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The type of dementia that affects people most often is Alzheimer's disease (AD) affecting brain 

functions, especially memory loss. Alzheimer’s disease, an incurable disease that causes memory 

loss and cognitive impairment in the elderly. As a degenerative disease, it causes progressive 

irreversible cognitive decline, Alzheimer’s disease is one of the severe form of the dementia 

affecting the elder people. Early diagnosis is essential for improving patient care and treatment 

outcomes. The early diagnose of AD can slow the progress of the disease. Early, accurate detection 

is essential for treatment. It is difficult to classify the similar brain patterns in AD classification due 

to the minor variations in biomarkers that can be detected in various neuro-imaging modes and 

image projections. In the last several years, the use of deep learning approaches has proven to really 

be very successful in the diagnosis of Alzheimer’s. A variety of pre-processing methods and tools, 

datasets, and brain subregions most impacted by AD have all been examined. Additional in-depth 

examination of different biomarkers and feature extraction approaches, deep learning architectures 

and classification techniques have been completed for the survey.  

 

Keywords: Alzheimer’s disease; Deep Learning; Early diagnosis; Multiclassification; Neuro-

Imaging. 

 

 

1. Introduction 

The neurobiological type of dementia referred as Alzheimer's disease (AD) tends to start with 

moderate cognitive impairment (MCI) and progressively worsens. Determining if the patient 

has MCI and estimating the likelihood that the MCI patient would acquire AD is the most 

difficult and crucial choice in the diagnosis of AD. It is symbolized via behavioral 

irregularities, memory depreciation, and neurological decline. It records for 60 to 80% of the 
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dementia cases and is the fourth most common cause of mortality worldwide [1, 5, 7]. 

Worldwide, currently there are 50 million sufferers of dementia sufferers; by 2050, the figure 

is expected to increase to 152 million [1, 7]. The main cause of AD is an increased rate of 

brain cell death induced by excessive levels of amyloid β protein buildup, which obstructs 

signal transmission in brain cells. It is discovered that aberrant changes in the volume and the 

loss of Gray Matter (GM) are frequently seen during the progression from MCI to AD and the 

structures of the temporal medial lobe. The Tissue loss begins in GM and progresses to the 

(HC) hippocampus, (WM) white matter, and (CC) corpus callosum. The cerebral cortex and 

the hippocampal regions shrink while there is expansion in AD sufferers' ventricles. In addition 

to memory loss, patients with this condition have mood swings, trouble making decisions, 

uncertainty while speaking, and a variety of behavioral issues in its early stages. AD sufferers 

gradually begin to lose their physical abilities, Patients with AD gradually lose their ability to 

operate their bodies, which ultimately results in death.  

 

Fig. 1. Alzheimer disease various stages 

The disorder gradually worsens everyday functioning and quality of life as it progress from 

moderate cognitive impairment (MCI) to severe dementia [5, 6, 20, 27]. Neurofibrillary 

tangles and Amyloid plaques that causes neurodegeneration and brain shrinkage, are 

Alzheimer's disease (AD) characteristics [5, 8, 12, 30]. Short-term loss of memory, language 

barriers, mood swings, and poor judgment are some of the early signs that lead to severe mental 

and physical abnormalities [5, 8, 30]. Even though AD not able to stopped, there are steps that 

may be used to decelerate its advancement if caught early on. These include taking part in 

physical activity, retaining a healthy diet, getting adequate sleep, and interacting with others. 

The diagnosis of AD has grown more difficult despite recent improvements in clinical trials 

because of the large rise in patients and potential errors in neuroimaging analysis. Thus, it is 

often chosen to combine neuroimaging data with clinical data such as MMSE (Mini-Mental 

State Examination) & CDR (Clinical Dementia Rating) scores for diagnosis.  

Effective intervention involves early diagnosis, but this can be challenging since symptoms 

might appear gradually and individuals may not be aware of them [2, 9, 16]. 

Neuropsychological tests and neuroimaging method such as MRI, PET, and CT scans being 

the most common that usually involves in the diagnosis [2, 10, 14]. To enhance early detection 

and precisely identify AD phases, cutting-edge techniques like deep learning and computer-

aided diagnostics are being evolved [7, 11, 12, 20, 30]. The treatment goal for AD, regardless 

of the fact that research is still continuing, is to manage symptoms and postpone the disease's 

development by lifestyle changes and perhaps disease-modifying medications [5, 7, 17, 18, 

30]. The increasing incidence rate of AD highlights the need for better disease diagnosis along 

with more public awareness to enable prompt patient and caregiver assistance and intervention 

[1, 7, 20, 27]. 

There are limitations with conventional diagnostic techniques which rely on MRI, PET, and 
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CT scans that often result in a delayed diagnosis [2, 5]. It is beneficial to incorporate 

neuroimaging data with AI, especially machine learning (ML) and deep learning (DL) 

methods. By integrating genetic and cerebrospinal fluid (CSF) biomarkers and employing 

alternative modalities like EEG, these techniques aid in addressing issues such data scarcity 

and noise in medical pictures [14, 15, 17, 20]. CNNs can reduce inaccuracies associated with 

conventional approaches by dynamically learning features from images [1, 8]. Recent 

developments include lightweight networks like Mobile Net and Shuffle Net, which can be 

helpful in limited-resource settings, and hybrid CNN-LSTM designs [2, 3]. [31] Recommends 

the FEESCTL model to control computational costs and overfitting, attaining high accuracy 

in early AD identification. Convolutional Neural Networks (CNNs)—greatly enhance the 

capability to diagnose AD early and accurately using structural MRI (sMRI) analysis [8].  

A comprehensive view of brain disease is provided by multi-modal techniques that integrate 

sMRI and functional MRI (fMRI) data, improving diagnostic accuracy [9]. Alzheimer's 

disease (AD) phases may be categorized more accurately with standard models because of the 

use of multi-task learning in models like AlzheimerNet [4].  Consolidating data from many 

neuroimaging modalities (MRI, PET, DTI) enhances diagnostic precision and offers unique 

perspectives on AD [13, 23]. Data from many modalities can be integrated using methods like 

wavelet transform and machine learning [13, 23]. Since MRI is non-invasive and generate 

high-resolution images of brain tissue, it is the recommended method [18] and differentiate 

between moderate cognitive impairment (MCI), stages of AD dementia, and healthy controls 

with good accuracy [15, 20, 25, 27, 29].  

Efficiency and performance may be improved by using transfer learning with pre-trained 

models like ResNet-50 and VGG16 [16, 18]. Resolving class imbalance in datasets, creating 

techniques for AD diagnosis utilizes additional modalities like EEG, integrating genetic and 

CSF biomarkers, and enhanced model interpretability [14, 15, 17, 20, 28]. Techniques for 

ensemble learning may increase persistence and accuracy [29, 32]. Deep learning methods for 

voice analysis have the ability to detect language impairments and early indicators of AD [17, 

24]. AI-driven techniques possess the capability to significantly improve patient care and AD 

diagnosis by offering earlier, more precise, and more effective diagnostic tools. 

 

2. Biomarkers and Neuro Anatomy of Brain 

Alzheimer’s disease is a complicated degenerative brain illness which affects structure and 

function of the brain. Detecting AD involves a combination of clinical assessments, cognitive 

testing, and neuroimaging approaches. Medical experts may utilize numerous neuroimaging 

approaches to analyses the particular parts of the brain for functional and structural 

abnormalities while detecting Alzheimer’s disease. Understanding the brain structure and how 

it changes in Alzheimer’s disease can aid in early diagnosis and analyze. The rostral 

hippocampus, medial amygdala, globuspallidus, lateral amygdala, area 28/34 (entorhinal 

cortex), and caudal area 35/36 (Para hippocampal gyrus) are the most distinguishable areas for 

the categorization of AD vs. healthy controls. These regions are crucial in case of binary 

classification task.These were some of the important brain regions and structures that are quite 

often examined in the detection of Alzheimer’s: 
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2.1 Neuro Anatomy of the Brain 

Hippocampus: In the brain’s medial temporal lobe, the hippocampus is tiny curving structure 

that is vital for memory formation and spatial orientation [20]. In individuals with Alzheimer's, 

the hippocampal regions are typically the earliest to be affected, resulting in challenges with 

memory and the ability to create new memories, and has been considered to be an effective 

biomarker for AD detection [11]. Neuroimaging approaches such as Magnetic Resonance 

Imaging (MRI) and Computed Tomography (CT) scans can detect hippocampal atrophy. MRI 

can detect the shrinkage of the hippocampus, confirming structural brain changes associated 

with Alzheimer's disease [22].Noticeably hippocampal, subcortical, and cortical subfields can 

be used as discriminating areas to categorize patients into cognitively normal (CN) and those 

who have early mild cognitive impairment (EMCI) [9].  

Brain’s Cortex: The Brain cortex incorporates the outer layer of the brain, is accountable for 

advanced cognitive activities such as thinking, reasoning, and problem solving. Alzheimer's 

disease also tends to affect the cerebral cortex, a pivotal brain region that controls cognition, 

perception, and voluntary movement [18, 24]. Neuroimaging can reveal cortical atrophy and 

thinning in Alzheimer's patients. Due to cerebral cortex damage, Alzheimer's patients have 

depleted function in the limbic region. [19], cortical regions begin to atrophy, leading to 

cognitive decline. 

Amygdala: The amygdala, which is associated with emotional processing and is linked with 

the hippocampus, undergoes observable changes in Alzheimer's patients, frequently affecting 

mood and emotional regulation [29]. 

Basal Forebrain: The basal forebrain, responsible for acetylcholine production, a 

neurotransmitter crucial for memory as well as cognitive states may degenerate in Alzheimer’s 

disease, resulting in lower acetylcholine levels. Changes in the structure or volume of the basal 

forebrain can be identified through neuroimaging.  

Posterior Cingulate Cortex: The posterior cingulate cortex, integral to memory and attention 

processes, is frequently impacted in Alzheimer's disease. Imaging studies reveal diminished 

activity or atrophy in this brain region. 

Entorhinal Cortex: The entorhinal cortex, crucial for memory and spatial navigation, is another 

brain region where alterations associated with Alzheimer's can be identified through 

neuroimaging. 

White Matter Tracts: The brain's white matter comprises axons responsible for carry signals 

between various regions of the brain. In AD, changes in white matter can be captured through 

Diffusion Tensor Imaging (DTI), which assesses the validity of axonal pathways [21]. This 

allows for the visualization nerve conduction bundles walking direction in white matter. In 

AD, white matter may deteriorate due to the loss of myelin, the fatty substance that insulates 

axons, consequently impacting communication among brain regions.  

Cerebrospinal Fluid (CSF) Analysis: Examining CSF can reveal information about the levels 

of biomarkers linked to AD, including tau proteins and beta-amyloid. Alzheimer's may be 

indicated by elevated tau and decreased beta-amyloid levels in CSF[15]. 

Functional Connectivity: Functional magnetic resonance imaging (fMRI) helps in the process 
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to gauge functional connectivity among distinct brain regions. With the context of Alzheimer's 

disease, observable disruptions in functional connectivity become apparent, signifying 

alterations in the communication patterns between various parts of the brain. This technique 

allows researchers and clinicians to discern changes in the dynamic interactions of brain 

regions, providing valuable insights into the functional aspects affected by Alzheimer's 

pathology.       

 

Fig. 2. Healthy brain and Alzheimer affected brain 

Neurofibrillary Tangles: Within nerve cells, known as neurons, the presence of neurofibrillary 

tangles constitutes a prominent feature, particularly in the context of Alzheimer's disease. 

These tangles are characterized by abnormal protein deposits, primarily composed of tau 

proteins. In the Alzheimer’s disease pathological progression, tau protein aggregates form 

intricate structures that are referred to as neurofibrillary tangles. Unfortunately, the existence 

of these tangles disrupts normal cellular function and, over time, contributes to the demise of 

the affected cells. The development of neurofibrillary tangles is a distinctive feature of 

Alzheimer's pathology,playing a crucial role in the neurodegenerative processes associated 

with the disease. 

Amyloid Plaques: Abnormal clusters of beta-amyloid proteins that accumulate in between 

neurons are referred as amyloid plaques. These plaques are another defining characteristic of 

Alzheimer's that can interfere with cell-to-cell communication. 

Ventricles: The brain's ventricles are areas that are filled with fluid. Brain imaging scans can 

show the enlargement of the ventricles due to atrophied brain tissue in Alzheimer's disease. 

Shrinkage of Brain Tissue: Brain atrophy is the term for the shrinkage of brain tissue that 

occurs as Alzheimer's disease worsens. This is especially evident in areas such as the cerebral 

cortex and the hippocampus. 

2.2 Biomarkers 

A multimodal approach is used to detect Alzheimer's disease, and imaging methods including 

MRIs, PET scans, and cerebrospinal fluid studies are important in revealing relevant brain 

abnormalities. In order to exclude other possible causes of cognitive decline and to obtain a 
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definitive diagnosis, a thorough evaluation involving clinical exams and cognitive tests is 

required. Timely identification and management of the condition is facilitated by regular 

cognitive evaluations in at-risk persons. Early detection is critical since it enables more 

effective intervention.  

Scientifically speaking, developments in imaging modalities like positron emission 

tomography (PET) and magnetic resonance imaging (MRI) have shown the temporal and 

geographical evolution of Alzheimer's disease, leading to a greater knowledge of the condition. 

These diagnostic tools, which include cerebral metabolism and amyloid deposits assessed by 

PET scans and structural and functional MRI, offer a complete picture of the disease's effects. 

Through the identification of distinctive patterns of structural and functional cerebral 

abnormalities, imaging, which was previously utilized to rule out surgically curable causes, is 

now actively supporting Alzheimer's disease clinical diagnosis. Furthermore, a major 

development is the capacity to see molecular disease, like amyloid deposits. Looking ahead, 

imaging is beginning to provide prognostic insights at this early stage, in addition to verifying 

a lengthy preclinical and presymptomatic time for identifiable harmful impacts. 

MRI: An MRI, or magnetic resonance imaging, is a painless and safe test that creates detailed 

images of structural components of brain with radio waves and magnetic fields to acquire high 

resolution two-dimensional and three dimensional brain images with high quality. Radioactive 

tracers or X-ray radiation is not used in an MRI. In Alzheimer's disease detection, MRI scans 

play a crucial role by providing detailed images of key brain structures, such as the cerebral 

cortex, hippocampus, and ventricles [1]. Researchers extract features like voxel intensity and 

tissue density from MR images, employing various anatomical regions and mapping grey 

matter density to a high-dimensional space [10].  

[11] Highlights the use of high-resolution T1-weighted sMRI scans at 1.5 T or 3.0 T, along 

with other modalities like FDG-PET, AV45-PET, Tau-PET scans, and rs-fMRI scans in 

Alzheimer's disease studies. These modalities offer insights into altered morphological 

patterns and functional connectivity associated with the disease. The benefits of MRI includes 

remarkable tissue contrast and enhanced imaging flexibility, the absence of ionizing radiation, 

and the capacity to provide valuable data on anatomy of the human brain [20]. MRI images 

can be widely classified into two types: structural MRI (sMRI) and functional MRI (fMRI). 

sMRI: For the diagnosis of AD, it is the most often utilized MRI. The brain's morphological 

changes can be recorded and seen using sMRI. The primary structural alterations in 

Alzheimer's disease are typified by gray matter (GM) atrophy. The atrophy of gray matter 

linked to Alzheimer's disease can be seen and detected with high sensitivity using sMRI. Gray 

matter analysis, which uses sMRI to focus on the dense region of neuronal cell bodies that is 

essential for information processing, is used [3]. Three general types of sMRI are available: 

T1 weighted, T2 weighted, and FLAIR. [14] These scans provide detailed structural 

information about the brain, enabling the measurement of regional volumes, cortical thickness, 

and other morphological features that can be indicative of Alzheimer's-related pathologies. 

T1 weighted:The longitudinal relaxation of a tissue's net magnetization vector (NMV) is 

required for a T1-weighted image. A gadolinium-infused T1-weighted MRI scan supplies 

information about state of the diseases by highlighting regions of the blood-brain barrier 

breakdown that symbolize inflammation. Tissues with a high fat content, like white matter, 
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appear bright on a T1-weighted scan, whereas regions filled with water (CSF) appear dark. 

[29] tested the performance of the final classifier ensemble based on three-axis slices. [27] 

Used T1-weighted MRI m VCC modality for imaging from the ADNI dataset. [16] Used 

MPRAGE baseline 1.5T T1-weighted MRI images in the axial plane, resized to 64 × 64 in the 

experiments. [5] Collected T1-weighted structural MR images for 379 subjects with 

Alzheimer's disease, mild cognitive impairment, and normal cognition from the ADNI dataset. 

T2 weighted:Tissues that are high in fat content, like white matter, gives off a shadow 

appearance on a T2-weighted scan, while compartments filled with water, like CSF 

compartments, appear bright. Even though most, although not all, lesions (damaged tissue) 

have a tendency to develop edema and are linked to an increase in water content, this is a good 

way to demonstrate pathology [4, 16]. Using T1- and dual-echo T2-weighted sequences, the 

MRI images was centered on reliable longitudinal structural imaging with 1.5T scanners [8]. 

FLAIR: A sequence referred as fluid-attenuated inversion recovery (FLAIR) in magnetic 

resonance imaging (MRI) minimizes contrast between grey and white matter, suppresses the 

CSF signal, and generates strong T2 weighting. [8] The amalgamation of 2D FLAIR and T2-

weighted imaging signifies focus on obtaining detailed data regarding tissue properties and 

pathologies. 

fMRI: Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique 

that successfully records both conscious and unconscious neural activity in the brain by 

utilizing a powerful magnetic field to yield detailed 3D images of the brain [5,15]. Changes in 

blood oxygen levels are used by the scan to measure neuronal activity because active neurons 

use more oxygen than do resting ones. Detailed visualization of brain activity throughout the 

entire organ is feasible with this indirect measure, which is called the magnetic resonance 

signal that is dependent on blood oxygen level-dependent (BOLD). Such extensive insights 

into the functioning of the entire brain cannot be obtained through any other technique. fMRI 

is used in the framework of Alzheimer's disease (AD) to look into functional alterations in the 

brain linked to the illness. [28, 9] However, when using functional mri (fMRI) to clearly 

differentiate between EMCI and NC, certain regions of the brain—like the occipital-mid-

region, precentral-left, caudate-region, postcentral-left, and temporal-pole-mid-left—are more 

predominant. The following is how AD is identified using fMRI: 

Resting State fMRI (rs-fMRI): [8] a common technique is to take a peek at impulsive blood 

oxygen level-dependent (BOLD) signals fluctuations, when an individual is at rest using 

resting state functional magnetic resonance imaging (fMRI). Resting state networks (RSNs) 

are identified, and variations in these networks can be symbolic changes in functional 

connectivity, which might be changed in individuals with AD. 

Task-based fMRI: Task-based fMRI is another approach where participants carry out 

particular cognitive tasks while having their brain activity observed. This can assist identifying 

brain regions during specific cognitive tasks, are overactive or underactive. Task-based fMRI 

in AD reveal changes in brain activation patterns associated with language, memory, or other 

cognitive functions impacted by the illness. In AD, memory is especially affected. fMRI is 

frequently used by researchers to investigate memory-related tasks, including retrieval and 

encoding processes.  
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DTI: Diffusion tensor imaging tractography, or DTI tractography, is an MRI (magnetic 

resonance imaging) method that represents the internal structures of the body by measuring 

the rate at which water diffuses between cells. Diminishes in directional diffusion (fractional 

anisotropy, or FA) and incline in translational diffusion (mean diffusivity, or MD) can be used 

to assess white matter damage. Clinical medicine theory states that DTI illustrates the brain's 

fiber bundles' continuity of tissue structure [21]. In diffusion tensor imaging (DTI) studies, 

particular matter regions Lower fractional anisotropy (FA) values of Alzheimer's disease (AD) 

indicate compromised integrity connected to neuronal degeneration, beta-amyloid plaques, 

and tau tangles. Increased extracellular space and alterations in cellular architecture are 

reflected in elevated mean diffusivity (MD), which denotes neurodegeneration. Changes in 

radial diffusivity (RD) and axial diffusivity (AD) shed light on white matter pathology, such 

as demyelination or axonal degeneration. Regional differences in regions such as the 

hippocampus, cingulum bundle, and fornix underscore the diversity of DTI metrics, which are 

essential to understanding the course of AD [19]. 

 

Fig. 3. Biomarkers to detect AD 

PET:In Positron Emission Tomography imaging, a small quantity of a radioactive material, 

known as a radiotracer, is induced into the body. [4] The radiotracer emits positrons, which 

are positively charged particles. Gamma rays are generated when a positron and an electron in 

the body annihilate one another. A PET scanner detects these gamma rays, and the information 

it gathers is used to generate intricate three-dimensional images of the interior organs and 

structures [13, 23]. Here's how AD is identified using PET imaging. 

Amyloid-PET (AV-45 PET): Amyloid-PET scans are a popular way for observing 

accumulation of beta-amyloid plaques in brain [11]. The protein beta-amyloid is responsible 

for the formation of plaques in the AD patients suffers brain. These plaques bind to the 

radiotracer used in amyloid-PET, making it possible to detect and quantify them. AD is 

symbolized by increased amyloid plaque deposition. 

Tau-PET: Tau is a protein that causes tangles in the brains of AD patients [24]. With tau-PET, 
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misfolded tau pathology can be visualized and evaluated, offering insights into the 

development of the disease. 

Fluorodeoxyglucose PET: [9] FDG-PET is used to assess brain glucose metabolism. Reduced 

glucose metabolism is a defining feature of Alzheimer's disease (AD), especially in areas 

related to memory and cognition. FDG-PET can highlight those areas of the brain which do 

not exhibit optimal neuro function, indicating neurodegeneration. 

EEG: EEG, a non-invasive neuroimaging tool, diagnoses Alzheimer's disease (AD) by 

analyzing brain wave patterns (alpha, beta, delta, and theta). EEG detects AD-associated 

patterns like lowered alpha and elevated theta waves. ERPs reveal memory and attentional 

deficiencies in the brain. EEG measure impaired connectivity, indicating neural network issues 

in AD. Over an extended period of time tracks cognitive decline. [17] EEG technology is to 

describe abnormal neuronal activity related to different stages of AD. It involves changes in 

signal complexity in the parietal and occipital region along with changes in the power spectrum 

of low-frequency oscillations in the occipital area as neural biomarkers for diagnosis and 

forecasting AD.The occipital and parietal regions, responsible for visual processing and 

sensory information, respectively, are emphasized as key areas where EEG technology can 

detect Alzheimer's disease-related abnormalities in neural activity. It is illustrated that the 

occipital and parietal areas handle visual processing and sensory information, respectively—

are important locations where EEG technology can identify abnormalities in neural activity 

linked to Alzheimer's disease. 

CT: Computed tomography (CT) scans are not considered as the main imaging modality for 

AD detection. The primary feature of AD, which is a neurodegenerative condition, is the 

development of abnormal protein aggregates in the brain, such as tau tangles and beta-amyloid 

plaques. Although CT scans can provide precise images of the structure of the brain, they 

might not be sensitive enough or specific enough to identify these particular pathological 

alterations linked to AD. 

 

Fig. 4. Representing utilization ration of imaging techniques 

CINICAL DATA: In Alzheimer's Disease (AD) detection, vital imaging data biomarkers 

include magnetic resonance imaging (MRI), positron emission tomography (PET), and 
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diffusion tensor imaging (DTI). The necessity of clinical validation by integrating imaging 

data with cognitive tests, especially Mini-Mental State Examination (MMSE) and Clinical 

Dementia Rating (CDR) scores enhance the accuracy of AD categorization.  

CSF: Cerebrospinal fluid (CSF) analysis plays an important role in Alzheimer's disease (AD) 

diagnosis by assessing biomarkers associated with its underlying pathological processes. Key 

CSF /APOE ε4 biomarkers include Aβ(1–42), indicating beta-amyloid plaque deposition; 

phosphorylated Tau (p-tau), a marker for neurofibrillary tangles; and total Tau (t-tau), 

associated with neurodegeneration [5]. Low levels of Aβ(1–42) and elevated p-tau and t-tau 

in CSF are indicative of AD pathology [14] . The combination of these biomarkers aids in 

identifying peoples with an increased risk of AD, especially in early stages with subtle 

symptoms. [17] While CSF analysis provides valuable insights, AD diagnosis involves a 

comprehensive evaluation, including clinical assessments, cognitive tests, and imaging 

studies, with the use of CSF biomarkers more common in research and specialized clinical 

settings.  

CDR: The Clinical Dementia Rating (CDR) is a employed to determine the progresses from 

normal to mild to moderate to severe stages of the disease [19]. The clinical dementia rating 

(CDR), which is a way of measuring the classes together for reviewing the occurrence and 

frequency of cognitive issues in Alzheimer's disease and related symptoms, can be utilized to 

differentiate these stages. This measure is utilized in both long-term research works and 

clinical testing. Six distinct neuro behavioral domains are evaluated by the CDR: memory, 

orientation, performance in the home and passions, judgment and problem-solving, 

community affairs, and personal care. The CDR scale has scores varies from 0 to 3, that 

correlate to different degrees of dementia. A CDR value of 0 indicates no dementia, 0.5 

suggests questionable dementia, 1 signifies mild cognitive impairment (MCI), 2 denotes 

moderate cognitive impairment, and 3 reflects severe cognitive impairment. 

MMSE: The Mini-Mental State Examination (MMSE) stands as a widely utilized cognitive 

screening tool crucial in the detection of Alzheimer's Disease (AD) [10]. It evaluates diverse 

cognitive domains, including memory, orientation, attention, language, and visuospatial 

abilities. With scores ranging from 0 to 30 points, lower MMSE scores signify more 

pronounced cognitive impairment [31]. Tracking changes in scores over time becomes 

instrumental in monitoring the progression of cognitive decline [32]. Hence, the MMSE, in 

conjunction with additional clinical and neuroimaging data sourced from the NACC dataset, 

contributes significantly to the identification, evaluation, and comprehension of Alzheimer's 

disease. 

 

3. Datasets 

Millions of people worldwide have been affected by Alzheimer's disease, which is a 

degenerative progressive neurological disorder that is characterized mainly by memory loss, 

cognitive decline, and behavioral issues. Researchers, data scientists, and healthcare experts 

utilize Alzheimer's datasets to better diagnose and come up with cures for this devastating 

disorder. All of these data types are required for investigating the progress of the disease, 

locating potential biomarkers, and creating deep learning models for early detection and 
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monitoring. These datasets, which include a broad range of data types, which includes clinical 

and demographic data, neuroimaging scans, genetic data, cognitive assessments, etc., are 

discussed here and are available publicly online. 

3.1 ADNI Dataset 

ADNI stands for “Alzheimer’s disease neuroimaging initiative”. ADNI is an latest research 

endeavor and collaborative effort which was initiated in the year 2004 to enhance our 

knowledge of AD and associated illness. This multi-centre project aims to just provide 

biological, imaging, and clinical measures for analysing the disease's progress and early 

detection. [12]. The ADNI database data repository contains information on roughly 2220 

participants from four trials (ADNI1, ADNI2, ADNI GO, and ADNI3), including imaging, 

clinical, and genetic data. 

The main goal of ADNI was to establish MRI imaging as well as other biomarkers for clinical 

trials or cognitive assessments along with the advanced understanding of AD [31]. To help 

develop and test new treatments for Alzheimer’s ADNI collaborates with a wide range of 

organizations, including National Institute on Aging (NIA), the National Institute of 

Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), 

pharmaceutical companies and academic institutions. 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, which is a large, publicly 

available dataset that includes MRI scans, PET and CSF analysis, from individuals with 

Alzheimer's disease, mild cognitive impairment, and normal cognition. The dataset includes 

both structural and functional MRI scans, as well as other clinical and demographic 

information [4]. Most of the research focuses mostly on ADNI, ADNI GO, ADNI 2 [1, 3, 9, 

27]. 

 

Fig. 5. Pie chart representing the different dataset utilization 

3.2 OASIS Dataset 

The "Open Access Series of Imaging Studies" (OASIS) collection is a set of neuro-imaging 
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datasets that are availble for research study and analysis at no cost, and includes cross-sectional 

and longitudinal MRI and PET data [12]. With the use of the open-access dataset, major 

advancements in neuroscience have been made in understanding neurodegenerative disorders 

and how they affect the structure and function of the brain. The dataset provides a flexible 

resource for clinical and cognitive study which is neuroimaging-based, spanning a variety of 

genetic, cognitive, and demographic variables. The Clinical Dementia Rating (CDR) classifies 

it into many categories, ranging from healthy aging to psychological determination. The 

OASIS provides the base for a wide range of study initiatives in this field [6, 16].  

3.3 NACC Dataset 

The National Alzheimer's Coordinating Center, or NACC, was founded by the National 

Institute on Aging (NIA) in 1999. Various Alzheimer's Disease Centers (ADCs) in different 

parts of the US are coordinated by NACC to gather, preserve, and evaluate data from numerous 

ADCs engaged in Alzheimer's research. Information about patients with Alzheimer's disease 

and other dementias is included in this data. Several researchers have adopted this repository 

for their model [32]. 

3.4 Real Dataset 

[17] Bin Jiao, et. al., used real dataset from Xiangya Health Management Center and were 

approved by the Institutional Review Board of Xiangya Hospital, Central South University, 

China. 890 individuals were used for the research. The patients were enrolled between March 

2017 and January 2022 in the Department of Neurology, Xiangya Hospital, Central South 

University.  

Other Dataset 

[24] The other datasets used for detection used for Alzheimer disease detection includes 

Hungarian MCI-mAD Database, the Wallet Story database, and the DementiaBank, Pitt 

corpus, ADReSS database, ADReSSo database subsets of the ADReSS database and Max 

Planck Institute Leipzig Mind-Brain-Body dataset. [28] 

 

4. Preprocessing 

Raw data must be preprocessed in order to be cleaned, transformed, and refined. To train 

machine learning models, it entails performing activities like noise reduction, addressing 

missing values, guaranteeing consistent scales, and generally improving data quality. In the 

end, this procedure helps to enhance the generalization and performance of the model. 

Preprocessing serves various essential purposes: 

4.1 Intensity Normalization 

[13] In the domain of deep learning, intensity normalization is an essential pre-processing 

phase that attempts to improve model performance and training by normalizing pixel 

intensities among input pictures [4, 7, 12, 30, 31]. Normalizing the input data helps the neural 

net to converge during training and guarantees that it can learn from a variety of data sources 

[3, 23, 26, 27, 10, 15]. Various types of intensity normalization methods for deep learning are 

as follows:   
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With Z-Score Normalization, pixel intensities are scaled to have a mean of 0 and a standard 

deviation of 1, and it is commonly used in medical imaging datasets.[10] With the simple 

technique of min-max scaling, pixel intensities are scaled to a range [0, 1]. Histogram 

equalization is very useful for bringing out fine features in medical pictures since it distributes 

pixel intensities over the whole dynamic range, improving contrast in images. To lessen the 

effect of outliers, percentile normalization modifies pixel intensities according to percentiles.  

Moreover, there are MRI-specific normalization methods developed to rectify intensity 

fluctuations in MRI data brought on by non-uniform magnetic fields, such as N4ITK Bias 

Field Correction. [11, 14, 20, 29] Spatial normalization are often used on T1-weighted MRI 

data for brain imaging analysis. [24] The training process and model performance can be 

enhanced by scaling the extracted features to a standard range to guarantee that their 

magnitudes are comparable. All these methods work together to optimize deep learning 

models for medical image processing tasks, such as Alzheimer's disease diagnosis and other 

neuroimaging research.  

4.2 DeNoising Filter 

Noise reduction describes the process of reducing unwanted or irrelevant changes, 

interruptions, or abnormalities in the data when it comes to preprocessing for Alzheimer's 

Disease (AD) diagnosis [5, 9, 17]. The objective is to reduce or remove extraneous background 

noise while enhancing the signal or key AD-related properties.  [2, 24] To remove MRI film 

artifacts, labels and X-ray markers, elevated-frequency components are targeted for 

elimination based on pheromone content and heuristics in MRI images using the Ant-Colony 

Optimization (ACO) technique. This method improves precision and lowers noise in delicate 

medical imaging data. [12, 27] noise reduction techniques, such as median and Gaussian 

filters, highlighting their value in improving neuroimaging quality and aiding in the training 

of classification models. Overall, by addressing issues linked to noise, these preprocessing 

methods help to increase the accuracy and dependability of medical imaging data [7]. 

4.3 Data Augmentation 

Data augmentation methods like image flipping, random cropping and rotating can improve 

model resilience in deep learning to diagnose Alzheimer's disease by artificially varying the 

training dataset to handle issues with class imbalance and inadequate training data in the regard 

of image processing, especially MRI scans. [1, 4, 11, 18]. [5, 24] highlights transforming raw 

MRI pictures into 1-channel images of various sizes, cropping and resizing images to remove 

white areas and improve image quality, retrieving the region of interest (ROI) to concentrate 

on certain brain regions, and using data augmentation methods including rotation, zooming in 

and out, horizontal and vertical flipping, and lighting modifications. These methods are 

intended to improve MRI scan quality and deep learning model performance.  [30] 

Transforming the original voice samples—for example, by introducing background noise, 

adjusting pitch, or changing speed is to provide more training data. Thus the robustness and 

generalization of the deep learning models are enhanced by data augmentation. 

4.4 Registration 

[9, 29 - 31, 20, 25, 26] Co-registration of PET and MRI images is crucial for the best possible 

fusion since MRI and PET include various types of information. Aligning the structural 
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information from MRI with the functional information from PET is possible through image 

registration. Procrustes analysis, a statistical technique, is applied in this work to match PET 

and MRI. The pictures are aligned as best they can be by scaling, rotating, and translating them 

[8]. Finding the matching sites in the two images is the first step in doing the Procrustes 

analysis on MRI and PET. The points that have been found may be landmarks or 

characteristics that appear in both PET and MRI scans. [15] Brain images can be registered to 

the Montreal Neurological Institute (MNI) T1 template. For this, the Linear Image Registration 

Tool (FLIRT) from FMRIB is frequently utilized. In order to match the input pictures with a 

reference template—such as the MNI T1 template [10]. FLIRT uses linear registration. This 

allows for uniform spatial normalization across patients enabling analysis in a standardized 

coordinate space later on. 

4.5 Brain Extraction and Skull Stripping 

Skull stripping and brain extraction are essential preprocessing techniques used on medical 

pictures, especially MRI scans. [10] Brain extraction is the process of separating brain tissue 

from non-brain components, such the scalp and skull. A variety of approaches, from deep 

learning models like convolutional neural networks (CNNs) and U-Net topologies to 

conventional thresholding, are used in this process. [20, 26,29] Skull stripping improves the 

procedure after brain extraction by removing any remaining non-brain material. This solves 

issues like as unpredictability in image quality and guarantees a more accurate portrayal of the 

anatomy of the brain. Skull stripping can be performed using methods like Otsu thresholding 

to extract the weak boundaries between brain and non-brain tissues. [4,11, 30] 

4.6 Resampling 

Resampling is the process which converts input data, usually images, to a standard format or 

resolution by changing its size or resolution [7, 8, 18].  The technique of upsampling, in which 

the labels with fewer images are enlarged or unsampled, is used to balance the data. The total 

size of the dataset is 2900 when all the classes are resampled to create 580 MRI pictures. The 

data are suitably structured, denoised, scaled, standardized, and improved. The technique of 

downsampling is to decrease the supplied data's resolution, this is usually accomplished by 

using methods like pooling layers [11, 27]. Preprocessing methods like oversampling minority 

classes or undersampling majority classes can assist build a more balanced training set in 

circumstances when classes are uneven, improving the model's ability to digest from all classes 

[10].  

4.7 Other Preprocessing Tools 

[12, 31] The neuroimaging framework FreeSurfer is utilized for preprocessing and feature 

extraction. The setup not only performs normalization but also volumetric analysis of brain 

structures from MRI data, cortical parcellation, subcortical and automated white matter 

segmentation, and skull stripping. The Alzheimer's disease diagnosis is influenced by these 

actions. [4, 13] CNN's ability to analyze T1-weighted MRI data is intended to be improved 

through the integration of FreeSurfer.[8] The ADNI dataset was preprocessed and divided into 

planes of cerebrospinal fluid, white, and grey by the authors using SPM 12. The VBM-

DARTEL method is used for detailed preprocessing of sMRI images. This includes 

segmentation, template creation, flow field generation, and normalization. [10] Using the 
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FMRIB's Linear Image Registration Tool, all the images of brain are registered to Montreal 

Neurological Institute (MNI) T1 template (FLIRT). 

[29] The CAT12 toolbox is emphasized since it is widely used for structural brain MRI 

preprocessing and provides features including image smoothing, spatial normalization, and 

skull stripping. The additional preprocessing tools include SPM (Statistical Parametric 

Mapping), ANTs (Advanced Normalization Tools), FSL (FMRIB Software Library) for the 

examination of brain extraction metrics in 3D-CNN, and DPABI [25,30], [21,28]. Brain 

extraction, white matter and gray matter segmentation, cerebrospinal fluid extraction, skull 

stripping, and normalization are among the preprocessing procedures. While some studies list 

the tools used specifically, others just describe typical tools without going into depth.   

Research emphasize the need of quality control and standardization in preprocessing, such as 

t-distributed stochastic neighbor embedding (tSNE) algorithms, manual inspection, and 

harmonization to guarantee data consistency and reduce biases [15] . Preprocessing methods 

and tools are generally chosen based on particular research goals, data properties, and the 

requirement for uniform and standardized processing throughout various studies. 

 

5. Feature Extraction 

Feature extraction is crucial for several of reasons in the AD detection. Identifying or 

converting features that capture important brain structure or function characteristics associated 

with AD, it helps to minimize the dimension of the data of complicated brain images, such as 

Neuroimaging or PET scans which in turn improves data representation and computing 

performance. Feature extraction enhances classification performance by giving machine 

learning algorithms access to more pertinent data. This leads to improved differentiation 

between various cognitive states and higher model preciseness, specificity, and sensitivity. 

Furthermore, these methods frequently find underlying patterns or biomarkers linked to the 

pathology of AD, providing insights into the disease's causes, pinpointing intervention targets, 

and assisting in the creation of individualized treatment plans. All things considered, feature 

extraction improves classification, helps with early detection and prognosis, finds pertinent 

biomarkers, streamlines data, improves comprehension of the disease's causes, and extends 

our knowledge of AD. 

5.1 Patch- Based 

Feature extraction from input photos using patch-based techniques, which entails extracting 

features from specific areas of the data. [4] Understanding underlying structures in image 

analysis jobs requires the ability to capture precise information and patterns existing in specific 

sections of the pictures, which is made possible by this technique. [3, 11, 5, 7] The usage of 

architectures or techniques that operate on patches of image data, such as InceptionV3, 

PartialNet, and pre-trained CNN architectures. [11, 16, 18] are likewise classified as patch-

based; they discuss the usage of architectures such as VGG16, InceptionV3, ResNet, and 

DEMNET. In [20, 29] features are extracted from brain MRI data using a DenseNet model. 

DenseNet is suited for patch-based feature extraction, particularly in situations where local 

spatial information is crucial, because of its dense connection structure, which enables features 

to spread across the network. 



                                     Exploring Alzheimer’s Disease: A Comprehensive… Hemavathi. U et al. 484  
 

Nanotechnology Perceptions Vol. 20 No. S8 (2024) 

5.2 Voxel- Based 

In neuroimaging, voxel-based methods take each voxel as a data point and extract 

characteristics directly from the data's voxel intensities. They also capture the spatial 

distribution of voxel values in brain pictures. This technique works especially well for 

deciphering 3D volumetric data, such as MRI or fMRI images, because the spatial arrangement 

of voxels provides important details on the composition and operations of the brain. [8, 10] 

focus on directly extracting features from the voxel intensities of the neuroimaging data, they 

are classified as voxel-based approaches because they use techniques that function either 

explicitly or implicitly at the voxel level. [30] Covers voxel-based features and other feature 

extraction.  

5.3 Slice – Based 

With slice-based methods, specific characteristics from individual thin strips of brain images, 

such MRI scans, are extracted to provide comprehensive details on the patterns and 

architecture of the brain in each slice. This approach is useful for situations where knowledge 

from particular slices is relevant to comprehending the fundamental properties of the data since 

it evaluates features at the slice level. [6] Incorporates feature extraction and pre-processes 2D 

MRI images, concentrating on intra- and inter-slice information. [23] Also uses wavelet 

transform fusion and ResNet-50; the first fusion stage probably includes processing whole 

image data slices, suggesting a slice-based method. In addition to voxel-based features, Slice-

based characteristics [30] which enables in-depth examination of brain patterns and structures 

associated with Alzheimer's disease. [31] Uses the entropy image slicing approach, which falls 

within the slice-based category and focuses on extracting features from individual MRI data 

slices according to their information content. 

5.4 ROI - Based 

In order to precisely characterize various classes or circumstances, ROI-based techniques 

include extracting characteristics from preset areas of interest in neuroimaging data, such as 

certain brain regions. By focusing on specific brain areas that are known to be impacted by 

Alzheimer's disease, these techniques make it possible to extract distinguishing characteristics 

for accurate disease categorization. In addition to voxel- and slice-based characteristics, [30] 

addresses ROI-based features, providing insights into brain areas associated to the pathways 

of Alzheimer's disease. Furthermore, [13,14] specifically discuss the use of methods such as 

radiomic analysis and Freesurfer to extract features from segmented brain regions or particular 

areas of interest in MRI images, improving our knowledge of alterations associated with 

Alzheimer's disease in these regions. 

 

6. Deep Learning Techniques 

Deep learning is a sub-set of machine learning has become increasingly popular, especially 

with the addition of Convolutional Neural Networks (CNNs), which are quite good at 

retrieving characteristic features from input data. CNNs impressive performance in detecting, 

classifying, and segmenting pictures has given rise to its proposal in a variety of fields, which 

includes medical imaging. Convolutional, pooling, activation, and fully connected layers 

render up a common CNN architecture, which eventually results in a SoftMax activation 
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function for probability based classification. In extracting features, the convolutional layer 

utilizes filters with shared weights, and padding diminishes information loss at image borders. 

Max- pooling and average pooling are typical tasks in pooling layers, which reduce dimension 

of the data and optimize training efficiency. The non-linearity which activation layers 

introduce is vital for improving the network's reasoning capacity; common functions are 

ReLU, Sigmoid, and Tanh. Finally, for accurate label prediction, fully connected layers make 

use of the information extracted. All things considered, CNNs are an efficient approach for 

feature extraction and classification applications, especially in the study of medical images. 

Using pre-trained convolutional layers from a model obtained on a large dataset, transfer 

learning with CNN involves extracting attributes from input images. The complete model is 

then fine-tuned on the objective dataset when further layers are added or modified for the 

particular task. This method is very helpful in areas with little labelled data, such medical 

image analysis, as it expedites training and enhances generalization. 

 

Fig. 6. Deep Learning Techniques 

CNN: [1] Introduces a shallow CNN architecture with transfer learning and hybrid 

classification techniques, aiming for accurate AD diagnosis and staging from brain MRI 

images. [11] Explores transfer learning by adapting pre-trained 2D CNN models to the AD 

classification task, highlighting reduced training time and improved performance. The 

utilization of deep learning techniques, including CNNs and deep neural networks, along with 

image pre-processing and hybrid approaches to enhance AD detection and classification 

accuracy while mitigating overfitting challenges [12]. Fusion model combining CNN 

processing of MRI scans with traditional machine learning classifiers to improve dementia 

assessment and AD diagnosis accuracy, leveraging both imaging and non-imaging data [15]. 

[16] Introduces a Siamese CNN architecture for 4-way AD classification, utilizing both pre-

trained and non-pretrained CNNs to address data scarcity issues. [25] Focuses on 3D CNNs 

for automatic brain segmentation and classification to differentiate AD dementia from mild 

cognitive impairment and normal cognition. [26] Employs CNNs for high-accuracy early 

detection and prediction of AD using MRI images. [29] Introduces a novel approach 

combining CNNs with Ensemble Learning for accurate classification of subjects with MCI or 

AD, aiming to distinguish between different cognitive states. 
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Fig. 7. CNN Architecture 

[2] Introduces a Hybridized Deep Learning Approach to detect Alzheimer's Disease using MRI 

data which enhances the neural network performance through simultaneous channel usage, 

Ant-Colony Optimization for pre-processing, and Modified Fuzzy C-means for clustering. The 

goal is to enhance AD detection by extracting common characteristics across multiple MRI 

slices. [8] Presents a Neuro-Dynamic Functional Network for the detection of Alzheimer's 

Disease using rs-fMRI images. It employs customized deep learning models to leverage 

higher-order functional connections throughout the frequency bands in the brain. The approach 

includes an ensemble process and utilizes the Inception V2 architecture to improve AD and 

MCI detection accuracy. [24] Aims on analyzing voice data for Alzheimer's disease detection 

in various health situations. It utilizes techniques such as Deep Neural Networks (DNNs), pre-

trained models like BERT, Machine Learning Classifiers, Data Augmentation, and fine-tuning 

pre-trained models on dementia-related databases. [32] Aims to improve deep ensemble 

learning based classification. It employs Sparse Autoencoder (SAE), Base Classifiers, Deep 

Belief Network (DBN), Neural Networks (NNs), and Ensemble of Probabilistic Predictions. 

[23] Proposes a unique approach to diagnose the Alzheimer's disease earlier by integrating 

PET and MRI scans. It uses multimodality fusion based on wavelet transform for 

comprehensive data analysis, ResNet-50 for feature extraction, and a Random Vector 

Functional Link (RVFL) classifier for classification. An evolutionary algorithm optimizes the 

process, leveraging complementary information from both modalities to enhance diagnostic 

accuracy and effectiveness. [31] Proposes an approach for early Alzheimer's Disease diagnosis 

using structural MRI data, employing techniques such as Entropy Image Slicing, Transfer 

Learning with VGG-16, and a Three-Way Classification Model. [27] Focuses on early 

detection and classification of Alzheimer's disease stages through an end-to-end framework 

incorporating simple CNN architectures, VGG19 transfer learning, and data augmentation.  

[7] Presents an ensemble of CNN models, notably featuring the MobileNet model, for 

Alzheimer's disease diagnosis and progression prediction by combining neuroimaging data 

with clinical evaluations. [3] Introduces a multimodal diagnosis method for Alzheimer's 

Disease using 3DShuffleNet, PCANet fusion, and SVM classification, enhancing accuracy 

with both structural and functional MRI data. [5] Leverages a multi-resolution ensemble 

PartialNet architecture for Alzheimer's Disease detection, emphasizing feature reuse and 

ensemble learning for improved performance. [10] Develops a modified 3D EfficientNet and 

CNN-based classifier for Alzheimer's Disease and high-risk MCI detection, achieving high 
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accuracies with architecture selection using the AutoML NAS framework. 

[6] Presents Biceph-Net, a simple framework for Alzheimer's disease diagnosis using 2D MRI 

scans. It employs both intra-slice and inter-slice information using the deep similarity learning 

techniques and the Biceph-module. In order to achieve high classification accuracy and 

computational efficiency, the technique focuses on feature embedding and similarity learning 

to ensure accurate AD diagnosis. [4] Presents AlzheimerNet, a deep learning network which 

utilizes brain MRI images to classify AD stages. It also enhances hyperparameters through the 

use of an ablation study and fine-tunes the InceptionV3 architecture. The model's 98.67% 

classification accuracy for AD shows how well deep learning works for AD diagnosis. 

Table 1. Deep Learning Architectures for the diagnosis of Alzheimer's Disease 

Reference 
Input 

Modality 

Type of Input 

Data 
Architecture Methodology Strengths Limitations 

1, 4, 26 MRI 

T1-

Weighted/T2-

Weighted MRI 

CNN 

Varied 

(Preprocessing, 

Data Augmentation, 

Fine-tuning) 

Non-invasive, 

Early Diagnosis, 

High Accuracy 

Validation on 

specific dataset, 

Needs further 

testing 

2, 23, 30 MRI+PET 

T1-Weighted 

MRI & PET 

Scans 

CNN+LSTM, 

Wavelet 

transform, 

ResNet-50, 

RVFL 

Varied (ACO 

noise reduction, 

MCFM 

segmentation, 

Wavelet fusion) 

Improved 

accuracy with 

multi-modal data 

Limited by data 

size, ROI-based 

limitations, data 

fusion challenges 

3 Multimodal 

Gray matter 

(sMRI), PCA 

kernels (fMRI) 

3DShuffleNet, 

PCANet, SVM 

Preprocessing, 

Fusion (KCCA), 

Classification 

(SVM) 

Comprehensive 

feature fusion, 

lightweight 

networks 

Performance 

variability, Dataset 

size limitation 

5, 7 MRI 

T1-

Weighted/T2-

Weighted MRI 

PartialNet, 

CNN+MobileN

et 

Cascaded multi-

resolution ensemble, 

Data augmentation 

State-of-the-art 

performance, 

efficient feature 

extraction 

Interpretability 

issues, limited to 

single dataset 

6, 31 sMRI T1 MR Images 

Biceph-Net 

(VGG-16), 

VGG-16 

(Transfer 

Learning) 

Deep similarity 

learning, Entropy 

slicing 

High accuracy, 

computational 

efficiency 

Lack of 

preprocessing 

details, limited 

dataset comparison 

8 rs-fMRI 
T1, dual-echo 

T2 
InceptionV2 

Resting-state fMRI 

analysis 

Novel approach, 

promising results 

Small sample size, 

single modality 

limitation 

9 Multimodal 
T1, 18F-FDG-

PET 

Fusion (DWT, 

VGG16, ViT) 
Pixel-level fusion 

Comprehensive 

data integration, 

high accuracy 

Limited dataset, 

fusion optimization 

10 MRI 
T1-Weighted 

MR 

3D EfficientNet 

(MBConv) 

Modified 

EfficientNet 

Competitive 

classification 

results 

Sample size 

limitation 

13 Multimodal 

Subcortical 

and Cortical 

Regions 

Freesurfer + 

Machine 

Learning + 

Multimodal 

Fusion 

Feature extraction, 

Multimodal Fusion 

Framework 

Captures 

Intra/Inter-

Relations, 

Improved 

Accuracy 

Freesurfer 

preprocessing 

details missing 

14 

CSF 

Biomarkers 

& MRI 

T1-weighted 

MRI 

ApV Biomarker 

Derived from 

LASSO 

Train model to 

compute biomarker 
Highly Accurate 

Requires further 

validation 
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15 Multimodal 
Demographics, 

MRI, fMRI 

Deep learning 

framework 

(PyTorch) 

Analysing MRI with 

CNN, others with 

traditional 

classifiers 

High accuracy, 

competitive with 

specialists 

Needs further 

development for 

specific dementia 

types 

16 MRI 
T1-Weighted 

MRI 
Siamese CNN Triplet-loss function 

Robust feature 

learning, efficient 

with limited 

samples 

Limited 

performance due to 

training sample size 

20 MRI Hippocampus CNN+VGG16 Feature extraction High accuracy 
Class imbalance in 

data 

21 DTI Not specified 

Encoder, WCU 

(Wavelet 

Convolution 

Unit), Decoder, 

FC layers, 

Softmax 

activation 

Network uses WCU 

for feature 

extraction 

Improved 

classification 

performance 

Lacks discussion on 

computational 

efficiency and 

scalability 

27 MRI 

2D/3D T1w 

structural brain 

MRI 

CNN+VGG19 

Resampled 

imbalanced data, 

data normalization, 

feature extraction 

High accuracy 
Sample size 

limitation 

32 MRI Not specified 

Deep Ensemble 

Learning 

(DBN, Neural 

Networks) 

Sparse autoencoders 

for feature learning, 

ensemble 

classification 

Improved 

accuracy 

Needs further 

validation on 

diverse cohorts 

[9] Introduces a method for Alzheimer's Disease (AD) detection which combines the Vision 

Transformer (ViT) model with wavelet transform. The ViT model fine-tuned on natural 

images, is adapted for feature extraction from medical data, while the wavelet transform 

reduces noise in MRI and PET images. An MLP classifier is then used for classification. [13] 

Utilizes methods like train-test-split and cross-validation to analyze illness categorization 

frameworks based on MRI and PET data. These methodologies help to assess model 

performance parameters including as accuracy, precision, specificity, recall, F1-score, and 

AUC, as well as prediction stability. 

[14] Introduces the "Alzheimer's Predictive Vector" (ApV), a predictive model on inter 

statistical morpho-functional characeristics from T1-weighted MRI scans which uses a two-

stage LASSO. It is instructed on the ADNI dataset and evaluated on several cohorts to enhance 

the Alzheimer's disease diagnosis accuracy by integrating cognitive scores with CSF-based 

biomarkers. [17] Focuses on the study of EEG signals to identify biomarkers of Alzheimer's 

disease in its initial stages. preprocessing EEG signals with filtering and re-referencing, feature 

extraction using absolute power, relative power, and Hjorth metrics, classifying groups with 

AD, MCI, and healthy controls utilizing LDA and SVM, statistical analysis to find relevant 

EEG features and perform ANCOVA tests, and using EEG features combined with CSF 

biomarkers and APOE measurements to predict and assess the course of the illness. For the 

purpose of early Alzheimer's disease diagnosis and surveillance, it offers an integrated strategy 

that combines statistical analysis, feature extraction, classification algorithms, and EEG signal 

processing.  

[18] Using methodologies for transfer learning, data augmentation, and feature extraction, this 

activity presents a strong deep learning solution for Alzheimer's disease identification. It 
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utilizes CNN models like Inception V4 in conjunction with cutting-edge techniques like 

capsule networks, VBM-DARTL, and GANs to enhance the classification accuracy. Besides 

that, SMOTE and cognitive assessment scores help to improve the overall approach's 

performance.  

[20] Proposes DEMNET “a deep learning model specifically designed for early detection of 

dementia and Alzheimer's disease. In elaborating on DEMNET's design, the study highlights 

the early detection emphasis and its unique ability to identify specific situations at an early 

stage. In [21] a novel deep learning technique for Alzheimer disease diagnosis called WCU-

Net is proposed. To extract cross-modal characteristics from data, WCU-Net blends CNN-

based network topology with single-scale and multi-scale wavelet decomposition. It offers a 

distinct way of data analysis by combining wavelet decomposition with CNNs, which may 

enhance the precision of Alzheimer's disease detection techniques and progress the field by 

fusing deep learning, novel neural network designs, and EEG signal analysis.  

 

7. Classification 

[3] and [12] utilize Support Vector Machine (SVM) classifiers to diagnose Alzheimer's disease 

via the use of SVM's ability to handle high-dimensional data and binary classification 

problems well. Paper [18] focuses on the classifying MRI pictures into three groups: Normal 

Control (NC), Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD). [2] CNNs 

combined with Long Short-Term Memory (LSTM) networks extract features from MRI and 

PET images for early Alzheimer's detection, capturing temporal dependencies. 

 

Fig. 8. Number of stages classified 

CNN-based models like AlzheimerNet, DEMNET [20], SCNN [17], and others classify 

Alzheimer's disease stages using MRI images, with approaches including fine-tuning 

InceptionV3 [4], transfer learning [7], and triplet-loss functions. [5] Deep learning models, 

including 3D CNNs [25], distinguish cognitive states from MRI features, with approaches like 

transfer learning and multi-class support [27] for accurate Alzheimer's disease detection [26]. 

[9] Multilayer Perceptron (MLP) classification technique used with features from the vision 

transformer (ViT) model and wavelet transform for Alzheimer's disease detection. [29] CNN-
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EL approach, combining CNN with Ensemble Learning for accurate classification of MCI or 

AD subjects using MRI data. 

[31] Utilization of the VGG-16 network-based F E ES C T L model for sMRI image 

classification into AD, MCI, and CN categories. [32] Implementation of a deep ensemble 

learning framework for Alzheimer's disease classification, leveraging diverse base classifiers. 

Table 2. Representing classification done in various studies 

Dataset Participants No. of Stages 

References 

used Accuracy 

ADNI 

379 subjects (197 male and 182 

female) with Alzheimer's disease, 

mild cognitive impairment, and 

normal cognition 

3(AD, MCI, NC) 5 98.46% 

ADNI 
total of 153 baseline subjects(AD, 

MCI, and NC) 
3( AD, MCI, NL) 8 98.10% 

ADNI2 
  EMCI - 50 and LMCI - 50 

participants were selected 
3( AD, EMCI, LMCI) 9 

 MRI data: 81.25% 

PET data: 93.75% 

Xiangya 

Health 

Management 

Center, 

890 participants (MCI, AD, FTD, 

VCI, DLB, and HC) 

3(HC, MCI, and 

AD.) 
17 70% 

ADNI 
210 CN subjects, 210 MCI 

subjects, and 210 AD 
3(NC,MCI, AD) 23 96% 

ADNI 

 7635(1290 MRI images of 

ADNI1 Annual 2 Yr 3T and 

ADNI1 Baseline 3T, in nii 

extension format.) 

3(NC,MCI,AD) 26 99% 

ADNI 

1,500 subjects, encompassing 

individuals with AD, MCI, and 

CN classifications 

3(AD, MCI, NC) 31 
93.05%, 86.39%, and 

92.00% 

OASIS 

6400   3200, 64, 896, and 2240 

for ND, MoD, MD, and VMD, 

respectively 

ND, VMD,MD, and MoD 1 99.68% 

OASIS - 3 

 512 MRI images from Kaggle 

and 112 PET images from Munich 

database  

MCI people to stable people 2 98.50% 

ADNI 

34 cases of AD, 18 cases of early 

MCI, 18 cases of late MCI, and 50 

cases of NC 

4(AD, LMCI, EMCI,NC) 3 

 

The accuracy is mentioned 

using Global Brain model 

and Cerebrum model: 

1. For AD versus NC  88.0 

% and  84.0 %. 

2. For AD versus MCI 80.0 

% and 85.0 %. 

3.  MCI versus NC, 68.0 % 

and 76.0 %. 

4.  EMCI versus LMCI, 

90.0 % and 100.0 %. 

ADNI, 

NACC, 

NIFD, 

PPMI, 

AIBL, 

 8916 participants with different 

cognitive statuses, including NC, 

MCI, AD, and dementia 

4(NC, MCI, AD, and non-AD 

dementias) 
15 95% 
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OASIS -3, 

FHS, 

LBDSU 

ADNI 

162 participants: 37 are AD 

patients, 12 are CN, 53 are MCI, 

and 60 are in the EMCI.  

4(CN and EMCI, AD and 

MCI) 
16 

ADNI and OASIS  - 

91.83% and 93.85% 

ADNI 

6400 MR 

Images of four classes with  MID, 

MOD, ND, and VMD. 

4(ND,VMD,MD,MODERAT

E DEMANTED) 
20 95.23% 

ADNI 
902 - 153 AD patients, 167 LMCI, 

363 EMCI, and 219 NC 

4(AD vs. LMCI vs. EMCI and 

NC vs. LMCI vs. EMCI) 
21 95% 

ADNI 

300 patient divided into four 

classes AD, EMCI, LMCI, and  

NC.  

4(NC,EMCI,LMCI,AD) 27 
93.61% and 95.17% for 

2D and 3D 

ADNI 

 1101 participants with 145 

images in the AD class, 204 

images in the EMCI class, 61 

images in the LMCI class, 198 

images in the MCI class, and 493 

images in the NC class. 

5(AD, LMCI, EMCI, MCI, 

CN) 
7 96.22% 

ADNI 579 
5(AD, NC, MCI, pMCI, 

sMCI) 
10 

95.00%, 86.67%, and 

83.33% for NC versus AD, 

NC versus pMCI, and 

sMCI versus pMCI, 

respectively  

 ADNI-

2/ADNI-GO 

183 ADNI subjects (69 in the AD 

group 

and 114 in the CN group), 

5 13 
98.94% from ADNI & 

98.75% from ADNI2/GO 

ADNI 
783 different subjects (NC, MCI, 

and AD.) 

5(HC, stable MCI, progressive 

MCI, MCI, AD) 
14 

HC / AD patients: 93%  

HC /progressive MCI: 

90%  

HC / MCI: 80%  

 stable /progressive MCI 

patients: 79%  

ADNI 
2456 different subjects (NC, MCI, 

EMCI, LMCI, SMC, and AD.) 

6(AD, CN, EMCI, LMCI, 

MCI, 

SMC) 

4 98.68% 

 

8. Conclusion  

Due to the significant increase in the number of diagnosed patients worldwide, Alzheimer's 

disease is a serious chronic issue. It has also one of the major reasons for elder people die from 

neurological impairment. Since it is harder to diagnose this disease in its early stages using 

traditional approaches, the results of computer-based system applications and medical 

healthcare experts are incorporated to detect different stages of AD. In order to successfully 

achieve this goal, deep learning techniques have become more important. We have analyzed 

the state of art in the AD detection over the several years in this report. In the introductory 

part, we covered the symptoms of AD and the numerous factors that is responsible to its 

progression. Additionally, we have compiled the several brain subregions that are primarily 

impacted by Alzheimer's disease. In the next part, a comprehensive analysis of different 

neuroimaging and clinical evidence utilized for diagnosis is presented. Combining several 
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neuroimaging modalities with clinical data has been shown to produce diagnostic results that 

are more accurate. The brain's complicated structure prompts the use of several pre-processing 

methods and techniques for effective neuroimage augmentation and extraction. Additional 

feature extraction techniques and their benefits and drawbacks have been enclosed. Better 

classification is achieved by the exact information it provides concerning the boundaries and 

textures of different brain subregions. In this survey, several Deep Learning models have been 

examined, with CNN being utilized most commonly in conjunction with other methods such 

as mobilenet, transfer learning etc., giving superior accuracies when compared with other 

models. The survey also covered the benefits and drawbacks of each approach. A few tables 

summarizes the AD stage categorization along with their accuracy and a comparative 

assessment of various literatures. The categorization and pervasiveness of various 

methodologies, imaging modalities, and datasets have been showcased using a variety of 

charts and pictures. Research is continuously being conducted to enhance the accuracy of AD 

stage detection and address the problems associated with early diagnosis. Researchers working 

in this field can get assistance from this survey on AD detection. 
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