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In this paper, we formulate a day-ahead dispatch problem of microgrids with distributed generation 

(DG) sub- ject to the non-convex cost function. An operational frame- work is proposed to address 

the DGs 'valve-point' loading effect and optimize its performance. The valve-point effect induces a 

ripple in a 'fuel-cost' curve. The impact of demand side management (DSM) on convex and non-

convex energy management system (EMS) problems with different load par- ticipation levels is 

investigated. Further, the DA scheduling horizon of a fifteen-minute resolution time is considered 

to examine the effect of load dynamics in the MG. The new opti- mization algorithm, Quantum 

Particle Swarm Optimization (QPSO), is employed to solve the non-convex DGs cost optimi- zation 

problem. It is demonstrated that the algorithm effi- ciently solves the EMS problem. Simulation 

results point to a 5% reduction in OPEX costs with a minimal penalty on cus- tomer satisfaction or 

Utility. 

 

Keywords: smart Grid, prosumers, OPEX and CAPEX, hi- erarchical, distributed generation, 

battery energy storage system (BESS).  

 

 

1. Introduction 

The key to energy utilization efficiency in future smart grids (SGs) is optimized DSM with 

time-related pricing. Intelligence in the SG with "closed-loop" control of demand implies that 

small and numerous renewable energy sources (RESs) will be easier to control and coordinate. 

However, the intermittency and geographic spread of RESs require high computing power. 

Energy optimization using schedul- ing alone is limited by the flexibility of schedulable loads 

and the consumers' willingness to compromise their com- fort due to appliances' switch-on 

time delays. The residen- tial tariffs should directly offer monetary incentives for PAR 

reduction strategies to work. Otherwise, customers will not desire to flatten their peaks on the 

load curves. Be- sides shifting base load appliances, deploying electrical storage is a 

complementary method of optimizing house- holds' energy consumption. Suppose ToU tariffs 

and elec- tricity storage are used. In that case, consumer electricity costs can be reduced by 
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storing energy during low-cost off- peak times and then discharging the stored energy for use 

during high-cost on-peak times, avoiding expensive grid supply. Overall, the key to 

successfully optimized dispatch- ing would be to embark on a strategy that minimizes the 

OPEX and CAPEX associated with traditional and renew- able generators, the transactional 

costs of the transmittable power, and maximizes the Utility's demand response bene- fits 

concurrent with satisfying the load demand constraints. 

This is achieved by effectively managing power genera- tion, distribution, and usage in the SG 

or MG. Overall, the primary objectives include: 

•  integrating renewable generation sources into the main power grid. These 

sources can be from indi- vidual households or PPPs. 

• Real-time constant monitoring of electrical power consumption and its depletion in 

the SG. 

• Acquisition of key grid measurements as well as billing-related data. 

• Constant achievement of optimized balancing of demand and power energy 

consumption by end- users. 

• Facilitating regular interactions between end-users and Utilities. An enabling 

information and Com- munications Technology ( ICT) subsystem nor- mally facilitates this. 

• Constantly guarding and enforcing both privacy and security within the entire system. 

• Enhancement of reliability by way of allowing de- grees of autonomy in management. 

• Ensuring the maximized efficiency in terms of as- sets used in the SG. 

A full duplex ICT subsystem is incorporated to inter- link the various entities communication-

wise. In that way, end-users can trade effectively, e.g., maximize power trad- ing with the grid. 

This is because they would have acquired market-related information and grid status before 

trading any excess power to the grid. Note that at a functional level, the SG system 

encompasses various applications and ser- vices concurrently with advanced management and 

opera- tion to ensure efficiency in balancing supply and demand. In summary, the operation 

functions in envisaged future SGs aggregately bring about a multitude of services / or 

applications 

 

2. Related Works 

There is a phenomenally exponential rise in published work on DSM for microgrid 

optimization [1], [2], [3]. Gen- eral constraints, various objective functions, problem for- 

mulation methodologies, and topologies of the smart grids exist in the literature. The authors 

in [4] identified five typical microgrid optimization objectives and outlined a matrix of these 

criteria vs twenty-two optimization tech- niques. The characteristic optimization problems in 

the area are summarised as; 

• Electricity cost minimization. 

• Consumer utility or comfort function maximiza- tion, 
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• Aggregate power usage minimization, 

• Minimization of both cost and total power con- sumed. 

• The comfort maximization and aggregate power consumption minimization. 

A constrained multi-objective function formulation of the optimization is considered in [5]. 

This achieves multi- objectives related to cost savings, load flattening, and peak load 

reduction. Under certain conditions and assumptions, a Pareto-optimal solving strategy can be 

formulated, but the optimization model becomes too complex. 

Further, the authors [6][7][8] present an in-depth analysis of pricing signals as well as demand-

side programs. Studies on relevant demand response smart technologies and markets are 

covered in [9] [10], and they demonstrate the extent of energy savings and other efficiency 

metrics that have been achieved in the electricity markets. Demand response archi- tectures 

are described in [11], highlighting their require- ments, benefits, costs, and implementation 

progress in vari- ous Power utilities worldwide. The works in [12],[13],[14],[15] focus on 

enabling technologies such as smart meters (SMs), energy controllers (EC), and cyber- 

physical communication systems needed to deploy DR in SGs. 

Traditionally DSM was applied to energy-consuming loads. With the SG hosting easily 

controllable sources such as photovoltaics (PVs), wind turbines (WTs), and energy- storing 

systems (ESSs), more flexibility for DR is intro- duced from the generation side. The operation 

strategy of Microgrids in the context of DR involves optimization, which means considering 

all the components in addition to the traditional loads. Optimization analysis and simulation 

done in [16] Using a Genetic Algorithm, we show that DR based on traditional load 

curtailment can reduce grid power while simultaneously increasing RES grid supply. 

Of these numerous exact, games theory approach and meta- heuristic DR algorithms 

techniques [2],[5], the literature is unclear as to which methods are specifically suitable to 

certain classes of problems that arise in real-life situations. An extensive account of state-of-

the-art methods for power scheduling in smart homes is provided as well as possible future 

research directions in [7],[1]. Simpler optimization models dealing with single-time instant 

have solutions that can be computed easily in closed-form or by polynomial algorithms [6]. 

Nevertheless, the class of optimization that investigates multiple intervals discrete-time 

problems, is characteristically solved by heuristic techniques that may result in suboptimal 

results. The author in [17] introduced the concept of a simple Multi-Period Energy Tariff 

Optimi- zation Problem and proved that all such problems are NP- hard. The area of 

application has mainly been around resi- dential appliance scheduling using price-based DR 

pro- grams and inputs of: 

• Electricity price TOU or day ahead RTP signals ob- tained from utility or energy 

retailer SM. 

• Consumer utility function from which the optimiza- tion algorithm makes decisions. 

• Environmental factors such as temperature, occu- pancy, luminance intensity, etc. 

Dispatch in large-scale transmission systems is a typical minimum cost-optimal power flow 

(OPF) problem. Agent- based distributed algorithms have shown superiority over centralized 

approaches as they require minimal information sharing. Various offline techniques for 
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distributed optimiza- tion and power flow models are summarised in [18]. The Dual 

Decomposition, Alternating Direction Method of Mul- tipliers, Analytical Target Cascading, 

the Auxiliary Prob- lem Principle, Optimality Condition Decomposition, and Consensus 

Innovation are some of the promising methods for finding solutions to a variety of optimization 

and power control problems. Most of the methods have been applied offline in the literature. 

Adaptation to online optimization still requires a great deal of work. Surveys of several meta- 

heuristic optimization techniques and their limitations as applied to off-line microgrids are 

available in [19],[20][21]. The population-based meta-heuristic optimization methods that 

have found application in power system optimization generally belong to three classes, namely 

swarm intelli- gence (SI) [22], evolutionary algorithms (EA), and the hy- brid of the two 

techniques [23]. Popular evolutionary meth- ods cover Genetic Algorithm (GA), Evolution 

Strategy (ES), Differential Evolution (DE), Evolution Programming (EP), etc. An extensive 

discussion of the limitations of these methods and possible research leads can be found in [24]. 

Firefly, Particle Swarm Optimization, Artificial Bee Colony, Ant Colony Optimization, etc., 

[25] are some of the most popular SI methods. Other natural phenomena- inspired methods 

are e.g., Gravitational Search (GSA), Harmony Search (HS) algorithm, Flower Pollination 

(FPA), Biogeography-Based Optimization (BBO), etc. Figure 2 provides an anatomy of 

commonly applied DR optimization techniques well elucidated in the literature. 

Meta-heuristic techniques can tackle multi-objective opti- mization problems without gradient 

information and can recover from local optima as they are inherently stochastic. Certain 

standard benchmark multi-modal, mixed-modal, and unimodal model functions are used to 

assess the per- formance of these techniques subject to tuning certain tun- ing parameters. 

Standard deviation means the value of solu- tions obtained, and convergence rates are 

measures used to compare the performance of the various methods. The weakness of GA is 

that they are prone to get stuck in local optimum, and their search space is small. DE methods 

though they have been shown to possess average conver- gence rates and have a greater degree 

of complexity, in their favour is easy applicability to a wide variety of prob- lems that include 

practical scheduling. 

Currently, no single method is well suited for both standard and practical formulations. There 

is, therefore, a need to find such standard benchmark functions to help with select- ing 

appropriate optimization methods for general cost opti- mization problems [7]. 

Gamarra and Guerrero [10] provide an extensive review of optimization and other techniques 

applied to four common micro-grid optimization problems of power mix selection, sizing, 

siting as well and scheduling, which is the focus of this dissertation. Mathematical methods 

such as linear mixed-integer(LMI) programming take more time to find the optimal solutions 

compared to the heuristic tech- niques [13]. 

Observability, controllability, and security are im- peratives for successful MG operations 

[18]. If these can be fully achieved, possible benefits that can be accrued are system 

performance, customer satisfaction, and availability of data to close off gaps in uncertainties. 

Challenges that persist are a lack of real-time system controls, societal bar- riers to market 

deregulation, and insufficient time to avail consumers the time-varying pricing information. 

Load pre- diction and control state estimation can be employed to enhance observability in 

intelligent distribution networks using, e.g., an agent-based control approach whose archi- 
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tecture derives from distributed control rather than a tradi- tional centralized paradigm. The 

resultant DEG networks will have enhanced flexibility and adaptability of automa- tion 

systems, generally contributing to speeding the pro- gress of Smart Grids. What is needed now 

is an effort to develop a standardized and integrated vision for SG [20]. Electric vehicle 

technology will also in the future have a great Impact on SG development. Consequently, there 

ex- ists a huge potential for research both for backup and DSM as well as provision of 

flexibilities for main grid management [18], [26]. 

Overall, the core issue here is to address power dispatching optimally. This task is 

accomplished in the form of power demand and dispatch intervention programs summarized 

in Figure 3 

We thus, in the next sections propose an optimized neural network-driven model solution. 

 

3. Proposed Optimization Model 

In this regard, we will assume a "look ahead policy," i.e., data pertaining to power usage in the 

past one day period (24 hours) is known apriori. This data included the follow- ing: 

• 15 minutes interval power demand forecasting for the day ahead. 

• 15 -60 minutes PV solar and wind generation po- tential forecasting; 

• Approximated cost functions of the DERs, and other parameters such as maximum 

and minimum power generation limits. 

• The state of the BESS, i.e. its initial charge levels. 

The SG operates all its connected MGs in either one of the following modes: 

Mode I: Standalone mode. In this case the MG is isolated from the main interconnecting grid. 

Mode II: connected mode: In this case the MG fully con- nects to the main interconnection 

grid and power trading may take place. 

The objective is to minimize the aggregated power genera- tion costs by all sources in a given 

MG (or SG), we thus have 

 

Where xi and ui are state and decision vectors respectively. In the same equation gi denotes 

the degree of correlation between neighbouring vectors, and i a cost function at an arbitrary 

time i . 

Equation (1) 's validity is subject to satisfying a constraint  defined by; 
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Thus for Mode I of SG operation, we have an equivalent formulation as follows: 

 

Similarly for Mode II operations we have; 

 

Equations (2), (3), and (4) together depict a discrete multi- cascaded dynamic process whose 

solution can be best achieved by utilizing dynamic programming. In solving such a problem, 

an input set of decision variables generates input states for the next stages. The process repeats 

until the final stage, where the output represents a minimal summed cost of the entire 

multistage process system. 

The Multistage decision process can be expressed by; 

 

 

This is subject to satisfying ; 
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In Fig.1 a summarised reformulation of the model is pro- vided. 

 

To ease the computational loads involved in the Frame- work's core modules in all the SG's 

control infrastructure, we chose to incorporate some NN modules. The model in Fig.2 

illustrates one such example NN module. These will also aid in the more precise determination 

of optimal deci- sions and ultimately optimal dispatching of available power subject to 

maximizing profits as well as keeping OPEX and CAPEX low. 

 

The PSO algorithm is primarily based on generating ran- dom approximated solutions before 

searching for an opti- mal one through exhaustive iterations. It tends to up the computational 

loads and signalling overheads among the entities constituting the hierarchical dispatching 

frame- work. Neither does it timeously converge to a localized optimal decision. Its successor, 

the quantum PSO (QPSO), has a faster convergence rate and a more précised fitness valuing. 

It treats each particle as a quantum state and then uses the Schrodinger equation to formulate 

an equivalent wave function. Ultimately, the particles will gradually con- verge to a global 

solution. 
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The QPSO algorithm, as summarised in Fig. 3, will be implemented in the Neural Network 

modules to implement the optimization as summarised by the reformulation pro- vided in Fig. 

1. 

 

4. Model Evaluation 

Note that in this case, we rely on the VPSPICE simula- tion platform, which, among other 

things, has the necessary pre-trained NN sets. To enhance the "look ahead" forecast- ing, we 

initially ran trail rums for both PV and WT genera- tors. The data used is provided in Table 1. 

Table 1. 24-hour interval climatic data captured for analysis purposes 
time temperature(

o
C wind velocity I (kW / m2) 

1 12 5.05 0.001 

2 11.3 6.04 0.001 
3 10.2 6.6 0.001 

4 11.5 7.3 0.001 

5 11.7 7.2 0.001 
6 11.8 7.2 0.001 

7 11.9 6.9 0.003 

8 12 6.9 0.15 

9 13.2 7.9 0.3 

10 15.1 8.5 0.8 

11 20.1 11 0.99 
12 26.2 7.6 1.12 

13 27 7.332 1.903 

14 27.39 7.253 0.8 

15 27 7.2 0.55 
16 25.4 6.4 0,11 

17 19.3 6.5 0.001 

18 18.8 7.6 0.001 

19 18 5.7 0.001 
20 16.7 5.71 0.001 

21 11.3 5.2 0.001 
22 9.3 6.1 0.001 

23 7.9 5.06 0.001 

24 7.6 5.3 0.01 

The climatic data is captured hourly over a 24-hour cy- cle period. To capture more realistic 

data characterizing the typical climatic conditions of the vicinity (area), we aver- aged 5 
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consecutive captures. Specifically, the typical data includes temperature, wind velocity, and 

solar intensity. 

 

Fig. 4: Aggregated Power from PVs and WTs over a 24 Hour interval. 

The plot of Aggregated Power from PVs and WTs over a 24 Hour interval. 

 

Fig.51: Aggregated(total) SG load and its critical loading. 

As expected, the graph shows that ambient tempera- tures coupled with optimal solar radiation 

intensity (and correct inclination angle) will generate more power. PVs typically yield power 

during daylight hours from around 8 a.m. to 19 a.m., whereas WTs still generate power at 

night. We also provide a variation of critical versus noncritical grid loads over a 24-hour 

period. These are captured at 60- minute intervals and are shown in Fig.5. 



989 Mgobhozi Bhekinkosi et al. Quantum PSO-Based Power Demand and....                                                                                                      
 

Nanotechnology Perceptions Vol. 20 No. S7 (2024) 

 
Fig. 6: Varying of BESS charging/discharging versus DEs optimality. 

We once again reiterate that the objective of the proposed framework is a hierarchical-based 

optimal dispatch strategy with key desirables such as lowered OPEX and CAPEX costs (i.e., 

financial/economic viability), non-violation of environment protection from avoidable 

pollution, and power supply reliability in the grid. The optimal charging/ discharging times 

can be deduced from the plot provided in Fig.6 and Fig. 7. 

Table 2. Pollutants and associated costs 
type ( g / kWhr ) cos t _ coeff ( ZAR / Kg ) 

nitrogen oxide 9.9 63 
sulphur oxide 0.199 14.01 

We make use of the pollutant associated tabulated values and associated costs (Table 2) to 

further evaluate optimal BESS capacity. In addition, pairwise comparisons of weights fed to 

the inputs of the NNs at the primary (local), secondary, and apex layers of the hierarchical tree 

(of the dispatch model) are carried out. It is the results of these comparisons that ultimately 

feed to the NN inputs at each layer. 

 

Fig.e 7: Optimality assuming a 50k Ah BESS capacity in the SG 
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Fig. 8: Optimality assuming a 50k Ahr BESS storage capacity in the SG 

Our model framework has a tendency to accommodate more renewable generators such as 

PVs and WTs than fos- sil-based equivalents such as diesel generating based plants By 

referring to Optimality assuming a 50k Ah BESS capacity in the SG, Optimality assuming 

a 50k Ahr BESS storage capacity in the SG Fig. 8 shows that the sizing of BESS systems in 

an SG / or Mg will significantly impact the optimal dispatch end results. First, the BESS 

systems act as a buffer to balance and smooth demand and supply curve rippling. 

As also observed in the analytical part, there is a tendency to have all redundant be rerouted 

towards BESS systems for storage 

 

5. Conclusion 

This paper analyzes and solves a new microgrid energy management problem with a non-

convex cost function with load dynamics using the QPSO algorithm. Four case studies were 

studied to demonstrate the benefit of various demand- side participation levels on IMGs while 

solving the non- convex problem. The Utility-induced load shaping is intro- duced in the 

objective function to reduce the grid's energy import. Further, the dynamic load dispatch of 

the microgrid is obtained within a 15, 30 or 60-minute time frame, and the effect of demand-

side management on its overall operating cost is investigated. The QPSO algorithm 

demonstrably solves the non-convex problem efficiently. Simulation re- sults yield a 4.34 % 

reduction in operating cost compared to the case where demand-side management 

participation is lower. Finally, due to the VPE, costs for the non-convex DGs increase 

compared to DG units with convex cost func- tions. The methodology can nevertheless assist 

MGs opera- tor to minimize costs while benefiting customers with peak reduction hence lower 

energy consumption during peak periods. Consumer utility can be safeguarded by appropri- 

ate scheduling wherein the consumer has a say. 
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