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Present analysis is concerned with the problem of incident waves progressing obliquely towards a 

fixed bended plate, in deep water. Standard perturbation method along with the application of 

inverse Fourier sine transform technique is used to obtain the first order correction to the velocity 

potential that involves an unknown function. The correction to the velocity potential is also found 

by considering two special shapes of the bended plate. 
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1. Introduction 

The objective of the present investigation is to obtain an analytical solution for the water wave 

potential of obliquely incident water waves progressing towards a bended plate, in deep water. 

The problem involving a vertical wall or barrier in a single liquid or in a two layered liquid 

media is a subject of considerable research interest among scientists and engineers as the 

problem is a special case of the well-known sloping beach problem. However existing 

literature on problems involving a curved wall or barrier, even for a single liquid is rather 

limited. The problem in this area was first considered by Shaw (cf. [1]) where he used a 

technique based on perturbation theory that involves the solution of a singular integral 

equation to find the first order corrections to the reflection and transmission coefficients 

associated with a surface piercing nearly vertical barrier in deep water. Chakrabarty (cf. [2]) 

studied the problem of incoming surface water waves against a cliff which is periodically 

corrugated with a small amplitude including surface tension effect at the free surface. An 

analysis involving a Fourier sine transform of some special type was used to solve the problem 

approximately. Mandal and Kar (cf. [3]) considered the problem of reflection of water waves 

by a nearly vertical wall and they employed a technique based on a simplified perturbational 

analysis. Since then, few attempts have been made to study this class of water wave problems 

and few of its’ generalizations by employing different mathematical methods (cf. [1]-[9]). 

http://www.nano-ntp.com/
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The study is related with the problem of obliquely incident water waves progressing towards 

a bended plate in deep water. In this topic, no reflection of waves by the plate is assumed. 

Generally, the plate bound wave conveys certain energy with it and is totally reflected back, 

if there is no mechanism to absorb (or dissipate) the incoming energy in an inviscid fluid 

system (cf. [10]) with a rigid plate. For the present study, the assumption of no reflection of 

waves by the plate can be justified by introducing a source/sink type behavior in the potential 

function at the origin, i.e., where the free surface of the liquid meets the plate, which requires 

logarithmic singularity in the potential function at the origin (cf. [11]). Assuming an 

appropriate expression for the first order correction to the velocity potential describing the 

motion of the liquid, which involves an unknown function, the problem is tackled for solution 

by using linear theory. The method of solution involves: (i) standard perturbation technique, 

giving a sequence of boundary value problems (BVPs), (ii) the known solution of the 

corresponding vertical plate problem (cf. [12])), and (iii) the inverse Fourier sine transform 

technique (cf. [13]). The unknown function is finally obtained in terms of integrals involving 

the shape of the bended plate. Considering two particular shapes of the bended plate, viz. 

δ(y) = y exp(−λy), λ > 0 and  δ(y) = a sinλy, the first order correction to the velocity 

potential in each shape is also obtained.  

 

2. Formulation of the problem: 

We consider that a train of water waves progressing towards a homogeneous, inviscid, 

incompressible liquid of density ρ is incident, obliquely, on a bended plate. Cartesian co-

ordinate system is chosen in which the y-axis is taken vertically downwards into the liquid 

medium, the undisturbed free surface of the liquid is given by y = 0, x ≥ 0, the position of the 

curved wall is B: x = εδ(y), 0 < y < ∞, where ε is a small dimensionless quantity and δ(y) 

is bounded and continuous in 0 < y < ∞ satisfying c(0) = 0. The origin is taken at a point 

on the line of intersection where the curved wall and the free surface meet. Assuming 

irrotational motion, there exists a velocity potential Φ(x, y, z, t), in the liquid region which 

represent progressive waves moving towards the shore line (i.e., the z-axis) such that the wave 

crests at large distance from the shore tend to straight line which make an arbitrary angle α 

with the z-axis. Thus, for periodic motion, we may write 

Φ(x, y, z, t) = Re[ϕ(x, y)exp{−i(σt + μz)}]                                                                                     

where μ = Ksinα, K = σ2/g is the wave number, g is the acceleration due to gravity and σ is 

the circular frequency. 

Then the function ϕ(x, y) satisfies: 

the two-dimensional modified Helmholtz’s equation  

                             (∇2 − μ2) ϕ = 0           in the liquid region,                                                           (2.1) 

where ∇2 is the two-dimensional Laplacian,  

the free surface conditions 

Kϕ +
∂ϕ

∂y
= 0  on      y = 0 ,                                                                                                (2.2) 
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as the plate is rigid and fixed, the condition of vanishing of the normal component of velocity 

at the plate is 

∂ϕ

∂n
= 0    on   B: x = εδ(y), y > 0,                                                                                    (2.3) 

where n denotes the outward drawn normal to the surface of the plate, 

the condition of no motion at infinite depth gives 

                              ∇ϕ → 0   as   y → ∞,                                                                                                  (2.4) 

as no reflection of the incoming waves by the plate is assumed, a source/sink type behavior of 

the potential function at the shore-line is to be considered, so that 

                              ϕ → ln r   as   r = (x2 + y2)
1

2 → 0.                                                                            
(2.5) 

Finally, as x → ∞, ϕ represents incoming waves progressing towards the plate, so that 

                              ϕ → exp(−Ky − iνx)    as x → ∞, y > 0,                                                                
(2.6) 

where ν = Kcosθ. 

Assuming that the parameter ε is very small, and neglecting O(ε2) terms, the boundary 

condition (2.3) on the bended plate  

x = ε δ(y) can be expressed, in approximate form, on x = 0 as (cf. [4]) 

                                               
∂ϕ

∂x
(0, y) − ε

d

dy
{δ(y)

∂ϕ

∂y
(0, y)} = 0  for  0 < y < ∞.                                                    (2.7)   

                                                                     

3. Solution of the problem: 

The approximate boundary condition (2.7) indicates that we may assume the following 

perturbational expansion, in terms of the small parameter ε, for the unknown function ϕ(x, y) : 

                            ϕ(x, y, ε) = ϕ0(x, y) + εϕ1(x, y) + O(ε2).                                                                  
(3.1) 

Utilizing the expansion for ϕ(x, y) given by (3.1) into the original boundary value problem 

described by (2.1), (2.2), (2.4), (2.6) and (2.7), we obtain, after equating the coefficients of ε0 

and ε from both sides of the results derived thus, that the functions ϕ0(x, y) and ϕ1(x, y) must 

satisfy the following two independent boundary value problems (BVPs): 

BVP-I: The problem is to find the function ϕ0(x, y) satisfying: 

                            (∇2 − μ2)ϕ0 = 0   in the liquid region, 
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Kϕ0 +
∂ϕ0

∂y
= 0 on   y = 0, x > 0,                                                                                                   

                                          
∂ϕ0

∂x
= 0   on  x = 0, 0 < y < ∞,                                                                                            

  

                              ∇ϕ0 → 0  as    y → ∞, 

                              ϕ0 → ln r  as   r → 0, 

                              ϕ0 → exp(−Ky − iνx)  as   x → ∞. 

BVP-II: The problem is to obtain ϕ1(x, y) satisfying: 

                   (∇2 − μ2)ϕ1 = 0   in the region  x > 0, y > 0, 

                                           

Kϕ1 +
∂ϕ1

∂y
= 0      on  y = 0, x

> 0,                                                                                                                    
                                          

  
∂ϕ1

∂x
(0, y) =

d

dy
{δ(y)

∂ϕ0

∂y
(0, y)} = u(y), say,

on  x = 0, 0 < y < ∞,                                      (3.2) 
  

                    ∇ϕ1 → 0  as  y → ∞, 

                    ϕ1  is bounded as  r → 0, 

                    ϕ1 → 0   as  x → ∞. 

Of the two problems, BVP-I and BVP-II, for the functions ϕ0(x, y) and ϕ1(x, y), the solution 

of the problem BVP-I, which corresponds to the vertical cliff problem, is known (cf. [12), and 

is given by 

    ϕ0(x, y) = exp(−Ky − iνx)

+
icosθ

π
∫

∞

0

k(k cos ky − K sin ky)

k1(k2 + K2)
exp (−k1x)dk.                            (3.3) 

where k1 = (k2 + μ2)
1

2. 

Though the complete solution of BVP-I for the function ϕ0(x, y) is well known, however, it 

is not easy to find the function ϕ1(x, y) which solves the BVP-II completely. To solve BVP-

II, let us imagine  

     ϕ1(x, y) = ∫
∞

o

f(k)(k cos ky

− K sin ky) exp (−k1x)dk,                                                                 (3.4) 
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where A(k) is unknown and is to be determined. 

From (3.4) we obtain 

∂ϕ1

∂x
(0, y) = − ∫

∞

o

k1 f(k)(k cos ky

− K sin ky) dk.                                                                               

Thus utilizing (3.2) we find 

∫
∞

𝒐

𝒌𝟏 𝒇(𝒌)(𝒌 𝒄𝒐𝒔 𝒌𝒚 − 𝑲 𝒔𝒊𝒏 𝒌𝒚) 𝒅𝒌

= −𝒖(𝒚),                                                                                          

which, after some elementary manipulation, reduces to    

∫
∞

𝒐

𝒌𝟏 𝒇(𝒌) 𝒔𝒊𝒏 𝒌𝒚 𝒅𝒌

= 𝒗(𝒚),                                                                                                                        

where 

      𝒗(𝒚)

= 𝒆𝒙𝒑(𝑲𝒚) ∫
∞

𝒚

𝒖(𝒑) 𝒆𝒙𝒑(−𝑲𝒑) 𝒅𝒑.                                                                                                 (𝟑. 𝟓) 

Therefore, by inverse Fourier sine transform, we get 

𝒌𝟏 𝒇(𝒌)

=
𝟐

𝝅
∫

∞

𝒐

𝒗(𝒚) 𝒔𝒊𝒏 𝒌𝒚 𝒅𝒚.                                                                                                                     

Substituting for 𝐠(𝐲) from (3.5), and changing the order of integration, we obtain 

         
𝛑

𝟐
𝐤𝟏 𝐀(𝐤)

= ∫
∞

𝟎

𝐮(𝐩) 𝐞𝐱𝐩(−𝐊𝐩) {∫
𝐩

𝟎

sin ky exp(Ky)dy} dp.                                                              (3.6) 

It can be easily shown that 

        ∫
p

0

sin ky exp(Ky)dy

=
(K sin kp – k cos kp) exp(Kp) + k

k2 + K2
,                                                                   (3.7) 

so that using (3.7) in (3.6) we find 
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      f(k) =
2

πk1(k2 + K2)
{∫

∞

0

(K sin kp − k cos kp) u(p) dp

+ k ∫
∞

0

u(p) exp(−Kp) dp}.                  (3.8) 

Substituting for u(y) in (3.8), we obtain after some manipulation (Appendix-I): 

f(k) =
2k

πk1(k2 + K2)
[K ∫

∞

0

η(k, y) δ(y) exp(−Ky)dy

+
icos α

π
∫

∞

0

η(k, y) δ(y) {∫
∞

0

q2η(q, y)

q1(q2 + K2)
dq} dy   

                −K2 ∫
∞

0

δ(y) exp(−2Ky)dy

−
iKcos α

π
∫

∞

0

δ(y) exp(−Ky) {∫
∞

0

q2η(q, y)

q1(q2 + K2)
dq} dy]                     (3.9) 

where η(k, y) = k sin ky + K cos ky   and  q1 = (q2 + μ2)
1

2. 

For a particular shape of the bended plate, f(k) can be obtained explicitly and hence utilizing 

(3.4), we find ϕ1(x, y) i.e. the first order correction of the potential function ϕ(x, y). 

 

4. Special shapes of the bended plate: 

LET US CONSIDER TWO SPECIAL SHAPES FOR THE BENDED PLATE VIZ. (I) Δ(Y) = Y EXP(−ΛY), 

FOR Λ > 0 AND (II) Δ(Y) = A SINΛY, (AS CONSIDERED BY CHAKRABARTI [2]). 

CASE - I: δ(y) = y exp(−λy), λ > 0. 

In this case we obtain (see Appendix - II): 

f(k)

=
k

πk1(k2 + K2)
{

2K{(K + 2λ)(k2 + K2) + Kλ2}

{(λ + K)2 + k2}2
                                                                                                             

+
i cos α

π
∫

∞

0

q2

q1(l2 + K2)
[

λ2 − (k − q)2

{λ2 + (k − q)2}2
(K2 + kq)

+
λ2 − (k + q)2

{λ2 + (k + q)2}2
(K2 − kq)] dq                               

−
2K2

(λ + 2K)2
+

2iKλcos α

π
∫

∞

0

q2

q1(q2 + K2)
[

(k + q)2

{λ2 + (k + q)2}2

+
(k − q)2

{λ2 + (k − q)2}2
] dq                                    
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               −
2iK cos α  

π
∫

∞

0

q2

q1(q2 + K2)
[

2q2(λ + k)

{(λ + K)2 + q2}2

+ K
(λ + K)2 − q2

{(λ + K)2 + q2}2
] dq}.                                                    (4.1) 

CASE - II: δ(y) = a sinλy. 

In this case we find (see Appendix - III): 

f(k) =
k

πq1(k2 + K2)
[λaK2 {

1

(λ + k)2 + K2
+

1

(λ − k)2 + K2

−
2

λ2 + 4K2}                                                                          

            +
ia cos α

π
∫

∞

0

q2

q1(q2 + K2)
{

K2(λ + k) + kq2

(λ + k)2 − q2
+

K2(λ − k) − kq2

(λ − k)2 − q2
−

λK2

(λ + q)2 + K2

−
λK2

(λ − q)2 + K2} dq].   (4.2) 

 

5. Conclusions: 

The problem of surface water waves incident obliquely towards a bended plate, in deep water, 

is discussed by an approximate procedure. In this technique, the boundary condition on the 

bended plate is first replaced by an approximate condition on the corresponding vertical plate. 

The first order correction to the water wave potential is determined by a perturbational analysis 

followed by the inverse Fourier sine transform technique. Analytical expression for this 

correction is also found by assuming two different shapes of the bended plate viz. i) δ(y) =
y exp(−λy), λ > 0 and ii) δ(y) = a sin λy. The main advantage of the problem considered in 

this paper is that the approximate solution in connection with the corresponding two-

dimensional problem can also be derived simply by the substitution of α = 0. This problem is 

a simplified mathematical model of the well-known sloping beach problem arising in 

oceanography. The problem considered here may further be developed. 
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APPENDIX-I: 

The analytical expression for 𝑓(𝑘) can be found from (3.8). Substituting for 𝑢(𝑝) from (3.2) we find 

∫
∞

0

(𝐾 sin 𝑘𝑝 – 𝑘 cos 𝑘𝑝) 𝑢(𝑝)𝑑𝑝 = −𝑘𝐼1 + 𝐾𝐼2,                                                                     (𝐴1.1) 

where 

 𝐼1 = ∫
∞

0

𝑑

𝑑𝑝
{𝛿(𝑝)

∂𝜙0(0, 𝑝)

∂𝑝
} cos 𝑘𝑝 𝑑𝑝,                                                                                     (𝐴1.2) 

and 

   𝐼2 = ∫
∞

0

𝑑

𝑑𝑝
{𝛿(𝑝)

∂𝜙0(0, 𝑝)

∂𝑝
} sin 𝑘𝑝 𝑑𝑝,                                                                                      (𝐴1.3) 

Utilizing the known expression for 𝜙0(0, 𝑝) obtained from (3.3) and exploiting the conditions 𝛿(0) =
0  

and   ∇𝜙0 → 0 as 𝑦 → ∞, it can be shown that 

     𝐼1 = 𝐼3 + 𝐼4                                                                                                                                       (𝐴1.4) 

and 

    𝐼2 = 𝐼5 + 𝐼6                                                                                                                                        (𝐴1.5) 

where 

     𝐼3 = −𝑘𝐾 ∫
∞

0

𝛿(𝑝)exp(−𝐾𝑝) sin 𝑘𝑝 𝑑𝑝,                                                                                     (𝐴1.6) 

      𝐼4 = −
𝑖𝑘 cos 𝛼 

𝜋
∫

∞

0

𝛿(𝑝) {∫
∞

0

𝑞2(𝑞 sin 𝑝𝑞  + 𝐾 cos 𝑝𝑞)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑝} sin 𝑝𝑞 𝑑𝑝,                              (𝐴1.7) 

      𝐼5 = 𝑘𝐾 ∫
∞

0

𝛿(𝑝)exp(−𝐾𝑝) sin 𝑘𝑝 𝑑𝑝,                                                                                        (𝐴1.8) 
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      𝐼6 =
𝑖𝑘 cos 𝛼

𝜋
∫

∞

0

𝛿(𝑝) {∫
∞

0

𝑞2(𝑞 sin 𝑝𝑞 + 𝐾 cos 𝑝𝑞)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} cos 𝑘𝑝 𝑑𝑝.                                        (𝐴1.9) 

Similarly, using the known expression for 𝑓(𝑠) we find 

∫
∞

0

𝑢(𝑝) exp(−𝐾𝑝)𝑑𝑝 = ∫
∞

0

𝑑

𝑑𝑝
{𝛿(𝑝)

∂𝜙0(0, 𝑝)

∂𝑝
} exp(−𝐾𝑝)𝑑𝑝.                                                

Using the known expression for 𝜙0(0, 𝑝) obtained from (3.3) and exploiting the conditions 𝛿(0) = 0  

and ∇𝜙0 → 0 as 𝑦 → ∞, we find the above integral reduces to: 

𝐼7 + 𝐼8                                                                                                                                                     
where 

       𝐼7 = −𝐾2 ∫
∞

0

𝛿(𝑝) exp(−2𝐾𝑝) 𝑑𝑝,                                                                                             (𝐴1.10) 

and 

   𝐼8 = −
𝑖𝐾 cos 𝛼

𝜋
∫

∞

0

𝛿(𝑝) {∫
∞

0

𝑞2(𝑞 sin 𝑝𝑞 + 𝐾 cos 𝑝𝑞)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} exp(−𝐾𝑝) 𝑑𝑝.                           (𝐴1.11) 

Using 𝐼1, 𝐼2, 𝐼7, 𝐼8 thus obtained, the analytical expression for 𝑓(𝑘) is found, which is given by (3.9). 

 

APPENDIX-II: 

Explicit calculation of various integrals for 𝛿(𝑦) = 𝑦 exp(−𝜆𝑦), 𝜆 > 0. 
Assuming 𝛿(𝑦) = 𝑦 exp(−𝜆𝑦), in the integrals represented by 𝐼1 to 𝐼8, defined in Appendix-I, we find 

𝐼3 = −𝑘𝐾 ∫
∞

0

𝑦 exp{−(𝜆 + 𝐾)𝑦)} sin 𝑘𝑦 𝑑𝑦

= −
2𝐾𝑘2(𝜆 + 𝐾)

{(𝜆 + 𝐾)2 + 𝑘2}2
,                                                     (𝐴2.1) 

𝐼4

= −
𝑖𝑘 cos 𝛼

𝜋
∫

∞

0

𝑦 exp(−𝜆𝑦) {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} sin 𝑘𝑦 𝑑𝑦                                                      

      = −
𝑖𝑘 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

𝑦(𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦) sin 𝑘𝑦 exp(−𝜆𝑦)𝑑𝑦} 𝑑𝑞.                     (𝐴2.2) 

The inner integral of 𝐼4 is evaluated as 

∫
∞

0

𝑦(𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦) sin 𝑘𝑦 exp(−𝜆𝑦)𝑑𝑦                                                                                                                       

 =
𝑞

2
[

𝜆2 − (𝑘 − 𝑞)2

{𝜆2 + (𝑘 − 𝑞)2}2
−

𝜆2 − (𝑘 + 𝑞)2

{𝜆2 + (𝑘 + 𝑞)2}2
]

+
𝐾

2
[

2𝜆(𝑘 + 𝑞)

{𝜆2 + (𝑘 + 𝑞)2}2
+

2𝜆(𝑘 − 𝑞)

{𝜆2 + (𝑘 − 𝑞)2}2
].                 (𝐴2.3) 

 

So that we get from (A2.2) 

𝐼4 = −
𝑖𝑘 cos 𝛼

2𝜋
∫

∞

0

𝑞3

𝑞1(𝑞2 + 𝐾2)
[

𝜆2 − (𝑘 − 𝑞)2

{𝜆2 + (𝑘 − 𝑞)2}2

−
𝜆2 − (𝑘 + 𝑞)2

{𝜆2 + (𝑘 + 𝑞)2}2
] 𝑑𝑞                                                    
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          −
𝑖𝑘𝐾𝜆 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

(𝑘 + 𝑞)

{𝜆2 + (𝑘 + 𝑞)2}2

+
(𝑘 − 𝑞)

{𝜆2 + (𝑘 − 𝑞)2}2
] 𝑑𝑞.                                (𝐴2.4) 

Therefore, using (A2.1) and (A2.4) in (A1.4) we find 

𝐼1 = −
2𝐾𝑘2(𝜆 + 𝐾)

{(𝜆 + 𝐾)2 + 𝑘2}2

−
𝑖𝑘 cos 𝛼

2𝜋
∫

∞

0

𝑙3

𝑞1(𝑞2 + 𝐾2)
[

𝜆2 − (𝑘 − 𝑞)2

{𝜆2 + (𝑘 − 𝑞)2}2
−

𝜆2 − (𝑘 + 𝑞)2

{𝜆2 + (𝑘 + 𝑞)2}2
] 𝑑𝑞              

          −
𝑖𝑘𝐾𝜆 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

(𝑘 + 𝑞)

{𝜆2 + (𝑘 + 𝑞)2}2

+
(𝑘 − 𝑞)

{𝜆2 + (𝑘 − 𝑞)2}2
] 𝑑𝑞.                                  (𝐴2.5) 

 

Also, 

 𝐼5 = 𝑘𝐾 ∫
∞

0

𝑦 exp{−(𝜆 + 𝐾)𝑦)} cos 𝑘𝑦 𝑑𝑦

=
𝑘𝐾{(𝜆 + 𝐾)2 − 𝑘2}

{(𝜆 + 𝐾)2 + 𝑘2}2
,                                                          (𝐴2.6) 

𝐼6

=
𝑖𝑘 cos 𝛼

𝜋
∫

∞

0

𝑦 exp(−𝜆𝑦) {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} cos 𝑘𝑦 𝑑𝑦                                                              

       =
𝑖𝑘 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

𝑦(𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦) cos 𝑘𝑦 exp(−𝜆𝑦)𝑑𝑦} 𝑑𝑞.                      (𝐴2.7) 

Inner integral of 𝐼6 is 

∫
∞

0

𝑦(𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦) cos 𝑘𝑦 exp(−𝜆𝑦) 𝑑𝑦                                                                                                            

    = 𝜆𝑞 [
(𝑞 + 𝑘)

{𝜆2 + (𝑞 + 𝑘)2}2
+

(𝑞 − 𝑘)

{𝜆2 + (𝑞 − 𝑘)2}2
]

+
𝐾

2
[

𝜆2 − (𝑞 + 𝑘)2

{𝜆2 + (𝑞 + 𝑘)2}2
+

𝜆2 − (𝑞 − 𝑘)2

{𝜆2 + (𝑞 − 𝑘)2}2
],               (𝐴2.8) 

 

so that using (A2.8) into (A2.7) we get 

𝐽6 =
𝑖𝑘𝜆 cos 𝛼

𝜋
∫

∞

0

𝑞3

𝑞1(𝑞2 + 𝐾2)
[

(𝑞 + 𝑘)

{𝜆2 + (𝑞 + 𝑘)2}2
+

(𝑞 − 𝑘)

{𝜆2 + (𝑞 − 𝑘)2}2
] 𝑑𝑞                                             

         +
𝑖𝑘𝐾 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

𝜆2 − (𝑞 + 𝑘)2

{𝜆2 + (𝑞 + 𝑘)2}2

+
𝜆2 − (𝑞 − 𝑘)2

{𝜆2 + (𝑞 − 𝑘)2}2
] 𝑑𝑞.                                    (𝐴2.9) 

Therefore, from (A1.5) we find, after using (A2.6) and (A2.9) 
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𝐽2 =
𝑘𝐾{(𝜆 + 𝐾)2 − 𝑘2}

{(𝜆 + 𝐾)2 + 𝑘2}2

+
𝑖𝑘𝜆 cos 𝛼

𝜋
∫

∞

0

𝑙2

(𝑙2 + 𝐾2)(𝑙2 + 𝜈2)
1
2

[
(𝑙 + 𝑘)

{𝜆2 + (𝑙 + 𝑘)2}2
+

(𝑙 − 𝑘)

{𝜆2 + (𝑙 − 𝑘)2}2
] 𝑑𝑙 

             +
𝑖𝑘𝐾 cos 𝜃

2𝜋
∫

∞

0

𝑙2

(𝑙2 + 𝐾2)(𝑙2 + 𝜈2)
1
2

[
𝜆2 − (𝑙 + 𝑘)2

{𝜆2 + (𝑙 + 𝑘)2}2

+
𝜆2 − (𝑙 − 𝑘)2

{𝜆2 + (𝑙 − 𝑘)2}2
] 𝑑𝑙.                          (𝐴2.10) 

 

Using (A2.5) and (A2.10) into (A1.1), we obtain 

∫
∞

0

𝑓(𝑦)(𝐾 sin 𝑘𝑦

− 𝑘 cos 𝑘𝑦)𝑑𝑦                                                                                                                                

=
𝑘𝐾{(𝐾 + 2𝜆)(𝐾2 + 𝑘2) + 𝐾𝜆2}

{(𝜆 + 𝐾)2 + 𝑘2}2
                                                                                                                            

+
𝑖𝑘 cos 𝜃𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

𝜆2 − (k − 𝑞)2

{𝜆2 + (𝑘 − 𝑞)2}2
(𝐾2 + 𝑘𝑞) +

𝜆2 − (𝑘 + 𝑞)2

{𝜆2 + (𝑘 + 𝑞)2}2
(𝐾2 − 𝑘𝑞)] 𝑑𝑞     

        +
𝑖𝑘𝐾𝜆 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

(𝑘 + 𝑞)2

{𝜆2 + (𝑘 + 𝑞)2}2

+
(𝑘 − 𝑞)2

{𝜆2 + (𝑘 − 𝑞)2}2
] 𝑑𝑞.                               (𝐴2.11) 

Also 

      𝐼7 = −𝐾2 ∫
∞

0

𝑦 exp{−(𝜆 + 2𝐾)𝑦)}𝑑𝑦

= −
𝐾2

(𝜆 + 2𝐾)2
,                                                                     (𝐴2.12) 

      𝐼8

= −
𝑖𝐾 cos 𝛼

𝜋
∫

∞

0

𝑦 exp(−𝜆𝑦) {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} exp(−𝐾𝑦)𝑑𝑦                                       

          = −
𝑖𝐾 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

𝑦(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦) exp{−(𝜆

+ 𝐾)𝑦)}𝑑𝑦} 𝑑𝑞.        (𝐴2.13) 

Inner integral of 𝐼8 reduces to 

         
2𝑞2(𝜆 + 𝑘)

{(𝜆 + 𝐾)2 + 𝑞2}2

+ 𝐾
(𝜆 + 𝐾)2 − 𝑞2

{(𝜆 + 𝐾)2 + 𝑞2}2
                                                                                                (𝐴2.14) 

Therefore 

      𝐽8 = −
𝑖𝐾 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

2𝑞2(𝜆 + 𝑘)

{(𝜆 + 𝐾)2 + 𝑞2}2

+ 𝐾
(𝜆 + 𝐾)2 − 𝑞2

{(𝜆 + 𝐾)2 + 𝑞2}2
] 𝑑𝑞.                          (𝐴2.15) 
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Using (A2.12) and (A2.15), we find 

𝐼7 + 𝐼8 = −
𝐾2

(𝜆 + 2𝐾)2

−
𝑖𝐾 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

2𝑞2(𝜆 + 𝑘)

{(𝜆 + 𝐾)2 + 𝑞2}2

+ 𝐾
(𝜆 + 𝐾)2 − 𝑞2

{(𝜆 + 𝐾)2 + 𝑞2}2
] 𝑑𝑞.      (𝐴2.16) 

Thus, exploiting (A2.11) and (A2.16) into (3.8) we find the analytical expression for 𝑓(𝑘) which is 

given by (4.1). 

 

APPENDIX-III: 

Explicit calculation of various integrals for 𝛿(𝑦) = 𝑎 sin 𝜆𝑦. 
When 𝛿(𝑦) = a sin 𝜆𝑦, we find 

𝐼3 = −𝑘𝑎𝐾 ∫
∞

0

sin 𝜆𝑦 sin 𝑘𝑦 exp(−𝐾𝑦)𝑑𝑦

= −
𝑘𝑎𝐾2

2
[

1

(𝜆 − 𝑘)2 + 𝐾2
−

1

(𝜆 + 𝑘)2 + 𝐾2
],                             (𝐴3.1) 

and 

𝐼4

= −
𝑖𝑎𝑘 cos 𝛼

𝜋
∫

∞

0

sin 𝜆𝑦 sin ky {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} 𝑑𝑦                                                                      

       = −
𝑖𝑎𝑘 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

sin 𝜆𝑦 sin 𝑘𝑦 (𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦)𝑑𝑦} 𝑑𝑞.                                       (𝐴3.2) 

Using a convergence factor of the type used by Evans and Morris ([12]), the inner integral of 𝐼4 is 

evaluated, and is given by 

𝑞2

2
[

1

𝑞2 − (𝜆 − 𝑘)2

−
1

𝑞2 − (𝜆 + 𝑘)2
]                                                                                                                                              

so that from (A3.2) we get 

    𝐼4 = −
𝑖𝑎𝑘 cos 𝛼

2𝜋
∫

∞

0

𝑞4

𝑞1(𝑞2 + 𝐾2)
[

1

𝑞2 − (𝜆 − 𝑘)2

−
1

𝑞2 − (𝜆 + 𝑘)2
] 𝑑𝑞.                                                         (𝐴3.3) 

Therefore, using (A3.1) and (A3.3) into (A1.4) we get 

𝐼1

= −
𝑘𝑎𝐾2

2
[

1

(𝜆 − 𝑘)2 + 𝐾2

−
1

(𝜆 + 𝑘)2 + 𝐾2
]                                                                                                                          

             −
𝑖𝑎𝑘 cos 𝛼

2𝜋
∫

∞

0

𝑞4

𝑞1(𝑞2 + 𝐾2)
[

1

𝑞2 − (𝜆 − 𝑘)2

−
1

𝑞2 − (𝜆 + 𝑘)2
] 𝑑𝑞.                                                         (𝐴3.4) 
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Also, 

𝐼5 = 𝑘𝑎𝐾 ∫
∞

0

sin 𝜆𝑦 cos ky exp(−𝐾𝑦)𝑑𝑦

=
𝑘𝑎𝐾

2
[

𝜆 + 𝑘

(𝜆 + 𝑘)2 + 𝐾2
+

𝜆 − 𝑘

(𝜆 − 𝑘)2 + 𝐾2
]                                       (𝐴3.5) 

and 

𝐼6

=
𝑖𝑎𝑘 cos 𝛼

𝜋
∫

∞

0

sin 𝜆𝑦 cos ky {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(q + 𝐾2)
𝑑𝑞} 𝑑𝑦                                                                                    

           =
𝑖𝑎𝑘 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

sin 𝜆𝑦 cos 𝑘𝑦 (𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦) 𝑑𝑦} 𝑑𝑞.                                         (𝐴3.6) 

Using a convergence factor as used by Evans and Morris ([12]), the inner integral of (A3.6) is evaluated 

and is given by 
𝐾

2
[

𝜆 + 𝑘

(𝜆 + 𝑘)2 − 𝑞2

+
𝜆 − 𝑘

(𝜆 − 𝑘)2 − 𝑞2
].                                                                                                                                               

Using the above result into (A3.6) we obtain 

         𝐼6 =
𝑖𝑎𝑘𝐾 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

𝜆 + 𝑘

(𝜆 + 𝑘)2 − 𝑞2

+
𝜆 − 𝑘

(𝜆 − 𝑘)2 − 𝑞2
] 𝑑𝑞.                                                             (𝐴3.7) 

Therefore from (A1.5), after using (A3.5) and (A3.7), we find 

𝐼2 =
𝑘𝑎𝐾

2
[

𝜆 + 𝑘

(𝜆 + 𝑘)2 + 𝐾2
+

𝜆 − 𝑘

(𝜆 − 𝑘)2 + 𝐾2
]                                                

                +
𝑖𝑎𝑘𝐾 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

𝜆 + 𝑘

(𝜆 + 𝑘)2 − 𝑞2

+
𝜆 − 𝑘

(𝜆 − 𝑘)2 − 𝑞2
] 𝑑𝑞.                                                          (𝐴3.8) 

Thus, using (A3.4) and (A3.8) into (A1.1) we obtain 

∫
∞

0

𝑢(𝑦)(𝐾 sin 𝑘𝑦

− 𝑘 cos 𝑘𝑦)𝑑𝑦                                                                                                                                            

=
𝜆𝑎𝑘𝐾2

2
[

1

(𝜆 + 𝑘)2 + 𝐾2

+
1

(𝜆 − 𝑘)2 + 𝐾2
]                                                                                                                     

             +
𝑖𝑎𝑘 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[
𝐾2(𝜆 + 𝑘) + 𝑘𝑞2

(𝜆 + 𝑘)2 − 𝑞2

+
𝐾2(𝜆 − 𝑘) − 𝑘𝑞2

(𝜆 − 𝑘)2 − 𝑞2
] 𝑑𝑞.                                                   (𝐴3.9) 

Also 
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             𝐼7 = −𝑎𝐾2 ∫
∞

0

sin 𝜆𝑦 exp(−2𝐾𝑦)𝑑𝑦

= −
𝑎𝐾2𝜆

𝜆2 + 4𝐾2
                                                                                             (A3.10) 

and 

𝐼8

= −
𝑖𝑎𝐾 cos 𝛼

𝜋
∫

∞

0

sin 𝜆𝑦 {∫
∞

0

𝑞2(𝑞 sin 𝑞𝑦 + 𝐾 cos 𝑞𝑦)

𝑞1(𝑞2 + 𝐾2)
𝑑𝑞} exp(−𝐾𝑦)𝑑𝑦                                                                   

                = −
𝑖𝑎𝐾 cos 𝛼

𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
{∫

∞

0

sin 𝜆𝑦 (𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦)exp(−𝐾𝑦)𝑑𝑦} 𝑑𝑞.                             (𝐴3.11) 

It can be easily shown that 

∫
∞

0

sin 𝜆𝑦 (𝑞 sin 𝑞𝑦

+ 𝐾 cos 𝑞𝑦)exp(−𝐾𝑦)𝑑𝑦                                                                                                                            

=
𝑞𝐾

2
[

1

(𝜆 − 𝑞)2 + 𝐾2
−

1

(𝜆 + 𝑞)2 + 𝐾2
]

+
𝐾

2
[

𝜆 + 𝑞

(𝜆 + 𝑞)2 + 𝐾2
+

𝜆 − 𝑞

(𝜆 − 𝑞)2 + 𝐾2
].                                                            

So that from (A3.11) we get 

𝐼8 = −
𝑖𝑎𝐾2 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[𝑞 {

1

(𝜆 − 𝑞)2 + 𝐾2
−

1

(𝜆 + 𝑞)2 + 𝐾2
}

+ {
𝜆 + 𝑞

(𝜆 + 𝑞)2 + 𝐾2
+

𝜆 − 𝑞

(𝜆 − 𝑞)2 + 𝐾2
}] 𝑑𝑞 

                                              (𝐴3.12) 

Therefore, using (A3.10) and (A3.12) we obtain 

𝐼7 + 𝐼8 = −
𝑎𝐾2𝜆

𝜆2 + 4𝐾2
                

                     −
𝑖𝑎𝐾2 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[𝑞 {

1

(λ − 𝑞)2 + 𝐾2
−

1

(𝜆 + 𝑞)2 + 𝐾2
}

+ {
𝜆 + 𝑞

(𝜆 + 𝑞)2 + 𝐾2
+

𝜆 − 𝑞

(𝜆 − 𝑞)2 + 𝐾2
}] 

                   = −
𝑎𝐾2𝜆

𝜆2 + 4𝐾2

−
𝑖𝑎𝐾2𝜆 cos 𝛼

2𝜋
∫

∞

0

𝑞2

𝑞1(𝑞2 + 𝐾2)
[

1

(𝜆 − 𝑞)2 + 𝐾2

+
1

(𝜆 + 𝑞)2 + 𝐾2
] 𝑑𝑞.                         (𝐴3.13) 

Finally, using (A3.9) and (A3.13) into (3.8) we obtain the analytical expression for 𝑓(𝑘), which is given 

by (4.2).  

 


