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In this study, a method for detecting road damage is introduced by utilizing the 

YOLOv9 model along with machine learning and computer vision techniques. 

Conventional methods for inspecting roads, such as surveys and visual checks, 

are time-consuming, error-prone, and inefficient. The goal is to create a system 

capable of assessing road conditions accurately and consistently in real time, 

thereby enhancing the effectiveness of maintenance tasks. 

A dataset of 10,343 high-quality images, captured in various scenarios and 

annotated using Roboflow's tool, was employed. The focus was on identifying 

types of road damage, including lengthwise and transverse cracks, patches, 

fatigue cracks, and potholes. By training the YOLOv9 model with features like 

Gradient Information (PGI) and the Generalized Efficient Layer Aggregation 

Network (GELAN), a significant boost in detection accuracy was achieved 

during validation. 

The assessment, considering metrics such as accuracy (0.643), completeness 

(0.626), average precision (mAP) (0.615), and F1 measure (0.634), indicates 

that the model performs well in identifying patches (accuracy: 0.867, 

completeness: 0.961, F1 measure: 0.911, mAP: 0.944) and potholes (accuracy: 

0.772, completeness: 0.814, F1 measure: 0.792, mAP: 0.835). However, 

difficulties were encountered with lengthwise cracks (accuracy: 0.465, 

completeness: 0.336, F1 measure: 0.391, mAP: 0.351) and transverse cracks 

(accuracy: 0.569, completeness: 0.444, F1 measure: 0.499, mAP: 0.484). These 

variations highlight the necessity for further efforts, especially through 

improved data enhancement techniques and sophisticated deep learning 

structures. 
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The results emphasize the potential of the YOLOv9 model to transform road 

maintenance systems by delivering precise damage assessments, leading to 

better-maintained road networks. Future studies will concentrate on tackling 

issues such as model overfitting and enhancing performance for more subtle 

forms of damage to ensure effective use in various real-world situations.  

Keywords: Automated Road Damage Detection, YOLOv9 Model, Machine 

Learning, Computer Vision, Data Augmentation.  

 

 
1. Introduction 

Maintaining roads, in condition is crucial for ensuring smooth transportation. Proper road 

upkeep not reduces the chances of accidents. Also improves traffic flow and cuts down on 

vehicle maintenance costs leading to significant savings for both governments and taxpayers 

(Shim et al., 2021). Conventional inspection methods, such as surveys and visual checks are 

time consuming, labor intensive and prone to errors (Kopsida et al., 2015). These traditional 

approaches often fall short in providing the comprehensive and real time data needed for 

maintenance planning (Gopalakrishnan, 2018). Manual surveys and visual inspections are 

sluggish demanding in terms of labor and inconsistent causing delays in identifying and 

addressing road damages. These methods are expensive. Offer information resulting in 

inefficient decisions regarding maintenance activities (Mukherjee et al., 2021). Leveraging 

machine learning techniques alongside computer vision holds promise for automated real 

time detection of road damage. Advanced models like YOLO (You Look can swiftly analyze 

vast datasets pinpoint various types of damage, with high accuracy thereby boosting the 

efficiency and effectiveness of maintenance tasks (Redmon & Farhadi 2018). 

The main objective is to create an automated system that can detect road damage by utilizing 

the YOLOv9 model. This system will make use of machine learning and computer vision 

technologies to deliver time precise and consistent evaluations of road conditions. The 

specific aims involve training and validating the YOLOv9 model with a dataset to identify 

types of road damage achieving high accuracy, in detecting damage while minimizing false 

alarms applying the model in a practical setting to showcase its effectiveness, in real world 

situations and improving road safety and maintenance efficiency by offering prompt and 

accurate damage assessments (Maeda et al., 2020; Zhang et al., 2018). 

 

2. Review of Literature 

The progress, in creating automated systems for detecting road damage has been impressive 

thanks to advancements in machine learning and learning techniques. Arya and colleagues 

(2021) assessed how well a Japanese road damage detection model could be applied to 

countries by analyzing a dataset from Japan, India and the Czech Republic. Their study 

showed that models trained on data from countries performed better than those trained on 

data from one country underscoring the importance of using local data to enhance model 

accuracy. Similarly, Naddaf Sh and team (2020) leveraged the EfficientDet models to 

achieve a balance between accuracy, scalability and real time performance while obtaining 

F1 scores and fast inference speeds in the IEEE BigData 2020 Road Damage Detection 
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Challenge dataset. They stressed the need for annotation practices and larger datasets. Doshi 

and Yilmaz (2020) created a model based on YOLO v4 that combined models trained with 

various iterations and resolutions to achieve competitive F1 scores indicating the 

significance of having diverse training data. Kulambayev et al. (2020) employed Mask R 

CNN for real time detection and segmentation of road damages with precision recall rates 

and F1 scores while recommending the expansion of datasets, for studies. 

These results were further supported when it was demonstrated that incorporating data 

enhanced the models effectiveness in situations highlighting the benefits of using diverse 

datasets from various countries (Arya et al., 2021). 

The development of YOLO models, from YOLOv1 to YOLOv10 has led to enhancements in 

both the accuracy and speed of object detection. YOLOv1 pioneered a grid based approach 

(Redmon et al., 2016) with versions like YOLOv2 incorporating features such as batch 

normalization, anchor boxes and multi scale training for improved performance (Redmon & 

Farhadi 2017). The evolution continued with YOLOv3 introducing backbones and residual 

connections for detection capabilities (Redmon & Farhadi 2018). YOLOv4 brought 

innovations like the CSPDarknet53 backbone and advanced data augmentation methods 

resulting in accuracy and faster processing speeds (Bochkovskiy et al., 2020). Implemented 

in PyTorch YOLOv5 introduced AutoAnchor and mosaic augmentation techniques to offer 

versions catering to performance requirements (Jocher, 2020). Meanwhile the focus of 

YOLOv6 and YOLOv7 shifted towards applications by enhancing model learning processes 

and scalability (Li et al., 2022; Wang et al., 2022). The introduction of an anchor design with 

YOLOv8 aimed at reducing overheads while achieving efficient results (Jocher, 2023). 

Noteworthy advancements were made with the release of YOLOv9 which introduced the 

Programmable Gradient Information framework followed by YOLOv10 that eliminated 

maximum suppression, for improved speed and accuracy (Alif & Hussain 2024; Hussain, 

2024). 

The use of YOLO models, in agriculture, such as identifying weeds monitoring crops and 

detecting diseases showcases their ability to provide time and accurate results (Alif & 

Hussain 2024). The ongoing advancements in YOLO models have expanded their range of 

applications making them essential tools across industries, including agriculture. Future 

studies are likely to focus on improving model efficiency and exploring uses. These research 

endeavors emphasize the importance of utilizing datasets on a scale implementing transfer 

learning techniques and employing ensemble methods to create reliable automated systems, 

for detecting road damage that can be applied in different regions. This contributes 

significantly to the effectiveness and cost efficiency of road maintenance and safety 

management. 

 

3. Methodology 

Data Collection and Preprocessing 

The dataset contains high quality images taken from road settings showcasing a variety of 

lighting and weather scenarios well as road types. This diverse collection of images helps the 

model adapt to real world conditions effectively. The focus of these images is, on road issues 
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like cracks, potholes and surface irregularities. To label objects in the images accurately and 

efficiently the datasets images were annotated using Roboflows annotation tool, which 

supports annotation formats for integration, with different machine learning systems. 

The dataset contains types of road damage annotations, such, as cracks that run along the 

roads length transverse cracks perpendicular to the road patches indicating previous repairs 

fatigue cracks resulting from repeated stress and potholes causing depressions in the road 

surface. There are 10,343 annotated images in total with a representation of each class, for 

training purposes. The average image size is 12.19 megapixels (Workspace Pavement, 

2021). 

To improve the model’s ability to adapt and perform across scenarios we applied various 

methods to modify the dataset. These methods involved flipping images both vertically with 

a 90% chance, for each rotating images to create perspectives and resizing them to 416x416 

pixels for consistency in input sizes. Data augmentation plays a role in training machine 

learning models for tasks like identifying objects and categorizing them. The key reasons 

behind using data augmentation in this research are to introduce diversity enhance 

adaptability strengthen stability and maintain a dataset. By expanding the dataset through 

augmentation, we expose the model to an array of variations that aid in recognizing road 

damages under varying conditions and viewpoints. Augmented data enables the model to 

perform better on data it hasn't seen before reducing the risk of memorizing examples and 

improving its accuracy in real world settings. Techniques such as rotation and flipping make 

the model more resilient against distortions found in real world images like angles and 

perspectives. Augmentation helps balance the dataset by creating samples for classes that're 

less represented ensuring that sufficient training data is available, for all types of road 

damage. 

These techniques have proven to be effective, in research studies. For instance, manipulating 

aspects like rotation and translation has been shown to enhance the resilience of models 

against transformations a crucial aspect in creating strong computer vision algorithms (Hao 

et al. 2023). Moreover, employing tailored data augmentation strategies has been noted to 

enhance the performance of object detection models. For example, experiments conducted 

on the COCO dataset suggest that optimized data augmentation techniques can boost 

detection accuracy by 2.3 mAP (Perez & Wang 2017). 

YOLOv9 Model for Road Damage Detection 

The YOLOv9 model used for detecting road damage is known for its design and effective 

training methods that lead to accuracy rates. By leveraging a backbone feature extractor 

made up of layers the model can identify types of road damage such, as cracks and potholes 

by capturing intricate patterns. Its multi scale detection heads enable the detection of both 

large damages effectively. The utilization of pretrained weights from a dataset streamlines 

the process through transfer learning accelerating training speeds and enhancing 

performance. 

To address information bottlenecks and enhance detection accuracy the model incorporates 

Gradient Information (PGI) which focuses on training objectives. Additionally, the 

Generalized Efficient Layer Aggregation Network (GELAN) optimizes feature extraction by 
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aggregating features from layers keeping the model lightweight yet robust enough for 

deployment in diverse environments including mobile devices for real time monitoring. 

During training images are resized, converted to RGB format and augmented with rotations, 

flips and scaling to increase robustness. Hyperparameter tuning plays a role, in optimizing 

performance with training conducted over a number of epochs using suitable batch sizes and 

learning rates. 

Evaluation of performance involves examining Precision, Recall and mean Average 

Precision (mAP) offering information, on accuracy and adaptability as mentioned by Wu et 

al. (2023). 

By utilizing the capabilities of YOLOv9 the detection of road damage can attain levels of 

accuracy and efficiency. The incorporation of PGI and GELAN ensures that the model is 

robust yet lightweight enabling its suitability, for real time applications. This significantly 

contributes to enhancing automated road inspection systems and maintenance tasks 

according to Youwai et al. (2024). 

Training Setup 

The training took place in a Google Colab setting using an L4 GPU to speed up 

computations. The model employed was yolov9s.pt, the version of YOLOv9 selected for its 

blend of speed and accuracy. Training spanned 200 epochs to cover the dataset thoroughly. 

A batch size of 16 was chosen to balance efficiency and model generalization. Image input 

size was fixed at 640 pixels, for detection accuracy. This configuration enhances YOLOv9s 

ability to efficiently identify and categorize road damages. 

Evaluation Metrics 

The model, for detecting road damage underwent testing with metrics like precision, recall, 

mean Average Precision (mAP) and the F1 score. By conducting experiments on validation 

and test datasets valuable insights were gained regarding the accuracy and flexibility of the 

model. Furthermore, a visual assessment comparing the models’ predictions, to annotations 

was carried out to enhance understanding of its performance and pinpoint areas for 

improvement. 

Recall is a metric that assesses the percentage of identified instances compared to all the 

actual positive instances, in the dataset. The calculation of recall follows the formula 

depicted in Equation 1; 

Recall =
True Positives

True Positives +  False Negatives
  (Equation 1)         

In contrast precision measures the accuracy of identified cases, among all instances labeled 

as positive by the model. Equation 2 illustrates the formula, for precision. 

Precision =
True Positives

True Positives + False Negatives
    (Equation 2)      

The Mean Average Precision (mAP) gives an evaluation of how the model performs across 

various categories by averaging the Average Precision (AP) scores, for each category. 

Equation 3 outlines the calculation, for mAP. 
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mAP =
1

N
∑ APi      N

i=1 (Equation 3) 

In this scenario N represents the number of classes. The mean Average Precision (mAP) was 

computed by utilizing the Intersection, over Union (IoU) metric. 

The F1 score, a metric that combines precision and recall through the mean offers an 

evaluation. It proves beneficial, in scenarios with imbalanced datasets accounting for both 

positives and false negatives. Equation 4 displays the formula, for calculating the F1 score. 

 F1 Score = 2 ×  
Precision×Recall

Precision+Recall
  (Equation 4) 

When the model is assessed using these measures, insights are gained into its ability to detect 

road damages and its performance across different types of damage. Precision and recall 

indicate the model's accuracy in spotting road damages and its capability to locate all 

instances. The mAP metric provides a comprehensive view of performance across all 

categories, while the F1 score balances precision and recall, offering a reliable measure for 

assessment. 

Performing these evaluations helps identify the points of the model and areas that need 

improvement guaranteeing its efficiency in conditions. This comprehensive approach, to 

assessing performance allows for adjustments to be made to the model ultimately enhancing 

its accuracy and dependability in detecting road damage, in real world situations. 

 

4. Results 

In this section, the outcomes of training and validating the YOLOv9 model for detecting 

road damage are discussed. The study looks at how the model performs using measures, like 

accuracy, recall, average precision (mAP) and F1 score. The examination points out where 

the model shines in identifying road damages and pinpoints areas that need adjustments. It 

explores differences in performance among categories. Looks into potential problems, with 

overfitting offering a detailed assessment of the model’s effectiveness and possible 

enhancements. 

Analysis of Performance Metrics and Image-Based Results 

The training and validation losses, for box, class and DFL (Distance from Line) show a 

decrease during the training phase indicating learning. However, while validation losses 

initially drop they later begin to rise suggesting overfitting. This implies that although the 

model performs well on training data, its performance on validation data worsens over time. 

Precision and recall metrics exhibit progress throughout the training process albeit with some 

fluctuations. This indicates that the model is getting better at making predictions but 

struggles to maintain performance across all categories. The mean Average Precision (mAP) 

metrics, mAP50 and mAP50 95 also demonstrate enhancements, indicating precision and 

recall across different Intersection over Union (IoU) thresholds. Nonetheless the mAP50 95 

metric remains lower highlighting the difficulties, in achieving precision and recall 

simultaneously at thresholds. These findings are depicted in Figure 1. 
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Figure 1. Training and Validation Losses, Precision, Recall, and mAP Training and 

Validation Losses 

 

The confusion matrix reveals class-specific performance variations, with certain classes such 

as longitudinal and transverse cracks exhibiting higher misclassification rates. This correlates 

with the lower precision and recall observed in the mean metrics. Conversely, classes like 

patches and potholes show higher true positive rates, which align with their higher precision 

and recall values. These discrepancies underscore the model's varying effectiveness across 

different types of road damage, as illustrated in Figure 2. 

The confusion matrix shows that some classes, like transverse cracks have misclassification 

rates impacting the precision and recall metrics. On the hand classes such, as patches and 

potholes exhibit true positive rates leading to better precision and recall values. These 

differences highlight how the model performs differently for types of road damage as 

depicted in Figure 2. 

 

Figure 2. Confusion Matrix 
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The graph, in Figure 3 shows how performance changes for classes as confidence levels go 

up. For example, the class for patches consistently maintains precision at all confidence 

levels. On the hand classes like cracks see a noticeable decrease in precision at higher 

confidence levels. This difference as shown in Figure 3 leads to a precision value of 0.612 

which's decent but suggests some variations in precision, at different confidence thresholds. 

 

Figure 3. Precision-Confidence Curve 

The graph, in Figure 4 highlights the differences in recall based on confidence levels. When 

confidence levels rise classes like patches maintain a recall rate. Classes like longitudinal 

cracks experience a significant drop in recall. This suggests that while some classes 

consistently achieve recall rates others face challenges, in maintaining performance as 

confidence levels increase. 

 

Figure 4. Recall-Cofidence Curve 
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The graph, in Figure 5 depicts the balance between precision and recall for categories, such 

as patches, longitudinal cracks and transverse cracks. While patches demonstrate precision 

and recall the values are lower for transverse cracks. This leads to a recall of 0.577 and an 

average F1 score of 0.594. These measurements underscore the difficulties, in maintaining 

performance across all categories showcasing both the strengths and weaknesses of the 

model in identifying different types of road damage. 

 

Figure 5. Precision-Recall Curve 

Finally, the graph showing the F1 confidence curve, in Figure 6 represents how well 

precision and recall are balanced. It provides a measure that combines both aspects. The F1 

score remains consistently high for categories like patches at confidence levels indicating an 

effective performance. However, there is a decrease in the F1 score for categories such as 

cracks at higher confidence levels underscoring the challenge of maintaining consistent 

performance across all types of road damage. The average F1 score of 0.63 at a confidence 

level of 0.293 highlights the importance of tuning to achieve performance, across all 

categories. 

 

Figure 6. F1-Confidence Curve 
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Overall Performance Across All Classes  

The models overall performance, across all categories appears satisfactory with a precision 

of 0.643 recall of 0.626 F1 score of 0.634 and mAP of 0.615. These metrics suggest that the 

model performs adequately but still has room for improvement to enhance accuracy and 

consistency across all categories. 

When it comes to fatigue cracks the model demonstrates precision at 0.541 indicating some 

positives and a recall of 0.551 implying some missed instances. The balanced F1 score of 

0.546 reflects the trade off between precision and recall in this category. The mAP value of 

0.560 indicates a capability in identifying and categorizing fatigue cracks. 

On the hand when dealing with cracks the model encounters more challenges with lower 

precision at 0.465 suggesting a higher false positive rate and a recall of 0.336 indicating 

many missed instances. The F1 score of 0.391 underscores the difficulty in detecting cracks 

while the relatively low mAP value of 0.351 points to challenges in precise localization and 

classification. 

In contrast to these findings the model excels in recognizing patches with a precision of 

0.867 and a high recall of .961 suggesting accurate detection, for most instances involving 

patches which results in an outstanding F1 score .911. 

The impressive mAP score of 0.944 suggests performance, in pinpointing and categorizing 

patches. When it comes to potholes the model exhibits a precision of 0.772 and a recall rate 

of 0.814 indicating its ability to accurately spot and detect most potholes. A solid F1 score of 

0.792 signifies a balance between precision and recall while the high mAP value of 0.835 

showcases its efficiency in localizing and categorizing potholes. 

On the hand the model’s performance with cracks is average with a precision score of 0.569 

suggesting some false detections and a lower recall rate of 0.468 indicating missed instances. 

The F1 score of 0.514 reflects this performance while the low mAP value of 0.387 points 

towards challenges in precise localization and classification. 

In this breakdown, by category as shown in Table 1 we gain understanding of the models’ 

strengths and areas for enhancement in various types of road damage. It emphasizes the 

model’s proficiency, in detecting patches and potholes while pinpointing aspects that could 

use improvement with regards to transverse cracks. 

Table 1. Performance Across All Classes 

Class Images Instances Precision (P) Recall (R) mAP50 mAP50-95 

All 227 616 0.643 0.626 0.615 0.382 

Fatigue 45 78 0.541 0.551 0.560 0.195 

Longitudinal Cracks 67 176 0.465 0.336 0.351 0.137 

Patch 102 152 0.867 0.961 0.944 0.621 

Potholes 56 97 0.772 0.814 0.835 0.402 

Transverse Cracks 56 113 0.569 0.468 0.387 0.143 
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5. Discussion 

The YOLOv9 model showed performance, in identifying and categorizing types of road 

damage like patches and potholes. These categories displayed levels of accuracy and 

consistency as seen in the precision confidence and recall confidence curves across 

confidence thresholds. The models ability to detect patches and potholes effectively can be 

credited to their characteristics and larger sizes making them easily recognizable. The strong 

mean F1 score and mAP for these categories indicate the models capacity to maintain a 

balance between accuracy and completeness ensuring identification and classification in real 

world scenarios. 

On the hand the model encountered challenges when detecting transverse cracks leading to 

lower precision and recall rates. The precision confidence and recall confidence curves for 

these categories exhibited decreases at confidence levels suggesting a struggle for the model 

in maintaining accuracy with increased confidence thresholds. This difficulty implies that 

longitudinal and transverse cracks, which are more subtle and visually similar to road 

features present a task for the model. The mAP values for these categories underscore the 

complexities involved in achieving localization and classification indicating a requirement, 

for additional optimization of the model and enhancement of data resources. 

The examination of training and validation losses uncovered an issue of overfitting, where 

the validation loss began to rise after decreasing while the training loss kept decreasing. This 

pattern suggests that the model works well on the training data but struggles to generalize to 

validation data. Overfitting is a problem, in learning models, where the model gets too 

specialized in the training data, capturing noise and specific patterns that don't transfer well 

to fresh data. 

To tackle overfitting various strategies can be utilized. Integrating regularization methods 

like dropout and weight decay can help alleviate overfitting. Dropout randomly eliminates 

units from the network during training pushing the model to learn durable features. Weight 

decay penalizes weights, encouraging models that generalize better. Enhancing data 

augmentation techniques can boost variability in the training data aiding in generalization by 

the model. Advanced augmentation methods such as mixup and cutmix can generate intricate 

training samples enhancing the model’s adaptability to diverse variations. Implementing 

stopping during training can prevent overfitting by stopping training when the validation loss 

begins to rise (Vishwakarma & Vennelakanti 2020; Li et al., 2024). 

To enhance the model’s performance in identifying classes, like transverse cracks several 

avenues can be explored. 

Enhancing the variety and volume of training data particularly focusing on represented 

categories, like transverse cracks can enhance the models learning process. Targeted 

collection of data and the creation of data sets are strategies to achieve this objective. It is 

crucial to ensure high quality annotations to enable the model to learn from the data. The use 

of annotation tools and consistent labeling techniques can elevate the quality of the dataset. 

Exploring deep learning architectures that incorporate attention mechanisms can help direct 

the models focus towards image components resulting in improved accuracy in detecting 
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subtle and intricate damage patterns. Furthermore, employing scale feature extraction 

methods can boost performance in identifying damages of various sizes. 

Implementing transfer learning from models pre trained on tasks can significantly enhance 

the model’s performance levels. Fine tuning a trained model for road damage detection tasks 

allows for leveraging previously learned features, from extensive datasets thereby 

accelerating training processes and increasing accuracy rates. Additionally adopting methods 

that combine predictions from models can enhance both robustness and accuracy. Utilizing a 

comprising models trained with configurations and subsets of data enables capturing a 

broader spectrum of patterns thereby reducing chances of misclassifications. 

The YOLOv9 models practical application, in automated road inspection systems shows 

promise. Mobile apps utilizing the model can instantly. Categorize road damage during 

inspections allowing for reporting and documentation. Drones equipped with high quality 

cameras and the model can efficiently survey road networks in remote or difficult to access 

areas. Fixed cameras strategically placed can monitor road conditions continuously using the 

model to aid in maintenance and repairs. Maintenance vehicles with automated features and 

the model can decrease the need for inspections streamlining maintenance processes. 

Customizing the model with data can enhance its performance in regional settings boosting 

effectiveness across different landscapes. These examples demonstrate how the YOLOv9 

model enhances efficiency, cost effectiveness and responsiveness in road maintenance 

practices resulting in more well-kept road infrastructure (Wang et al., 2023; Yu & Zhou 

2023). 

Future studies should address real time implementation challenges like efficiency and 

hardware demands. Ensuring performance of the model on devices such as mobile phones 

and embedded systems is essential, for practical usage. 

Furthermore, delving into how the model can be combined with data sources such, as traffic 

and weather updates could offer an insight into road conditions and improve decision making 

in maintenance planning. By overcoming these challenges and exploring methods we can 

greatly enhance the reliability and efficiency of automated systems for detecting road 

damage especially when it comes to complex types like longitudinal and transverse cracks. It 

is crucial for studies to prioritize these approaches in order to boost the model’s performance 

overall and ensure its adaptability, for a range of real-world scenarios (Yu & Zhou 2023; 

Wang & Yoon 2021). 

 

6. Conclusion 

In conclusion, significant progress has been made in determining whether the YOLOv9 

model can effectively identify and categorize road damages. The model demonstrates 

performance, in spotting patches and potholes boasting precision and recall values of over 

0.8 for these categories. However, it encounters challenges when it comes to identifying 

transverse cracks with precision and recall values dropping below 0.6. These findings 

suggest that while the model holds promise, for automated road maintenance systems, 

further research and refinement are necessary to enhance its accuracy and dependability 

across a spectrum of road damage types. 
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