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This paper presents a finite element scheme with P1 and P2 basis functions, using an Euler-Taylor-

Galerkin method described in [1], for a nonlinear model describing the behavior of a new chemo-

fluidic oscillator[2]. This model is expressed by coupling an ordinary differential equation 

describing the hydrogel dynamics, the equation of nonlinear transport and an auxiliary equation that 

determines the flow volume. The numerical solution is constructed by taking a semi-discretization 

in time of the transport equation, employing Taylor series expansions in time forward that includes 

second and third order derivatives in time, avoiding instability problems. In this semi-discrete 

equation, the spatial variable is approximated by a finite element formulation according to Galerkin. 

Some simulations are performed taking different initial conditions for the hydrogel concentration. 

The numerical results describe the oscillatory behavior of the system as in [2], where the Matlab 

tools are used as a black box.  

 

Keywords: New Chemo-fluidic Oscillator, Non-linear model, Finite elements, Hydrogel 

dynamics.  

 

 

1. Introduction 

Autonomous oscillators are a key component of signal processing systems in electronics and 

biology. The development of oscillators that couple chemical or biological systems with the 

mechanical domain of microfluids could stimulate novel concepts for the "smart" handling of 

fluids and their ingredients.  

In technology, the realization of chemical oscillators is challenging, unlike electronic 
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oscillators. Recently, the construction of micro-fluidic oscillators has been demonstrated. 

However, these oscillators operate on purely mechanical principles with no influence of the 

chemical domain on the fluidic domain. In this study, a micro-fluidic oscillator circuit is 

presented using a chemo-fluidic bulk phase transition transistor and a mixing junction for 

coupling the chemical and fluidic domains.  

This new oscillator operates by constant pressure and flow rate sources without external 

control signals and generates oscillations of pressure, flow rate and chemical concentration. 

The oscillator has been shown to have an oscillation period between 200 and 1000 seconds, in 

addition to chemical concentrations of alcohol ranging from 2wt% (weight percent) to 10wt% 

and fluid rates in the range of μL min−1.  

Chemical oscillations have been first observed by Belousov and Zhabotinsky in the form of 

chemical oscillation reactions in the 1950s and are a continuing subject of scientific 

investigations. Yoshida demonstrated that it is possible to investigate the Belousov-

Zhabotinsky reaction in a pH-sensitive hydrogel with bulk phase transition behavior and thus 

couple its expansion and contraction to a chemical reaction system exhibiting pH oscillations. 

The oscillator presented here bidirectionally couples the chemical and fluidic domain by 

means of a chemical volume phase transition transistor (CVPT). CVPTs are based on stimuli-

responsive hydrogels. Due to their volumetric phase transition behavior, these materials 

respond reversibly and reproducibly to small changes of special thermodynamic parameters of 

the aqueous medium with drastic volume changes any thermodynamic parameter capable of 

volume elicitation. The phase transition can be the control signal of the oscillator, especially 

concentrations of organic solvents, ions, ph value or the presence of biomolecules.  

Instead, the hydrogel phase transition is stimulated by the change of the alcohol concentration 

in an aqueous solution. The oscillator employs a microfluidic channel as a delay line for the 

chemical concentration signal and a CVPT combined with a mixing junction to provide 

negative feedback. It is interesting to note that nature also uses the approach of a delay and 

negative feedback in oscillating biochemical systems, and also in modern electronic systems 

in chips. Delay-based oscillators are ubiquitous in the form of ring oscillators in clock 

generation and frequency synthesis. 

In many aspects of nature, self-oscillating systems play a very important role in the natural 

sciences (biology or chemistry) as well as in technology (microelectromechanical or electronic 

systems) and in medicine, because they can be coupled to other systems. One of their most 

important applications is the use as a system clock to trigger regular events, for example in 

circadian rhythms or in electronic systems. 

This paper deals with the use of a Taylor-Galerkin method for the application of linear finite 

elements with polynomial basis functions p1 and p2; in addition to using and reproducing its 

numerical modeling by applying finite differences in the time variable to the nonlinear system 

that controls the behavior of the new chemo-fluidic oscillator and determining its numerical 

modeling. The mathematical problem was posed by Páez [1] which performed a numerical 

approximation of the transport PDE using the well-known Line Method. However, the EDOS 

system provides a very rough approximation of the solution of the equation of the transport. 
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 First, this is due to the first-order discretization in space and, second, because it can propagate 

abrupt changes or steep fronts, which is a well-known computational problem in the numerical 

solution of hyperbolic PDEs. 

In order to describe the dynamics of the chemo-fluidic oscillator, a set of mathematical models 

was used, which posed a challenge due to the complexity of the system, since the oscillator is 

affected by several nonlinearities coming from the hydrogel characteristics and the 

bidirectional coupling between the chemical and fluidic domains. The hydrogel is designed in 

such a way that an increase in alcohol concentration reduces its size and vice versa. Therefore, 

at low alcohol concentrations, the hydrogel valve is closed, while high alcohol concentrations 

open the valve. A bypass channel is connected to the valve inlet to allow a continuous 

unidirectional liquid flow near the hydrogel, independent of whether the hydrogel valve is 

open or closed. 

Therefore, to facilitate the modeling process, the system was divided into the fluidic domain, 

which describes the behavior of the volumetric flows and pressures of the system during 

operation; and the chemical domain, which in turn was divided into two parts, the description 

of the hydrogel dynamics and the modeling of the delay line. The latter resulted in a coupled 

system composed of the EDP of the one-dimensional transport, the EDO that models the 

dynamic behavior of the hydrogel and the equation that determines the volume in the buffer. 

We implemented this work on the basis of the work done by Donea [2] who semi-discretizes 

the equation of nonlinear transport using first, second, and third order Taylor time series 

expansions to obtain a second order differential equation in space in which the classical 

variational formulation of Galerkin is applied to obtain a system of linear equations using the 

finite element method in the spatial variable. This system of linear equations was generated 

from applying the Euler-Taylor-Galerkin method to the nonlinear transport equation but 

contains terms that depend on the nonlinear ODE that models the dynamic behavior of the 

hydrogel. In this case, the variable that determines the size of the hydrogel is lv(t) which is 

obtained for each instant of time by applying the Runge-Kutta 4 method, and finally, the 

volume of the buffer that is determined by using numerical integration methods. 

Analyzing in much more detail its mathematical modeling and the numerical solution of this 

new chemical-fluidic oscillator based on smart hydrogels was one of the reasons for the present 

work. In addition, it is sought to extend the linear method used by Donea [2] for the transport 

equation to the equation of nonlinear form and provide a solution methodology for new 

oscillator models involving the one-dimensional nonlinear transport equation. 

 

2. Design of A Chemo-Fluidic Oscillator 

The new chemo-fluidic oscillator is based on a negative feedback circuit containing a delay 

line, where the negative feedback is provided by a hydrogel valve that has the ability to change 

its size depending on the temperature and the concentration of the aqueous solution that is in 

direct contact with the hydrogel. In this new oscillator, the temperature is kept constant, so the 

only parameter that produces a change in the hydrogel size is the alcohol concentration.  
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Fig. 1. Photograph of the fabricated chemo-fluidic oscillator circuit, filled with a heavily 

dyed solution for better visibility of the channels. The external sources of constant flow and 

pressure are shown schematically. Equivalent fluidic circuit. The hydrogel valve is 

represented by a controlled flow source. 

The oscillator is powered by three constant sources. The first one is a constant flux source qA 

supplying the system with a solution of alcohol concentration calc. A second source provides 

deionized water at a constant pressure p_W located at node 1. The water flows through a long 

channel called the buffer line and then mixes at node 2 with the alcohol solution provided by 

qA, and then the mixed solution enters the long fluid channel which acts as a delay line. Using 

this channel, the solution is transported at a rate determined by the flow rate through the delay 

line q2(t) and its cross section. The end of this channel is connected to the inlet of the hydrogel 

valve, whose fluidic behavior is controlled by the alcohol concentration of the solution. 

Finally, a bypass channel is connected to node 3. to drain the liquid at a constant flow rate qB 

suitably chosen. 

The micro fluid system will be modeled by means of Kirchhoff's laws within the framework 

of network theory for a circuit. This approach is used because of the small dimensions of the 

quantities governing the oscillator operation within the study of micro fluids, since they are in 

the micro nano and pico liter range. Therefore, pressure is considered analogous to voltage 

and volumetric flow to electric current, as well as delay lines to resistances. In this context, 

the oscillator can be described by the fluid network presented in Figure 2. 

 

Fig. 2.  Equivalent fluidic circuit. The hydrogel valve is represented by a controlled flow 

source. 
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3. Mathematical Model of the Chemical-Fluidic Oscillator 

The mathematical problem to be studied was posed by Páez et al. in [1], and consists of finding 

functions 𝑙𝑣: [0, 𝑇] × [0,1] → 𝑅+ such that: 

𝑑𝑙𝑣
𝑑𝑡

(𝑡) = 𝛾[𝐶(𝑡, 1)]{𝑙𝑒𝑞[𝐶(𝑡, 1) − 𝑙𝑣(𝑡)]

𝑙𝑣(0) = 𝑙𝑣
0

        

                       ⟹
𝑙𝑣
0 , 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥)  ∀𝑥 ∈ (0 , 1]              (1)

𝑙𝑣
𝑛+1 = 𝐹(𝑙𝑣

𝑛 , 𝐶𝑛(1); ∆𝑡), 𝑛 = 0,1,2, . . . , 𝑁
 

 

𝜕𝐶

𝜕𝑡
(𝑡, 𝑥) + 𝑣(𝑙𝑣(𝑡))

𝜕𝐶

𝜕𝑥
(𝑡, 𝑥) = 0  , ∀(𝑡, 𝑥) ∈ (0, 𝑇] × (0, 1] ;   

𝐶(0, 𝑥) = 𝐶𝑖𝑛𝑖(𝑥) ,    ∀𝑥 ∈ [0, 𝐿𝑑];

𝐶(𝑡, 0) = 𝐶𝑎(𝑡) ,       ∀𝑡 ≥ [0, 𝑇];

 

(2)     

The data in this problem are the functions Υ, 𝑙𝑒𝑞, 𝑣, 𝐶𝑖𝑛𝑖 , 𝐶𝑎 , 𝑙𝑣
0  and where  𝐶(𝑡, 1) is the 

unknown value to be determined from the function 𝐶(𝑡, 𝑥) at the end 𝑥 = 1 ; which must also 

be determined simultaneously, in this problem, the function will be determined 

𝑉𝑏𝑢𝑓𝑓(𝑡) :[0, 𝑇] → 𝑅+ defined by: 

𝑉_𝑣𝑢𝑓𝑓(𝑡):= ∫ 𝑞2[𝑙𝑣(𝑠)]
𝑡

0

𝑑𝑠 − 𝑞𝐴𝑡 ; ∀𝑡 ∈ (0, 𝑇],        (3)      

Where 𝑞2 is a known function and 𝑞𝐴 is a constant also known. 

A. Semi-discretization in time of the problem (2)  

The transport equation is considered as follows  

𝜕𝐶

𝜕𝑡
(𝑡, 𝑥) = −𝑣(𝑙𝑣(𝑡))

𝜕𝐶

𝜕𝑥
(𝑡, 𝑥)  , ∀(𝑡, 𝑥) ∈ (0, 𝑇] × (0, 1] ;  

If denoted by 𝐶𝑛(𝑥), the value of the function 𝐶(𝑡, 𝑥) evaluated in the node 𝑡 = 𝑡𝑛, then a 

very simple finite-difference scheme to approximate the time derivative in (4) would be the 

one obtained by the Taylor series expansion, to first order, around point 𝑡𝑛+1 = 𝑡𝑛 + ∆𝑡 : 

𝐶(𝑡𝑛 + ∆𝑡, 𝑥) = 𝐶(𝑡𝑛 + ∆𝑡) + ∆𝑡 [
𝜕𝐶

𝜕𝑡
] (𝑡, 𝑥)|𝑡 = 𝑡𝑛 + 𝑂(∆𝑡) 

From here, despising the 𝑂(∆𝑡), the following formula results:  

                     [
𝜕𝐶

𝜕𝑡
] (𝑡, 𝑥) =

𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)

∆𝑡
;                     (4) 

which is the well-known forward -time (Euler) type scheme. 

If the EDP is now evaluated (4) in 𝑡 = 𝑡𝑛 is available for each 𝑛 = 0,1, . . . , 𝑁 the EDO: 
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[
𝜕𝐶

𝜕𝑡
] (𝑡, 𝑥)|𝑡 = 𝑡𝑛 = −[𝑣[𝑙𝑣(𝑡)]]𝑡=𝑡𝑛 [

𝜕𝐶

𝜕𝑥
] (𝑡, 𝑥)|

𝑡=𝑡𝑛
 ,    

                                                  ∀𝑥 ∈ (0 , 1]                      (5) 

Now, using the forward-time type scheme the expression (5) is transformed into:  

𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)

∆𝑡
= −𝑣(𝑙𝑣

𝑛)
𝜕𝐶𝑛

𝜕𝑥
(𝑥) , 0 ≤ 𝑛 ≤ 𝑁 , ∀𝑥 ∈ (0 , 1]                (6) 

So, 𝑙𝑣
𝑛 is the value of 𝑙𝑣(𝑡) in 𝑡 = 𝑡𝑛 which is determined using Ruge-Kutta 4 applied to the 

initial problem (1).  

Where, in general, 𝐶𝑛(1) is the unknown value 𝐶(𝑡) = 1 on the frontier 𝑥 = 1 for the time 

𝑡 = 𝑡𝑛 . For this scheme, the known constant 𝑙𝑣
0 is the initial iterate. In the context of the finite 

difference method, the expression (6) produces an unstable numerical scheme when 

approximating the spatial derivative term using a centered scheme, i.e.:  

                           
𝜕𝐶𝑛

𝜕𝑥
(𝑥) =

𝐶𝑚+1 
𝑛 − 𝐶𝑚

𝑛

∆𝑥
                                   (7) 

The instability arises because the partial derivative with respect to the spatial coordinate is 

evaluated at a time level n prior to the time level 𝑛 where the time derivative term is evaluated. 

Thus, a stable scheme can be obtained if the two derivative terms   
𝜕𝐶

𝜕𝑡
   and  

𝜕𝐶

𝜕𝑥
  are evaluated 

at the same time level 𝑛 (at least to second order in ∆𝑡). In this regard, Donea [1] states that 

the easiest way to make the evaluation of both terms of the expression (6) at the same time 

level 𝑛 , is by expressing the difference approximation for the time derivative term at time 

level 𝑛. One way to achieve this is by means of a Taylor series expansion forward in time, 

including second and third order derivatives. That is, of the expression:  

𝐶(𝑡𝑛 + ∆𝑡, 𝑥) = 𝐶(𝑡𝑛, 𝑥) + ∆𝑡 [
𝜕𝐶

𝜕𝑥
] (𝑡, 𝑥)|

𝑡=𝑡𝑛
+

∆𝑡2

2
[
𝜕2𝐶

𝜕𝑥3
] (𝑡, 𝑥)|

𝑡=𝑡𝑛

+
∆𝑡3

6
[
𝜕3𝐶

𝜕𝑥2
] (𝑡, 𝑥)|

𝑡=𝑡𝑛

+ 𝑂(∆𝑡3)          (8) 

The term is cleared [
𝜕𝐶

𝜕𝑥
] (𝑡, 𝑥)|

𝑡=𝑡𝑛
 and (considering again the notation that was introduced for 

the forward-time scheme) disregarding the term 𝑂(∆𝑡3), and using discretization in time (5), 

for the equation of transport (4) can be replaced by the following formula: 

𝐶𝑛+1(𝑥)−𝐶𝑛(𝑥)

∆𝑡
−

∆𝑡2

6
 [

𝜕3𝐶

𝜕𝑡3]
𝑛

(𝑥) = −𝑣(𝑙𝑣
𝑛)

𝜕𝐶𝑛

𝜕𝑥
(𝑥) +

∆𝑡

2
[
𝜕2𝐶𝑛

𝜕𝑡2 ] (𝑥) , ∀𝑥 (0 , 1]                                                               (9)         

For each 𝑛 = 0,1, . . . , 𝑁, the second and third derivative terms appearing in this expression can 

first be determined by successive differentiation of the equation (4) and then evaluating over 

time 𝑡 = 𝑡𝑛. The calculation for the second derivative is illustrated below: On one side: 
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𝜕2𝐶

𝜕𝑡2
= 𝑣2

𝜕2𝐶

𝜕𝑡2
−

𝑑𝑣

𝑑𝑡

𝜕𝐶

𝜕𝑥
                                             (10) 

 

 
𝜕3𝐶

𝜕𝑡3 = 𝑣2 𝜕2

𝜕𝑡2 ∙ (
𝜕𝐶

𝜕𝑡
) + 3𝑣

𝑑𝑣

𝑑𝑡
(
𝜕2𝐶

𝜕𝑥2) −
𝜕𝐶

𝜕𝑥
∙ (

𝑑2𝑣

𝑑𝑡2)                  (11) 

Now, combining (10)  y  (11), evaluated in 𝑡 = 𝑡𝑛, with the equation (9), the following 

formula is the result: 

𝐶𝑛+1(𝑥)−𝐶𝑛(𝑥)

∆𝑡
−

∆𝑡2

6
 [𝑣(𝑙𝑣

𝑛)
𝜕2

𝜕𝑥2 (
𝜕𝐶𝑛

𝜕𝑡
) (𝑥) + 3𝑣(𝑙𝑣

𝑛)
𝑑𝑣(𝑙𝑣

𝑛)

𝑑𝑡
∙
𝜕2𝐶𝑛

𝜕𝑥2
(𝑥) −

𝑑2𝑣(𝑙𝑣
𝑛)

𝑑𝑡2 ∙
𝜕𝐶𝑛

𝜕𝑥
(𝑥)]

1

=

−𝑣(𝑙𝑣
𝑛)

𝜕𝐶𝑛

𝜕𝑥
(𝑥) +

∆𝑡

2
[𝑣(𝑙𝑣

𝑛)
𝜕2𝐶𝑛

𝜕𝑡2
(𝑥) −

𝑑𝑣(𝑙𝑣
𝑛)

𝑑𝑡
∙

𝜕𝐶𝑛

𝜕𝑥
(𝑥)]                                                                        (12)             

𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ (0 , 1] 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑛 = 0,1, . . . , 𝑁                            

The expression (12) is similar to the one proposed by Leveque when he generates stabilized 

numerical methods by adding a diffusive term 𝜖
𝜕2𝐶𝑛

𝜕𝑥2  to the equation of nonlinear transport. 

However, it should be noted that in (12) the term 
𝜕2𝐶𝑛

𝜕𝑥2  appears as part of the difference 

approximation for the partial derivative of C with respect to time, evaluated at level n. On the 

other hand, following closely the suggestion of Donea [1], the third order partial derivative 

term appearing in the Taylor series expansion is purposely expressed in a spatiotemporal 

mixed form. This mixed form of the derivative will allow the use of finite element type 𝐶0 

with a simple modification of the usual and consistent mass matrix in much the same way as 

is done in the context of weighted Petrov-Galerkin residuals [5].  

By developing the specified products and grouping the terms, it is obtained that the problem 

posed in (11) is semi-discretized in time and for each n the following problem is posed, 

Given [0,1] ∋ 𝑥 → 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥), find 𝐶𝑛(𝑥)0≤𝑛≤𝑁, ∀𝑥 ∈ [0,1], such that: 

𝜕2𝐶𝑛+1(𝑥)

𝜕𝑥2
− 𝛼1𝐶

𝑛+1(𝑥) = 𝛼2

𝜕2𝐶𝑛(𝑥)

𝜕𝑥2
+ 𝛼3

𝜕𝐶𝑛(𝑥)

𝜕𝑥
− 𝛼1𝐶

𝑛(𝑥)                                  (13) 

∝1=
6

∆𝑡2𝑣2
  ;   𝛼2 = −2 −

3∆𝑡

𝑣

𝑑𝑣

𝑑𝑡
 ;   ∝3= −

∆𝑡

𝑣2

𝑑2𝑣

𝑑𝑡2
−

3

𝑣2

𝑑𝑣

𝑑𝑡
−

6

∆𝑡𝑣
            

 

∀𝑥 ∈ (0, 1]                  𝐶𝑛(0) = 𝐶𝑎
𝑛 = 𝐶𝑎(𝑡𝑛)               

In order to solve the second order differential equation in (15), two conditions are needed, but 

the problem provides only one condition, so it was necessary to impose a second condition to 

solve the problem, which is derived from the mathematical model for the self-transport 

problem of the chemo-fluidic oscillator: 
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{

𝑑𝑙𝑣
𝑑𝑡

(𝑡) = 𝛾[𝐶(𝑡, 1)]{𝑙𝑒𝑞[𝐶(𝑡, 1) − 𝑙𝑣(𝑡)]

𝑙𝑣(0) = 𝑙𝑣
0

⟹
𝑙𝑣
0 , 𝐶0(𝑥) = 𝐶𝑖𝑛𝑖(𝑥)  ∀𝑥 ∈ (0 , 1]              

𝑙𝑣
𝑛+1 = 𝐹(𝑙𝑣

𝑛 , 𝐶𝑛(1); ∆𝑡), 𝑛 = 0,1,2, . . . , 𝑁
 

                   (14) 

Condition deduction in 𝑥 = 1 

Of the EDP:   

v[lv(t)]
∂C

∂x
(t, x) = −

∂C

∂t
(t, x)                  (15) 

of semi-discretization of 
𝜕𝐶

𝜕𝑡
 ⟹

𝐶𝑛+1(𝑥)−𝐶𝑛(𝑥)

∆𝑡
     

⇒ v[lv(𝑡
𝑛+1)]

∂C

∂x
(𝑡𝑛+1, x) = − [

𝐶𝑛+1(𝑥) − 𝐶𝑛(𝑥)

∆𝑡
   ] 

⇒ v[𝑙𝑣
𝑛+1]

∂𝐶𝑛+1

∂x
(x) = −

𝐶𝑛+1(𝑥)

∆𝑡
+

𝐶𝑛(𝑥)

∆𝑡
 

⇒ v[𝑙𝑣
𝑛+1]

∂𝐶𝑛+1

∂x
(x) +

𝐶𝑛+1(𝑥)

∆𝑡
=

𝐶𝑛(𝑥)

∆𝑡
        

(16) 

That when evaluated in 𝑥 = 1, a Robin's Condition is obtained. 

B. Taylor-Galerkin Method 

Considering the domestic product 𝐿2 on the interval (0,1): 

〈𝑢, 𝑣〉𝐿2
:= ∫ 𝑢(𝑥) ∙ 𝑣(𝑥)𝑑𝑥

1

0

                    

(17) 

〈
𝜕2𝑐(𝑥)

𝑛+1

𝜕𝑥2
− 𝛼1𝑐(𝑥)

𝑛+1 − 𝛼2

𝜕2𝑐(𝑥)
𝑛

𝜕𝑥2
+∝3

𝜕𝑐(𝑥)
𝑛

𝜕𝑥
− 𝛼1𝑐(𝑥)

𝑛  , 𝑣(𝑥)〉 = 0   

        (18)   

Applying the definition of the inner product in the following spaces 𝐿2 , with Dirilecht and 

Robin boundary conditions, applying the integration by parts formula and replacing the shape 

functions in (18) for the problem: 

  ∑ 𝑐𝑗
𝑛+1 𝑑𝜑𝑗(1)

𝑑𝑥
𝑀
𝑗=1 𝜑𝑖(1) − ∑ 𝑐𝑗

𝑛+1 ∫
𝑑𝜑𝑗(𝑥)

𝑑𝑥

𝑑𝜑𝑖(𝑥)

𝑑𝑥

1

0
𝑀
𝑗=1 𝑑𝑥 +

𝛼1 ∫ (∑ 𝑐𝑗
𝑛+1𝜑𝑗(𝑥)𝑀

𝑗=1 )
1

0
 𝜑𝑖(𝑥)𝑑𝑥   = −𝛼2 ∑ 𝑐𝑗

𝑛 𝑑𝜑𝑗(1)

𝑑𝑥 𝑗

𝑀
𝑗=1 𝜑𝑖(1)  +

𝛼2 ∑ 𝑐𝑗
𝑛 ∫

𝑑𝜑𝑗(𝑥)

𝑑𝑥

𝑑𝜑𝑖(𝑥)

𝑑𝑥

1

0
𝑀
𝑗=1 𝑑𝑥   + 𝛼3 ∑ 𝑐𝑗

𝑛𝑀
𝑗=1

𝑑𝜑𝑗(𝑥)

𝑑𝑥
𝜑𝑖(𝑥)𝑑𝑥  −

𝛼1 ∑ 𝑐𝑗
𝑛 ∫ 𝜑𝑖(𝑥)𝜑𝑗(𝑥)𝑑𝑥

1

0
𝑀
𝑗=1               ∀𝜑𝑖 , 𝜑𝑗 ∈ 𝑉ℎ                         (19)          
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C. Runge Kutta 4 order method 

Initial State    𝑡1 = 0  

 𝑙𝑣(𝑡1) = 𝑙𝑣(1) = 𝑙𝑐ℎ = 1.19 

 𝑉𝑏𝑢𝑓𝑓(𝑡1) =  𝑉𝑏𝑢𝑓𝑓(1) = 0 

ℎ(𝑡1) = ℎ(1) =
1

2
(𝑙𝑐ℎ − 𝑙𝑣(𝑡1))𝐻(𝑙𝑐ℎ − 𝑙𝑣(𝑡1)) = 0     

 𝐿(𝑡1) = 𝐿(1) = 2𝑙𝑐ℎ − ℎ(𝑡1) − √2𝑤𝑑𝑙 

 𝐺𝐻(𝑡1) = 𝐺𝐻(1) =
ℎ(𝑡1)3𝑑𝑐ℎ

6𝑛𝐿(𝑡1)
(1 − 0.63

ℎ(𝑡1)

𝑑𝑐ℎ
) 

 𝑞𝐻(𝑡1) = 𝑞𝐻(1) =
𝑝𝐸𝑞𝐺𝐻(𝑡1)

𝐺𝐻(𝑡1)𝑍𝐸𝑞+1
 

 𝑞2(𝑡1) = 𝑞2(1) = 𝑞𝐻(𝑡1) + 𝑞𝐵 

 𝑞1(𝑡1) = 𝑞2(1) = −𝑞𝐴 + 𝑞2(𝑡1) 

 𝑣(𝑡1) =  𝑣(1) =
𝑞2(𝑡1)

𝑑𝑐ℎ∙𝑤𝑑𝑙
 

 𝑐(1; ∶) = 2,26 (𝑐(𝑥, 𝑡) 𝑓𝑜𝑟 𝑥 = 1 𝑖𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑙𝑎𝑦 𝑙𝑖𝑛𝑒) 

𝑙𝑣
, (𝑡) = 𝛶(𝑐) (𝑙𝑒𝑞(𝑐) − 𝑙𝑣(𝑡))                            

 
𝑑𝑙𝑣(𝑡)

𝑑𝑡
= 𝑓(𝑡, 𝑙𝑣) 

         𝑓(𝑡, 𝑙𝑣(𝑡)) = 𝑙𝑣
, (𝑡) = 𝛶(𝑐(𝑘, 𝑒𝑛𝑑)) (𝑙𝑒𝑞𝑐(𝑘, 𝑒𝑛𝑑) − 𝑙𝑣(𝑡))              

          𝑙𝑣
, (𝑡𝑘) = 𝛶(𝑐(𝑡𝑘)) (𝑙𝑒𝑞(𝑐(𝑡𝑘)) − 𝑙𝑣(𝑡𝑘))                                  

   𝑘1 = 𝑓(𝑡𝑘 , 𝑙𝑣𝑘) = 𝑓(𝑡(𝑘), 𝑙𝑣(𝑘)) = 𝛾(𝑐(𝑡𝑘)) (𝑙𝑒𝑞(𝑐(𝑡𝑘)) − (𝑙𝑣𝑘))                

   𝑘2 = 𝑓 (𝑡𝑘 +
∆𝑡

2
, 𝑙𝑣𝑘 +

∆𝑡

2
𝑘1) = 𝛾(𝑐(𝑡𝑘))(𝑙𝑒𝑞 (𝑐 (𝑡𝑘 +

∆𝑡

2
)) − (𝑙𝑣𝑘 + ∆𝑡

𝑘1

2
))     

   𝑘3 = 𝑓 (𝑡𝑘 +
∆𝑡

2
, 𝑙𝑣𝑘 +

∆𝑡

2
𝑘2) = 𝛾(𝑐(𝑡𝑘)) (𝑙𝑒𝑞 (𝑐 (𝑡𝑘 +

∆𝑡

2
)) − (𝑙𝑣𝑘 + ∆𝑡

𝑘2

2
))     

   𝑘4 = 𝑓(𝑡𝑘 + ∆𝑡, 𝑙𝑣𝑘 + ∆𝑡) = 𝛾(𝑐(𝑡𝑘)) (𝑙𝑒𝑞(𝑐(𝑡𝑘)) − (𝑙𝑣𝑘 + ∆𝑡𝑘3))     

𝑙𝑣𝑘+1
, = 𝑙𝑣

, (𝑡𝑘+1) = 𝑙𝑣𝑘 +
∆𝑡

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4)        

Determining the value of 𝑙𝑣(𝑡𝑘) for each time instant allows finding the values of each of the 

system variables for that time instant and feeding these variables into the equation (3.2) 

discretized in space specifically  ∝1 , ∝2 y ∝3  

ℎ(𝑡𝑘+1) =
1

2
(𝑙𝑐ℎ − 𝑙𝑣(𝑡𝑘))𝐻(𝑙𝑐ℎ − 𝑙𝑣(𝑡𝑘))     
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 𝐿(𝑡𝑘+1) = 2𝑙𝑐ℎ − ℎ(𝑡𝑘) − √2𝑤𝑑𝑙 

 𝐺𝐻(𝑡𝑘+1) =
ℎ(𝑡𝑘)3𝑑𝑐ℎ

6𝑛𝐿(𝑡𝑖)
(1 − 0.63

ℎ(𝑡𝑘)

𝑑𝑐ℎ
) 

 𝑞𝐻(𝑡𝑘+1) =
𝑝𝐸𝑞𝐺𝐻(𝑡𝑘)

𝐺𝐻(𝑡𝑘)𝑍𝐸𝑞+1
 

 𝑞2(𝑡𝑘+1) = 𝑞𝐻(𝑡𝑘) + 𝑞𝐵 

 𝑞1(𝑡𝑘+1) = −𝑞𝐴 + 𝑞2(𝑡𝑘) 

 𝑉𝑏𝑢𝑓𝑓(𝑡𝑘+1) = 𝑉𝑏𝑢𝑓𝑓(𝑡𝑘) − (
𝑞1(𝑡𝑘+1)−𝑞1(𝑡𝑘)

2
)ℎ 

 𝑣(𝑡𝑘+1) =
𝑞2(𝑡𝑘)

𝑑𝑐ℎ∙𝑤𝑑𝑙
 

Values of ∝1 , ∝2   and  ∝3 in the equation of transport discretized in time using the Euler-

Taylor-Galerkin method and then solved in space by applying the finite element method. 

 ∝1=
−6

dt2∙v(k)
 

 ∝2= −(2 +
3∆𝑡

𝑣(𝑘)
∙ (

𝑑𝑣

𝑑𝑡
)) 

 ∝3= −
∆𝑡

𝑣2 ∙
𝑑2𝑣

𝑑𝑡2 −
3

𝑣2

𝑑𝑣

𝑑𝑡
−

6

∆𝑡∙𝑣
 

 

𝑐𝑖
𝑛+1𝜑𝑖+1(1)

𝑑𝜑𝑖(1)

𝑑𝑥
 + 𝑐𝑖+1

𝑛+1𝜑𝑖+1(1)
𝑑𝜑𝑖+1(1)

𝑑𝑥
− 𝑐𝑖

𝑛+1  ∫
𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑑𝜑𝑖(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

 𝑑𝑥

−  𝑐𝑖+1
𝑛+1  ∫

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

 𝑑𝑥   + 𝛼1𝑐𝑖
𝑛+1𝜑𝑖+1(𝑥)𝜑𝑖(𝑥)

+ 𝛼1𝑐𝑖+1
𝑛+1𝜑𝑖+1(𝑥)𝜑𝑖+1(𝑥)    

= −𝛼2𝑐𝑖
𝑛 𝑑𝜑𝑖+1(1)

𝑑𝑥
 𝜑𝑖(1)  − 𝛼2𝑐𝑖+1

𝑛 𝑑𝜑𝑖+1(1)

𝑑𝑥
 𝜑𝑖+1(1) 

+ 𝛼2𝑐𝑖
𝑛 ∫

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑑𝜑𝑖(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑑𝑥 + 𝛼2𝑐𝑖+1
𝑛 ∫

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑑𝑥  

+ 𝛼3𝑐𝑖
𝑛 ∫ 𝜑𝑖+1

𝑑𝜑𝑖(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑑𝑥 + 𝛼3𝑐𝑖+1
𝑛 ∫ 𝜑𝑖+1

𝑑𝜑𝑖+1(𝑥)

𝑑𝑥

𝑥𝑖+1

𝑥𝑖

𝑑𝑥  

− 𝛼1𝑐𝑖
𝑛 ∫ 𝜑𝑖+1(𝑥)𝜑𝑖(𝑥)

𝑥𝑖+1

𝑥𝑖

 𝑑𝑥 

− 𝛼1𝑐𝑖+1
𝑛 ∫ 𝜑𝑖+1(𝑥)𝜑𝑖+1(𝑥)

𝑥𝑖+1

𝑥𝑖

 𝑑𝑥           ∀𝜑𝑖, 𝜑𝑗 ∈ 𝑉ℎ   
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D. Finite Element Method with Basis Functions  𝑃1 

A finite element discretization as explained above, but adapted to the working range, will be 

considered [0,1]. In fact, the partitioning of this interval corresponds to the longitudinal 

discretization of the delay line channel in (𝑀 − 1) elements 𝐼𝑗 = [𝑥𝑗, 𝑥𝑗+1] in length ℎ𝑗 =

𝑥𝑗+1 − 𝑥𝑗  for 𝑗 = 1,2,3, . . . , 𝑀. Being ℎ𝑖 = ℎ, the partition represents a grid of points 𝑥𝑗 

denoted by 𝜏ℎ. 

By writing (19) using the elementary formulation, the following would be: 

[

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

] [
𝐶𝑖

𝑛+1

𝑐𝑖+1
𝑛+1] −

[

𝑑𝜑𝑖
, (0)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖
, (0)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+1
, (0)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (0)

𝑑𝑥
∙ 𝜑𝑖+1(1)

] [
𝐶𝑖

𝑛+1

𝑐𝑖+1
𝑛+1] +

1

ℎ𝑖
[

1 −1
−1 1

] [
𝐶𝑖

𝑛+1

𝑐𝑖+1
𝑛+1 ] +

𝛼1

6
ℎ𝑖 [

2 1
1 2

] [
𝐶𝑖

𝑛+1

𝑐𝑖+1
𝑛+1] +

−∝311

2
[
−1 1
−1 1

] [
𝐶𝑖

𝑛+1

𝑐𝑖+1
𝑛+1 ] [𝑐𝑀

𝑛+1] =

∝2 [

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

] [
𝐶𝑖

𝑛

𝑐𝑖+1
𝑛 ] −

∝2 [

𝑑𝜑𝑖
, (0)

𝑑𝑥
∙ 𝜑𝑖(0)

𝑑𝜑𝑖
, (0)

𝑑𝑥
∙ 𝜑𝑖+1(0)

𝑑𝜑𝑖+1
, (0)

𝑑𝑥
∙ 𝜑𝑖(0)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(0)

] [
𝐶𝑖

𝑛

𝑐𝑖+1
𝑛 ] +

−∝2

ℎ𝑖
[

1 −1
−1 1

] [
𝐶𝑖

𝑛

𝑐𝑖+1
𝑛 ] +

∝322

2
[
−1 1
−1 1

] [
𝐶𝑖

𝑛

𝑐𝑖+1
𝑛 ] +

∝1ℎ𝑖

6
[
2 1
1 2

] [
𝐶𝑖

𝑛

𝑐𝑖+1
𝑛 ]                                                                      (20)                                                                         

E. Finite Element Method with Basis Functions 𝑃2 

In the analysis of this problem, the Delay Line was considered longitudinally, so that 

polynomials of degree one were used for the shape functions (base) where each element has 2 

nodes and the aforementioned results were obtained, but in a search to refine the mesh in the 

spatial variable using polynomials of a higher order, an element with 3 nodes was used, so that 

the shape functions are of quadratic type where 𝜑1(𝑥) takes the value of one at the initial node 

(left end of the element) and cancels out at all other nodes; 𝜑2(𝑥) is the function that takes the 

value of one at the intermediate node (center of the element) and zero at the other nodes, and 

𝜑3(𝑥) which takes the value of one at the end node (right end of the element) and zero at the 

other nodes. Thus, when performing the analysis for any element, it has the associated nodes 

𝑖, 𝑖 + 1, 𝑖 + 2 . 

After that, a reference element is defined Ω̂ with nodes at the ends and in the middle 
(𝜉1 = −1 , 𝜉2 = 0 , 𝜉3 = 1   ), giving rise to the quadratic basis functions:  

𝜑1̂(𝜉) =
1

2
𝜉(𝜉 − 1)  , 𝜑2̂(𝜉) = (𝜉 + 1)(1 − 𝜉)  , 𝜑3̂(𝜉) =

1

2
𝜉(𝜉 + 1)   
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So local basis functions are generated 𝜑𝑖
(𝑒)

(𝑥)=𝜑1̂(𝜉) , 𝜑𝑖+1
(𝑒)

(𝑥) = 𝜑2̂(𝜉) , 𝜑𝑖+2
(𝑒)

(𝑥) = 𝜑3̂(𝜉) . 

Working with quadratic polynomials generates changes in the elementary formulation because 

they would no longer be 2x2 matrices, but 3x3 matrices since there are 3 nodes for each 

element. 

The system of equations of the elementary formulation is written taking into account 3 nodes 

per element.  

[
 
 
 
 

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+2(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖+2(1)]

 
 
 
 

[

𝐶𝑖
𝑛+1

𝐶𝑖+1
𝑛+1

𝐶𝑖+2
𝑛+1

] −

1

3ℎ
[

7 −8 1
−8 16 −8
1 −8 7

] [

𝐶𝑖
𝑛+1

𝐶𝑖+1
𝑛+1

𝐶𝑖+2
𝑛+1

] +
𝛼1

15ℎ
[

8 −16 8
−16 32 4
8 4 8

] [

𝐶𝑖
𝑛+1

𝐶𝑖+1
𝑛+1

𝐶𝑖+2
𝑛+1

] −

𝛼311

ℎ

[
 
 
 
 −

1

2

2

3
−

1

3

−
2

3
0

2

3
1

3
−

2

3
1 ]

 
 
 
 

[

𝐶𝑖
𝑛+1

𝐶𝑖+1
𝑛+1

𝐶𝑖+2
𝑛+1

] [𝑐𝑀
𝑛+1] =

∝2

[
 
 
 
 

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖+1(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖(1)

𝑑𝜑𝑖+1
, (1)

𝑑𝑥
∙ 𝜑𝑖+2(1)

𝑑𝜑𝑖+2
, (1)

𝑑𝑥
∙ 𝜑𝑖+2(1)]

 
 
 
 

[

𝐶𝑖
𝑛

𝐶𝑖+1
𝑛

𝐶𝑖+2
𝑛

] −

∝2

3ℎ
[

7 −8 1
−8 16 −8
1 −8 7

] [

𝐶𝑖
𝑛

𝐶𝑖+1
𝑛

𝐶𝑖+2
𝑛

] +
∝322

2ℎ

[
 
 
 
 −

1

2

2

3
−

1

3

−
2

3
0

2

3
1

3
−

2

3
1 ]

 
 
 
 

[

𝐶𝑖
𝑛

𝐶𝑖+1
𝑛

𝐶𝑖+2
𝑛

] +
𝛼1

15ℎ
[

8 −16 8
−16 32 4
8 4 8

] [

𝐶𝑖
𝑛

𝐶𝑖+1
𝑛

𝐶𝑖+2
𝑛

]              

 

4. Numerical Experimentation 

After the mathematical part of the model and obtaining the system of equations, a Matlab 

program was designed for the coupled system where several tests were carried out with their 
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respective numerical adjustments according to the theoretical definitions explained in chapters 

2 and 3. 

Each experiment details the change in initial concentration 𝐶(0, 𝑥) = 𝑐𝑖𝑛𝑖(𝑥) which is a 

unique experimental value for hydrogel performance that is not reported in Paez [1] and has 

been imposed on the basis of the physical model. 

A.  Experiment 1  

The values are taken in the space of 𝑀 = 20 (nodes); 𝑑𝑥 =
1

𝑀−1
 ; 𝐶𝑜𝑢𝑟𝑎𝑛𝑡 =

𝑑𝑡

𝑑𝑥
  ;𝑑𝑡 =

𝐶𝑜𝑢𝑟𝑎𝑛𝑡 ∙ 𝑑𝑥  ; Courant= 0.1 

The following was taken as a condition 𝐶(0, 𝑥) = 𝑐𝑖𝑛𝑖(𝑥) a constant value that in this case is 

the experimental value with which they worked on the numerical part in the initial study   

𝑐𝑖𝑛𝑖(𝑥) = 2.2635 . 

The values of the derivatives of the concentration found in  𝛼3 are replaced by forward 

differences (Euler) for 𝑡 ≥ 0 . 

 

Fig. 3 Response of the chemo-fluidic oscillator modeled by the system. 

A periodic behavior can be observed in the hydrogel, which is what allows the device to 

function as an oscillator with negative feedback due to the increase and decrease of the alcohol 

mixture in the hydrogel chamber, but at the beginning of the flow of the alcohol and water 

mixture there is instability in the wave fronts that then regularize as the process of opening 

and closing the valve progresses because the hydrogel undergoes a deformation greater than 

the length of the chamber 
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Fig. 4. Response of the chemo-fluidic oscillator modeled by the state variables. 

B. Experiment 2 

In this test, a quadratic profile was taken as the initial condition, given that in the channel there 

is a mixture of water and alcohol resulting from the flow of deionized water and alcohol, but 

it does not reach the minimum concentration level for the hydrogel to react and begin to 

compress due to the increase in alcohol. There is a periodic behavior, but with less disturbance 

at the beginning of the process, which allows a more stable and smoother concentration flow 

in the wave fronts. 

 

Fig. 5. Response of the chemo-fluidic oscillator modeled by the state variables. 
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Fig. 6. Response of the chemo-fluidic oscillator modeled by the system. 

C.  Experiment 3: Graphical Analysis of Methods 

1. Graphical Analysis of Methods 

 

Fig. 7. Results Line Method 

 

Fig. 8. Results One-dimensional Finite Element Method  P1 

 

Fig. 9. Results One-dimensional Finite Element Method  P2 
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2. Volume of alcohol in the Buffer 

 

Fig. 10. Results Line Method 

 

Fig. 11. Resultados Método de Elementos Finitos unidimensional P1 

 

Fig. 12. Results One-dimensional Finite Element Method P2 

3. Alcohol concentration at the beginning (𝐶𝑎) and at the end (𝐶𝑏) of the Delay line 

 

Fig. 13. Results Line Method 

 

Fig. 14. Result One-dimensional Finite Element Method P1 

 

Fig. 15. Result One-dimensional Finite Element Method P2 

4. Hydrogel size behavior during operation. 

 

Fig. 16. Results Line Method 

 

Fig. 17. Results Finite Element Method P1 
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Fig. 18. Results Finite Element Method P2 

 

5. Conclusions and Recommendations 

The first observation that can be made is that the method applied to the system composed of 

the equations  (15), (16) 𝑎𝑛𝑑 (17)  reproduces the dynamics of the original Paez Numerical 

Model [1]. Small differences in amplitude and period are found, but it is able to produce stable 

periodic signals for the parameter settings without requiring any external forcing, which means 

that the oscillatory behavior is self-excited. 

The second observation is that from a numerical approximation of the equation of linear 

transport (constant velocity) based on the Euler-Taylor-Galerkin method for the discretization 

in time and the Finite Element Method for the discretization in space proposed by Donea, by 

applying the same method with some variations in the initial and boundary conditions in the 

equation of the transport of the nonlinear system that is also coupled to a nonlinear ordinary 

differential equation that governs the behavior of the hydrogel and another equation that 

controls the volume of the buffer giving us as a result a complex system to solve, satisfactory 

results were obtained in relation to its oscillation and its periodic and bounded motion. It is 

very important to notice that this numerical model allows to observe that if the 𝐶𝑖𝑛𝑖 initial 

value is changed, a variation will occur at the beginning of the hydrogel operation, which 

would be in the stationary regime, but after this initial regime the hydrogel shows an oscillatory 

and periodic behavior typical of the initial Paez analysis. 

The third observation is that this numerical analysis applied to the chemo-fluidic oscillator 

analytically contributes to the understanding that the hydrogel composite valve is extremely 

sensitive to parameter variation. That is, it has the ability to drastically change its volume under 

small variations of special thermodynamic parameters. 

When solving the system and plotting the results for 20 nodes (19 elements) in the spatial 

discretization, it can be observed that the period decreases as a result of the mathematical 

refinement in space. Therefore, it is very similar to the plots proposed in the initial 

investigation. It can also be noticed that the small perturbations present in the wavefronts 

decrease to almost minimum due to the instantaneous deformation of the hydrogel. 

In this research, it was possible to give another option to mathematically model the oscillator 

domains, in the fluidic domain given by the flow network, the transport of the concentration 

through the delay line; and in the chemical domain, given by the behavior of the hydrogel and 

the alcohol concentration that produce a smooth dynamic system by parts.  

It is recommended to use for future studies a mathematical refinement method, such as the 

Galerkin-Discontinuous method, in order to model in a more detailed way the behavior of the 

chemo-fluidic oscillator. 
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