∈ R |rx = 0, ∀x ∈
M}, see [13]. Let M be a module, the Jacobson radical of M, J(M) = ⋂ AA ≤M

A is maximal
. If M has 

no maximal submodule, then J(M) = M, see [4]. The socle of M, Soc(M)=∑ AA≤M
A is simple

, see 

[9].  

    For a left module M, End(M) that will mean the endomorphism ring of M. The observes 

K ≤ M, K ≤p M, K ≤ M, K ≤s.p M, f. g and ID mean that K is a submodule, a pure 

submodule, direct summands s.pure submodule of M, finitely generated and integral domain. 

In this paper, we mean S is a semiradical property unless otherwise stated. Throughout this 

article, R is a ring with identity and M is a until left R-module.  

2- S.pure Rickart Modules 

    This section introduces the concept of S.pure Rickart module. We illustrate some examples 

and provides some properties are investigated. We start by the following definition.   

Definition 2.1: Let M and N be two modules. We say that M is N-S.pure Rickart module (or 

s. p. r. module for short) if for every homomorphism f: M → N, ker f ≤s.p M. In particular if M 

is M-s. p. r. module, then we say that M is s. p. r. module. If M = R, then we say R is s. p. r. ring 

if R is s. p. r. as a module. 

Examples 2.2: 1- Let S = Z. Consider the modules Z and Q as Z-modules and let f: Z → Q be a 
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homomorphism, then 
Z

ker f
≅ Im f, by the first isomorphic theorem. Since Q is nonsingular 

module, then Im f is nonsingular. Therefore S (
Z

ker f
) ≅ S(Im f) = 0 and hence ker f ≤s.p Z. 

Thus Z is Q-s. p. r. module. 

2- Let S = Soc. Consider the modules Z4 and Z2 as Z-modules. Claim that Z4 is not Z2-

s. p. r. module. To show that, let f: Z4 → Z2 be a map define by f(n) = 2n, ∀n ∈ Z4. Clearly 

that f is a homomorphism. But ker f = {0̅, 2̅}, so 
Z4

{0̅,2̅}
≅ Z2, and hence S (

Z4

{0̅,2̅}
) ≅ S(Z2) =

Z2 ≠ 0. Therefore kernel f is not  S. pure submodule of Z4. Thus  Z4 is not Z2-s. p. r. module.   

Proposition 2.3: Let M be a module. The following statements are equivalent: 

1- S(M) = 0. 

2- M is s. p. r. module. 

3- Every module N is M-s. p. r. module. 

4- For every epimorphism f from any module N to M, ker f  ≤s.p N. 

Proof: 12) Let f: M → M be a homomorphism and let S(M) = 0. Since 
M

ker f
≅ Im f, then 

S (
M

ker f
) ≅ S(Im f) = 0. Hence ker f  ≤s.p M. Thus M is s. p. r. module.   

21) Let 1M: M → M be the identity map. Since M is s. p. r. module, then ker 1M = 0  ≤s.p M. 

Therefore S(M) = 0. 

13) Let M, N be modules such that S(M) = 0. Let f: N → M be a homomorphism. Since 
N

ker f
≅ Im f and S(M) = 0, then S (

N

ker f
) = 0. So ker f  ≤s.p N. Thus N is M − s. p. r-module.  

34) Clear. 

41) Let M be a module. By [ [4], Coro. 4.4.4, p.89], there exist a free module F and an 

epimorphism f: F → M. By our assumption ker f  ≤s.p F and hence S (
F

ker f
) = 0. But f 

epimorphism, so 
F

ker f
≅ M. Thus S(M) = 0. 

Proposition 2.4: Let M be a faithful module. If M is s. p. r. module, then R is s. p. r. ring. 

Proof: Let f: R → R be a homomorphism. Since M is s. p. r. module, then S(M) = 0, by Propo. 

2.6. But S(R)M S(M), by [ [3], Propo. 19-3, p.61 ], therefore S(R)M = 0. But M be a faithful 

module, therefore  S(R) = 0. Thus R is s. p. r. ring, by Propo. 2.3. 

Proposition 2.5: Let M be a f. g faithful multiplication module. Then R is s. p. r. ring if and only 

if M is s. p. r. module. 

Proof: Suppose that R is s. p. r. ring. Then S(R) = 0, by Propo. 2.6. Since M be a f. g faithful 

multiplication module, then S(R)M = S(M), by [ [3], Propo. 24-3, p.63 ]. Therefore S(M) =
0. Thus M is s. p. r. module, by Propo. 2.3. 

For the converse, is clear by Propo. 2.4.  
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Proposition 2.6: Let S Cohereditary radical property and M1, N be modules. If M1 or M2 are 

s. p. r. modules, then M1 M2 is s. p. r. module.  

Proof: Assume that M1 is s. p. r. modules. We want to show that M1 M2 is s. p. r. module. 

Then S(M1) = 0, by Propo. 2.6. By [ [3], Coro. 46-3, p.74]  S(M1 M2) = S(M1) M2 =
0 M2 = 0. Thus M1 M2 is s. p. r. module, by Propo. 2.3. 

Proposition 2.7:  Let S radical property and M be a f. g multiplication module. If M is 

s. p. r. module, then E = End(M), the endomorphism ring is s. p. r. ring.  

Proof: Suppose that M is s. p. r. module. Since M be a f. g multiplication faithful module as a 

ring R, then M be a f. g multiplication faithful module as a ring E, by [14]. Therefore  S(E)M =
S(M), by [ [3], Propo. 24-3, p.63 ]. But M is s. p. r. module, so S(M) = 0, by Propo. 2.3 and 

hence S(E)M = 0. Since M be a faithful module, then S(E) = 0. Thus E is s. p. r. ring, by 

Propo. 2.3.  

Proposition 2.8: Let M1 and M2 be two modules such that S(M1) = 0 and M1 has no non trivial 

S. pure submodule. If M1 is M2- s. p. r. module, then either 

1- Hom(M1, M2) = 0    or 

2- Every nonzero homomorphism from M1 to M2 is a monomorphism.  

Proof: Suppose that Hom(M1, M2) ≠ 0. Let f: M1 → M2 be a nonzero homomorphism. Since 

M1 is M2-s. p. r. module, then ker f ≤s.p M1. But M1 has no non trivial S. pure submodule, 

therefore ker f={0}. Hence f is a monomorphism.   

Corollary 2.9: Let M1 and M2 be modules such that S(M1) = 0 and M1 has no non trivial 

S. pure submodule such that Hom(M1, M2) ≠ 0. If M1 is M2-s. p. r. module, then M1 is Quasi 

Dedekind. In particular if M1 is s. p. r. module, then M1 is Quasi Dedekind.     

Proof: Assume that Hom(M1, M2) ≠ 0. Hence there is a monomorphism f: M1 → M2, by 

Propo. 2.8. Suppose M1 is not Quasi Dedekind. Therefore there exists homomorphism 

f1: M1 → M1 such that ker f1 ≠ 0. But f is a monomorphism, so ker fof1 = ker f1 ≠ 0. Since 

M1 is M2-s. p. r. module by our assumption, then ker fof1 = ker f1 ≤s.p M1. But M1 has no 

non trivial S. pure submodule, therefore ker f1 = M1. So f1 = 0, which is contradiction. Thus 

M1 is Quasi Dedekind.    

      The following theorems are characterizations for the s. p. r. module.  

Theorem 2.10: Let 𝑀1 be a module. Then the following statements are equivalent: 

1- 𝑀1 is 𝑠. 𝑝. 𝑟-module. 

2- For every  𝑀2  ≤ 𝑀1, every 𝐾1 ≤ 𝑀1 is 𝑀2 - 𝑠. 𝑝. 𝑟. module. 

3- For every pair 𝐾1, 𝐿1 ≤ 𝑀1 and every 𝑓 ∈ 𝐻𝑜𝑚(𝑀1, 𝐿1), the kernel of the restricted map 

𝑘𝑒𝑟 𝑓|𝐾 ≤𝑠.𝑝 𝐾1.   

Proof: 12) Let 𝑀2  ≤ 𝑀1 and 𝑀1 = 𝐾1 𝐾2, for some submodule 𝐾2 of 𝑀1.To show that 𝐾 

is 𝑀2-𝑠. 𝑝. 𝑟. module. Let 𝑓: 𝐾1 → 𝑀2  be a homomorphism. Let 𝑓1: 𝑀1 → 𝑀1 be a map defined 

by   
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𝑓1(𝑥) = {
𝑓(𝑥),         𝑖𝑓 𝑥 ∈ 𝐾1

0 ,              𝑖𝑓 𝑥 ∈ 𝐾2
     

Clearly that 𝑓1 is a homomorphism. Since 𝑀1 is 𝑠. 𝑝. 𝑟-module, then  𝑘𝑒𝑟 𝑓1 ≤𝑠.𝑝 𝑀1. But  

𝑘𝑒𝑟 𝑓1 = {𝑚 + 𝑚1 ∈ 𝑀1;  𝑓1(𝑚 + 𝑚1) = 0, 𝑚 ∈ 𝐾1, 𝑚1 ∈ 𝐾2} 

          = {𝑚 + 𝑚1 ∈ 𝑀;  𝑓(𝑚) = 0, 𝑚 ∈ 𝐾1, 𝑚1 ∈ 𝐾2} 

          = 𝑘𝑒𝑟 𝑓 𝐾2.   

Therefore 𝑘𝑒𝑟 𝑓 𝐾2 ≤𝑠.𝑝 𝑀1. Hence 𝑆 (
𝑀1

𝑘𝑒𝑟 𝑓 𝐾2
) = 0. But 

𝑀1

𝑘𝑒𝑟 𝑓 𝐾2
=

𝐾1 𝐾2

𝑘𝑒𝑟 𝑓 𝐾2
≅

𝐾1

𝑘𝑒𝑟 𝑓
, so 

𝑆 (
𝐾1

𝑘𝑒𝑟 𝑓
) = 0. So 𝑘𝑒𝑟 𝑓 ≤𝑠.𝑝 𝐾1. Thus 𝐾1 is 𝑀2-𝑠. 𝑝. 𝑟. module.     

23) Let 𝐾1, 𝐿 ≤ 𝑀1 and let 𝑓: 𝑀1 → 𝐿1 be a homomorphism. Now consider the map 

𝑓|𝐾1
: 𝐾1 → 𝐿1. But 𝐾1 is 𝐿1- 𝑠. 𝑝. 𝑟. module, therefore 𝑘𝑒𝑟 𝑓|𝐾1

 ≤𝑠.𝑝 𝐾1.     

31) Let 𝑓: 𝑀1 → 𝑀1 be a homomorphism. Since 𝑓|𝐾1
: 𝐾1 → 𝐿1 and 𝐾1 is 𝐿1- 𝑠. 𝑝. 𝑟. module, 

then 𝑘𝑒𝑟 𝑓 ≤𝑠.𝑝 𝐾1. Take 𝐾1 = 𝐿1 = 𝑀1. Thus 𝑀1 is 𝑠. 𝑝. 𝑟-module.    

Proposition 2.11: Let 𝑆 be a hereditary property and 𝑀1 be a module. Then 𝑀1 is 𝑀2- 

𝑠. 𝑝. 𝑟. module if and only if 𝐻𝑜𝑚(𝑀1, 𝑀2) = 0, for every module 𝑀2 such that 𝑆(𝑀2) = 𝑀2.  

Proof: Let 𝑓: 𝑀1 → 𝑀2 be a homomorphism. Then 𝑘𝑒𝑟 𝑓 ≤𝑠.𝑝 𝑀1 and hence 𝑆 (
𝑀1

𝑘𝑒𝑟 𝑓
) = 0. 

Since 
𝑀1

𝑘𝑒𝑟 𝑓
≅ 𝐼𝑚 𝑓 by the first isomorphisem theorem, then 𝑆(𝐼𝑚 𝑓) = 0. But 𝑆(𝑀2) = 𝑀2 

and 𝑆 hereditary, therefore 𝑆(𝐼𝑚 𝑓) = 𝐼𝑚 𝑓 and hence 𝐼𝑚 𝑓 = 0. Thus 𝐻𝑜𝑚(𝑀1, 𝑀2) = 0.   

The converse is clear.    

Proposition 2.12: Let 𝑅 be a ring and 𝑀 be a module. The following statements are equivalent: 

1- 𝑅 is 𝑠. 𝑝. 𝑟. ring. 

2- Every projective module is 𝑠. 𝑝. 𝑟. module. 

3- Every free module is 𝑠. 𝑝. 𝑟. module. 

Proof: 12) Let 𝑀 be a projective module and let 𝑓: 𝑀 → 𝑀 be a homomorphism. Since 𝑅 is 

𝑠. 𝑝. 𝑟. ring, then 𝑆(𝑅) = 0, by Propo.2.3. But 𝑀 is a projective module, therefore 𝑆(𝑅)𝑀 =
𝑆(𝑀), by [ [3], Propo. 23-3, p.62 ]. and hence 𝑆(𝑀) = 0. Thus 𝑀 is 𝑠. 𝑝. 𝑟. module, by 

Propo.2.3.   

23) Clearly since every free module is projective module. 

31) Since 𝑅 as 𝑅-module is free, then 𝑅 is 𝑠. 𝑝. 𝑟. module by our assumption. Thus 𝑅 is 

𝑠. 𝑝. 𝑟. ring.  

Proposition 2.13: Let 𝑅 be a ring. The following statements are equivalent: 

1- 𝑆(𝑅) = 0 

2- Each module 𝑀 is 𝑁- 𝑠. 𝑝. 𝑟. module, for every projective module 𝑁. 
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3- Each module 𝑀 is 𝑁- 𝑠. 𝑝. 𝑟. module, for every free module 𝑁. 

Proof: 12) Let 𝑀 be a module and 𝑁 be a projective module. Let 𝑓: 𝑀 → 𝑁 be a 

homomorphism. Since 𝑁 be projective, then 𝑆(𝑅)𝑁 = 𝑆(𝑁), by [ [3], Propo. 23-3, p.62 ]. But 

𝑆(𝑅) = 0, by our assumption, therefore 𝑆(𝑁) = 0. Since 
𝑀

𝑘𝑒𝑟 𝑓
≅ 𝐼𝑚 𝑓 by the first 

isomorphism Theorem and 𝐼𝑚 𝑓 ≤ 𝑁, then 𝑆 (
𝑀

𝑘𝑒𝑟 𝑓
) ≅ 𝑆(𝐼𝑚 𝑓) = 0. Therefore 

𝑘𝑒𝑟 𝑓  ≤𝑠.𝑝 𝑀. Thus 𝑀 is 𝑁- 𝑠. 𝑝. 𝑟. module.  

23) Clear since every free module is projective module. 

31) Let 𝑅 be a ring. To show that  𝑆(𝑅) = 0. Since 𝑅 as 𝑅-module is free module, then 𝑅 

is 𝑠. 𝑝. 𝑟. module. Thus 𝑆(𝑅) = 0, by Propo. 2.3. 

3- 𝑍(𝑆𝑜𝑐, 𝑆𝑛𝑟, ℳ). 𝑝. 𝑟. modules 

    This section introduces the study 𝑠. 𝑝. 𝑟-modules, with respect to a special classes of 𝑆. 

Proposition 3.1: Let 𝑆 be a hereditary property and 𝑅 be 𝐼𝐷. If 𝑀1 is a prime module such that 

𝑆(𝑀1) ≠ 𝑀1, then 𝑀1 is 𝑠. 𝑝. 𝑟. module. 

Proof: Let 𝑀1 be a prime module such that 𝑆(𝑀1) ≠ 𝑀1, then 𝑆(𝑀1) = 0. To show that, 

assume that 𝑆(𝑀1) ≠ 0. Since 𝑆(𝑀1) = ∑ 𝑁𝐾≤𝑀1
𝐾 ℎ𝑎𝑠 𝑆

, by [9], then there exists a submodule 𝐾 

of 𝑀1 such that 𝐾 ≠ 0 and 𝐾 has 𝑆. Hence there exists 0 ≠ 𝑥 ∈ 𝐾 such that 𝑅𝑥 ≤ 𝐾. But 𝑆 

hereditary property, therefore 𝑅𝑥 has 𝑆. Let 𝑦 ∈ 𝑀1, claim that 𝑅𝑦 has 𝑆. Let 𝑓𝑥: 𝑅 → 𝑅𝑥 be a 

map defined by 𝑓𝑥(𝑟) = 𝑟𝑥, ∀𝑟 ∈ 𝑅. Clearly that 𝑓𝑥 is an epimorphism and 𝑘𝑒𝑟 𝑓𝑥 = 𝑎𝑛𝑛(𝑥). 

Hence 
𝑅

𝑎𝑛𝑛(𝑥)
≅ 𝑅𝑥 by the first isomorphism Theorem. But 𝑅𝑥 has 𝑆, therefore 

𝑅

𝑎𝑛𝑛(𝑥)
 has 𝑆. 

Since𝑀1be a prime, then 𝑎𝑛𝑛(𝑥) = 𝑎𝑛𝑛(𝑦). Therefore  
𝑅

𝑎𝑛𝑛(𝑥)
=

𝑅

𝑎𝑛𝑛(𝑦)
≅ 𝑅𝑦 and hence 𝑅𝑦 

has 𝑆. So 𝑆(𝑀1) = 𝑀1 be a contradiction. Hence 𝑆(𝑀1) = 0. Thus 𝑀1 is 𝑠. 𝑝. 𝑟. module, by 

Propo. 2.3. 

Corollary 3.2: Let 𝑆 be a hereditary property and 𝑅 be 𝐼𝐷. If 𝑀 is a torsion free module such 

that 𝑆(𝑀) ≠ 𝑀, then 𝑀 is 𝑠. 𝑝. 𝑟. module. 

Proof: Suppose that 𝑀 is a torsion free module. Then 𝑀 be a prime and faithful module, by 

[15]. Thus 𝑀 is 𝑠. 𝑝. 𝑟. module, by Propo.3.1. 

Corollary 3.3: Let 𝑅 be ID. If M be a projective (free) module such that S(M) ≠ M, then M is  

Z(Soc, ℳ). p. r. module.  

Proof: Suppose that M be a projective (free) module such that S(M) ≠ M. Then M is torsion 

free, by [ [16], Propo. 3.49, p.134]. Since S = Z( Soc, ℳ) is hereditary, then M is 

s. p. r. module, by Propo.3.1.  

Proposition 3.4: Let R be ID and R not a field. If M is a non-zero torsion free module, then M 

is Z(ℳ). p. r. module and Soc(R) = 0.   

Proof: Since R be ID not a field and 0 ≠ M torsion free, then M is not Z-regular, by [ [17], 

Propo. 1.2.4, p.17]. Claim that ℳ(M) = 0. To show that, let K ≤ M. Since M  be torsion free, 
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then N be torsion free and hence N is not Z-regular. But ℳ(M) = ∑ KK≤M
K is regular

, therefore 

ℳ(M) = 0. Since R be ID and M be torsion free, then T(M) = Z(M) = 0. Thus M is 

Z(ℳ). p. r. module, by Propo.2.3. Now to show Soc(R) = 0. Since R be ID, then R be a prime 

as R-module. Hence Soc(R) = 0, by [ [16], Coro. 2.3.25, p.83].  

Corollary 3.5: Let R be ID and R not a field. If M be a non zero projective (flat) module, then 

M is ℳ. p. r. module, Z. p. r. module, Soc. p. r. module and ℳ. p. r. module.  

Proof: Clearly by Propo. 3.4 and Propo. 2.3. 

Proposition 3.6: Let R be ID and M be a flat module. If M is p. r. module, then M is 

Z. p. r. module. The converse is true when R is a principle integral domain.  

Proof: Let f: M → M be a homomorphism. But M is p. r. module and M be a flat, therefore 

ker f  ≤p M and flat, by [ [16], Propo. 3.67, p.147]. Hence 
M

ker f
 is flat, by [ [16], Propo. 3.60, 

p.139]. But R be ID, therefore T (
M

ker f
) ≅ Z (

M

ker f
) = 0. So ker f  ≤Z.p M. Thus M is Z. p. r-

module.  

For the converse, let f: M → M  be a homomorphism. Since M is Z. p. r. module, then 

ker f  ≤Z.p M and hence Z (
M

ker f
) = 0. But R be principle integral domain, therefore T (

M

ker f
) ≅

Z (
M

ker f
) = 0. Hence 

M

ker f
 is flat, by [ [16], Coro. 3.51, p.134]. Therefore ker f  ≤p M. Thus M 

is p. r. module. 

Proposition 3.7: Let R be ID and M be a module. If M is Z-regular module. Then M is 

Z. p. r. module. 

Proof: Assume that M is Z-regular. Then J(M) = 0, by [ [18],Propo.6-3, p.60]. But J(M) is 

fully invariant submodule of M, therefore Z(M) ≤ J(M), by [ [16], Propo.2.1.6, p.54]. So 

Z(M) = 0. Thus M is Z. p. r. module, by Propo.2.3.  

Proposition 3.8: Let M1 be a module. If M1 is Z-regular module, then M1 is Snr. p. r. module. 

Proof: Assume that M1 is Z-regular. Then every submodule of M1 is regular, by [ [14], Remark 

2-1, p.28]. Then J(M1) = 0, by [ [18],Propo.6-3, p.60]. Hence J(A) = 0, A ≤ M1, by [ [4], 

Coro. 9.1.5, p.215]. So Snr(M1) = ∑ A = 0A≤M1

J(A)=A

. Thus M1 is Snr. p. r. module, by Propo. 2.3. 

Proposition 3.9: Let M1 be a non-zero module. If M1 is Z-regular, then M1 is not 

ℳ. p. r. module.      

Proof: Assume that M1 is Z-regular module. Then every submodule of M1is regular, by [ [14], 

Remark 2-1, p.28]. Hence M1 is the only ℳ. p-submodule of M1. Thus M is not ℳ. p. r-

module.   

Proposition 3.10: Let M be a semisimple projective module. Then M is Z(Snr). p. r. module 

and not ℳ(Soc). p. r. module. 

Proof: Since M be semisimple projective module, then M is Z-regular, by [ [17], Remark 1.2.3, 

p.17]. Therefore M is Z(Snr). p. r. module, by Propo.3.7 and Propo.3.8. So M is not 
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ℳ. p. r. module, by Propo. 3.9. Since M be semisimple, then Soc(M) = M. Thus M is not 

Soc. p. r. module.  
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