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Machine Learning (ML) stands as a pivotal field within data science, driving 

innovations across multiple sectors. However, The increasing risk of harmful 

assaults on ML models poses serious privacy concerns that could hinder its 

widespread use. By using Privacy-Preserving Machine- Learning (PPML) 

techniques, these dangers can be lessened, such as Homomorphic Encryption 

(HE), have been developed to protect sensitive data. Despite its potential, 

traditional HE faces inefficiencies, particularly in highly scalable applications. 

This paper presents a novel approach, Hybrid Homomorphic Encryption (HHE), 

which merges symmetric cryptography with HE to address these inefficiencies. 

We introduce the Guard ML framework, designed for end devices, in order to 

facilitate encrypted data classification while protecting the privacy of both the 

input data and the ML models. utilizing a case study of heart disease 

classification utilizing sensitive ECG data, our methodology shows how HHE 

can be practically applied. Our approach is feasible because, despite a small 

drop in accuracy compared to unencrypted inference, analysts, as well as end 

devices incur very little communication and computing expenses. Our work lays 

the groundwork for a future of machine learning that is more safe and more 

privacy-conscious, especially on end devices with limited resources, by 

effectively incorporating HHE into PPML.  
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1. Introduction 

Among the many branches of data science, machine learning (ML) has grown in prominence 

in recent years., driving innovations across numerous sectors through advancements in 

automation, decision-making, and predictive analytics. But the current advancement of the 
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use of ML models has brought about privacy-related issues especially when dealing with 

personal data. There is information leakage since competitors and negative actors can 

capitalize on the existing weaknesses in ML systems to steal valuable or personal 

information. 

Considering these problems, PPML has become a key research field. PPML guarantees 

privacy on the side of the user and secure use of the data in order to withhold any leakage of 

information. It is worthy of note that within the various PPML techniques, one called 

Homomorphic Encryption (HE) has the capacity to compute on data that has been encrypted 

without having to decrypt it first. HE makes computations like addition and multiplication 

possible directly on encrypted data without ever reading the actual data. To make operations 

on encrypted data for an unlimited number of times while providing authentic outputs, 

Gentry [1] designed one of the first FHE algorithms. Meanwhile then, several HE schemes, 

such as CKKS [2], TFHE [3], and BFV [4, 5], have been developed to enhance efficiency 

and applicability, especially in ML applications like Machine Learning as a Service (MLaaS) 

[6-13]. 

Computational efficiency as well as practicality are two of HE's biggest obstacles, especially 

in highly scalable situations, despite its promise. The widespread use of HE is hindered by 

the computational cost and the substantial ciphertext extension that frequently leads to huge 

ciphertexts. Researchers have resorted to HHE in an effort to alleviate these problems [14, 

15]. By integrating symmetric cryptography using HE, HHE decreases communication 

overhead and ciphertext size, making HE more user-friendly. 

The first process of an HHE scheme is the encryption using a symmetric key algorithm to 

encrypt the data. Then,  HE technique is utilised to homomorphically encrypt the symmetric 

key. Both of the ciphertexts are received by the server and using the symmetric key the 

server encrypts both ciphertexts in order to make one homomorphic with the other. By doing 

so, they yield substantially smaller ciphertexts than what is seen in prior art HE schemes 

while solving two major problems of pure HE, namely, high multiplicative depth and 

expensive computational costs. Additional symmetric ciphers specifically designed to be 

HE-friendly have been derived and implemented by the researchers, including 

HERA/Rubato [16], [17], [18], [15], and more to increase the efficiency of HHE. The 

privacy issue in the Context of machine learning prediction is resolved with the help of HHE 

so as to remove barriers in implementing secure PPML models across the devices while 

exploring a new technology for a new concept. 

 

2. Background 

The area of Privacy-Preserving Machine Learning (PPML) has actively evolved over the last 

years with many suggestions to reduce threats affecting data privacy in Machine Learning. 

Some of these methods are; differential privacy, secure multi-party computation and 

specifically Homomorphic Encryption (HE).  

 HE has received a lot of attention due to the fact that it has the capability of performing 

computations on encrypted data without necessarily having to decrypt it. Gentry’s FHE 

scheme created the basis for He modern schemes commonly used in PPML applications, 
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including TFHE, BFV, and CKKS. BFV, which is an enhancement over Gentry’s original 

scheme, eradicates expensive bootstrapping operations and can be categorized under 

Somewhat Homomorphic Encryption (SHE) that enables several operations on integer 

ciphertexts [5]. The CKKS scheme allows performing computations on floating-point data 

with a restricted number of operations; it was developed by Cheon et al. The TFHE scheme 

was proposed by Chillotti et al. , which improved bootstrapping operations’ effectiveness 

and allows for an unlimited number of operations between binary values [14]. These HE 

schemes have been incorporated in the ML applications with requiring different methods for 

the implementation of nonlinear activation functions. For example, in TFHE, LUT searches 

for non-linear activations are utilized [24], whereas in the case of BFV and CKKS, 

polynomial approximations are used [19, 23]. These schemes have yielded high-accuracy 

results in PPML with reputed implementations such as TAPAS [20] that utilize TFHE, FHE-

DiNN [21], and works [22-224]. However, not all the settings are suitable for the 

implementation of HE schemes because of their high computational overhead and large 

ciphertext expansion, despite the possibilities they hold. For this reason, HHE has been 

investigated to receive answers regard to its application and challenges.  

 In the early specifications of HHE technologies, the member accounts depended on other 

symmetric ciphers such as AES. Yet because of its high multiplicative depth, AES was 

found wanting as far as HHE schemes were concerned [15]. Therefore, the research on 

symmetric ciphers was complemented as optimized for HHE, with reference to certain 

criteria such as the ciphertext expansion [24] and employing filter permutators [25]. In any 

case, it can be concluded that HHE has the potential for real-world PPML applications, 

although its practical applicability is rather limited and there are few implementations 

reported in the literature at the time of this writing. Some of the widely known HHE schemes 

are the HERA, Elisabeth, and the PASTA. CKKS, together with HERA, supports carrying 

out operations with floating-point objects [16]. Elisabeth is optimized for the use of the 

TFHE scheme [11], whereas PASTA is designed for the BFV for integer type of data [15]. 

To also come with specifications similar to those of Rubato, HERA’s authors also extended 

WMA. Table 1 offers a summary of the most important research works with emphasis on the 

contribution and use of several HE and HHE systems in PPML.  

Table 1: presents an overview of important studies conducted (HE and HHE) on PPML. 
Study Scheme Key Features Application Reference 

Gentry (2009) FHE 
First fully homomorphic encryption 

scheme 
Foundational work [1] 

Cheon et al. (201) CKKS Limited operations on floating-point data ML applications [2] 

Chillotti et al. (2016) TFHE Efficient bootstrapping, bitwise operations ML applications [3] 

BFV Scheme SHE Limited operations on integer ciphertexts ML applications [5] 

HERA (2020) HHE (CKKS) Stream cipher for floating-point data PPML applications [17] 

Elisabeth (2020) HHE (TFHE) Optimized for TFHE scheme PPML applications [18] 

HCNN BFV 
High-accuracy results with polynomial 

approximations 
PPML applications [2] 

POSEIDON CKKS Efficient polynomial approximations PPML applications [22] 

2.1 Foundational Concepts in HE, HHE, and ML 

Homomorphic Encryption (HE) is a cryptographic scheme represented by a quadruple of 

probabilistic polynomial-time (PPT) algorithms: Keygen, Enc, Dec, and Eval. The Keygen 
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algorithm generates a public key, an evaluation key, and a private key using a security 

parameter (λ). The Enc algorithm encrypts a message (x) using the public key, resulting in a 

ciphertext (c). The Eval algorithm takes the evaluation key, a function (f), and a set of 

ciphertexts to produce a new ciphertext (cf). Finally, the Dec algorithm decrypts the 

ciphertext using the private key to retrieve the plaintext (x). 

Hybrid Homomorphic Encryption combines HE with symmetric-key encryption, represented 

Keygen, Enc, Decomp, Eval, and Dec are the five PPT algorithms that work together. 

Keygen algorithm generates HE and SKE keys. The Enc algorithm involves generating a 

symmetric key, encrypting this key with HE (resulting in cK), and encrypting the message 

(x) to resulting in c . The Decomp algorithm uses the evaluation key, the symmetrically 

encrypted ciphertext, and the homomorphically encrypted symmetric key to produce a 

homomorphic encryption of the message (x). The Eval algorithm evaluates a function (f) on 

homomorphic ciphertexts, and the Dec algorithm decrypts the evaluated ciphertext using the 

private key to output the function's result on the plaintext message. 

Machine Learning (ML) consists of algorithms that use training data to train a model (f(θ)). 

Training involves finding optimal parameters (θ) such as weights (w) and biases (b) to make 

accurate predictions. Once trained, the model can infer or predict outcomes for new, unseen 

data. In this work, HHE is leveraged to develop PPML protocol that ensure data and model 

privacy during the inference phase. 

 

3. Methodology 

3.1 Model of System 

a) User: A set of all the users that will encrypt the data and another key generated is 

exclusive for the user only.  

b)  Many CSPs remain the parties that are responsible for collecting such data that is 

symmetrically encrypted from various users.  

c)  Analyst: This individual must be in possession of a machine-learning model and in 

a position to interpret the outcomes of progression of machine-learning operations on pre-

encrypted data stored at CSP.  

d)  Decrypted information is obtained from the HE evaluation of the collected 

encrypted data in order to understand users’ data. The System Design for PPML is depicted 

in Figure 1. 
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Figure 1: System Model for Privacy-Preserving Machine Learning. 

3.2 2GML Protocol in GuardML 

This section explains the development of the 2GML protocol in the GuardML structure. The 

second phase, 2GML protocol, is a part of GuardML solution, being a part of the Hybrid 

Homomorphic Privacy-Preserving protocol, and it is addressed to specific machine learning 

applications needed for deploying in the commercial environment in which CSP owns the 

models. It keeps confidentiality on encrypted data and models and, at the same time, permits 

CSPs for computation. This setup is good when the analysts do not need to keep the model 

content but need CSP computational resources for some of the ML tasks.  

 The elements of the architectural design of the 2GML Protocol are Secure Symmetric 

Cipher (SKE), ABFV-based Hybrid Homomorphic Encryption (HHE), Public-Key 

Encryption Scheme (PKE), Signature Scheme (𝜎), Cryptographic Hash Function (H(·)). 

These components facilitate security in encryption, decryption, signing, verification, and the 

message’s integrity. Since they allow CSPs to own the ML models and offer backend 

computation, they are best suited to face commercial environments as depicted in Figure 2.  

 Moreover, Table 2 also gives a precise description of the main phases and operations of 

2GML protocol described in GuardML, with focus on its core roles for supporting secure 

machine learning operations between Cloud Service Provider and a user. 
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Figure 2: 2GML Protocol: Building Blocks, Security Assumptions, and Use Case Suitability. 

Table 2: Procedure Steps for the 2GML Method. 
Phase Description 

2GML.Setup 

• User uiu_iui generates HHE keys (pkui, skui, evkui) and shares pkui with CSP while 

sending evkui separately. 

• CSP generates its PKE key pair (pkCSP, skCSP). 

• User uiu_iui signs and CSP verifies the setup message m1m1m1. 

2GML.Upload 

• User uiu_iui encrypts data xix_ixi with SKE.Enc using a symmetric key Ki, 

producing ciphertexts cxicxicxi and cKicKicKi. 

•  User uiu_iui homomorphically encrypts Ki into cKicKicKi with HHE.Enc. 

• User uiu_iui signs and CSP verifies the upload message m2m2m2. 

2GML.Eval 

• CSP decrypts cxicxicxi into c′xic'xic′xi with HHE.Decomp. 

• CSP uses c′xic'xic′xi, ML model parameters (w,bw, bw,b), and evkui in HHE.Eval to 

compute crescrescres. 

• CSP signs and sends crescrescres to uiu_iui in m3m3m3. 

2GML.Classify 
• User uiu_iui decrypts crescrescres with HHE. 

• Dec to obtain resresres, the prediction. 

3.3 Attack Model and Analysis of SecurityThe capabilities of an opponent are the basis 

for the attack model that is utilized in the process of evaluating the security of GuardML, 

ADV, who can execute various attacks aimed at compromising protocol security and 

privacy. The cryptographic scheme used in GuardML has been rigorously tested and proven 

resilient against differential and linear statistical attacks, as well as algebraic attacks like 

Linearization and Gröbner Basis Attacks. The threat model focuses on communication 

between entities within the protocol, rather than the cryptographic scheme itself. ADV can 

corrupt any number of users and the Cloud Service Provider (CSP), mitigating the risk of 

basic man-in-the-middle attacks. Two potential attacks are identified: Ciphertext Substitution 

Attack and ML Model Unauthorized Access Attack. These attacks involve the malicious 
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adversary replacing generated ciphertexts undetectable and gaining insights into the ML 

model used by the CSP or analyst without authorization. 

3.4 Analysis of Security 

This section focuses on the evaluation of the security of the GuardML protocol against 

potential attacks carried out by an adversary, referred to as ADV. 

Table 3 presents a succinct summary of the security analysis performed on the 2GML 

protocol within GuardML. The document delineates the categories of attacks that are taken 

into account, together with their corresponding explanations, and the security guarantees 

offered by GuardML to counter these risks. 

Table 3: Security Analysis of 2GML Protocol in GuardML 
Attack Type Description Security Assurance 

Ciphertext 

Substitution Attack 

ADV attempts to replace genuine ciphertexts in 

2GML.Upload or 2GML.Eval phases with 

indistinguishable fabricated ones. 

EUF-CMA secure signature scheme 

(𝜎) ensures forgery resistance; 

negligible probability of success. 

ML Model 

Unauthorized 

Access Attack 

ADV colludes with users or compromises CSP 

to gain unauthorized access to the multi-layered 

ML model (𝑓) used in 2GML. 

Security relies on the complexity of 

multi-layered ML models and the 

semantically secure HE scheme. 

 

4. Results  

We evaluated encrypted inference in plaintext ECG data in floating-point and integer 

arithmetic across experiments with varying numbers of data inputs to assess the effectiveness 

the ecgPPML framework. Table 4 provides a summary of the findings, illustrating how the 

accuracy varied among different cases. 

The encrypted inference methodology was first applied to a number of test split samples as 

part of our studies. We calculated the encryption test accuracy for each experiment by 

comparing the predictions made using the encrypted inferences to the ground-truth outputs. 

At the same time, we compared the outcomes of inferences performed on plaintext ECG data 

using floating-point and integer arithmetic. Table 5 shown analysis of accuracy, to  

delineates the accuracies achieved across different types of data representations (Plaintext 

Float, Plaintext Integer, and Encrypted) and varying numbers of data inputs: 

a. Data Input: This column lists the number of data points used in each experiment, 

ranging from 1 to 2000, to assess the framework's performance under different data volumes. 

b. Plaintext (Float): Represents accuracy percentages when data is in plaintext format 

using floating-point numbers. Accuracy begins at 100% for 1 data input and remains high, 

ranging between 86% and 88.2% as the number of inputs increases. 

c. Plaintext (Integer): Shows accuracy percentages for plaintext data represented as 

integers. Starting at 100% accuracy for 1 input, the accuracy remains consistently high, 

peaking at 95% for 20 inputs and declining slightly to 87.2% to 95% for larger datasets 

(1000-2000 inputs). 
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d. Encrypted: Indicates accuracy percentages for data processed under encryption. 

Starting at 100% accuracy for 1 input, encrypted inference maintains robust performance, 

hovering around 90% accuracy even with larger datasets (86.8% for 500 inputs). 

e. Plaintext Integer vs. Encrypted: The accuracies in integer arithmetic closely match 

those of encrypted inference, particularly evident when the input examples are limited (1-

500). Both encrypted inference and plaintext integer exhibit small drops (0.5–0.8% lower) 

when the total amount of inputs increases (1000–2000), with encrypted inference 

occasionally surpassing plaintext integer accuracy by a minimal margin (0.1-0.15%). 

The results prove the efficiency and reliability of the ecgPPML framework mainly focused 

on the high level of accuracy regardless the amount and type of data. The evaluation of 

encrypted inference is rather positive, as the accuracy loss in comparison with the plaintext 

techniques is minimal even with newly implemented homomorphic encryption noise that 

helps to make more correct predictions. In general, Table 4 delivers a wide panoramic view 

of how the ecgPPML addresses specific issues in privacy-preserving machine learning, 

produce robust performances and simultaneously guarantee the data protection, and therefore 

is fit for various real-world applications. 

Table 4: Accuracy Analysis – ecgPPML 

 

The effectiveness of 2GML for carrying out secure machine learning tasks is shown in the 

following figure, Figure 3. The combined outcome is the time taken to encrypt a symmetric 

key using the SKE technique applied in point (a). This duration rises with the input 

dimensions because more computations are required for each data point. When the inputs are 

many, the decryption during the assessment phase where EKCT is broken into sub-plaintexts 

also escalates significantly. Elliptic curve point multiplication takes the same amount of time 

for one input and multiple inputs based on the complexity of the computational problem, 

implying that there is efficient decryption of results from homomorphic encrypted outputs. 

The following figure shows the capability of protocol to perform computations on the 
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encrypted data as well as tackle issues of performance which is a key factor in the 

development of secure data handling in sensitive applications. 

 

Figure 3: result of 2GML protocol. 

Even though it's easy to use, the 2GML framework is very computationally intensive. Setup, 

data uploading, evaluation, and data classification are some of the steps involved. While the 

upload takes 607 milliseconds, the setup takes 243 milliseconds. The server needs 3597.7 

seconds to complete the evaluation step, which includes processing 300 data inputs. On the 

user's end, the classification process takes 900 ms. Table 5 shows how these processes 

contribute to the 2GML framework's overall efficiency and speed. 

Table 5: 2GML for 300 Data Inputs. 

 

 

5. Conclusion  

In this paper, present the PPML technique is proposed through the utilization of HHE, which 
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has been developed independently in this work. The solution is intended to provide optimum 

machine learning capability along with privacy to solve a wide range of PPML techniques 

and domains as pervasive computing. Implementing HHE, the authors were able to 

overcome the main challenges regarding application of real-life situations, namely data 

acquisition and management at the devices with limited computational resource such as IoT 

sensors and mobile appliances. The approach makes sure that solid security assurances are 

provided which almost do not affect the conduct of machine learning. The study also 

explains the synergy between cryptography and machine learning to support safe and 

efficient PPML services in these scenarios and other architectures regardless of being cloud-

based, edge, or even constrained by resources. Thus, this approach provides new 

opportunities for building secure, private applications in such areas as healthcare, finance, 

smart cities, and others while maintaining data confidentiality and data integrity. The 

findings presented in the paper can be regarded as a groundwork for the subsequent 

developments in PPML to build efficient, high-quality, and secure machine learning systems. 
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