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To ensure public safety, video surveillance is essential in several areas, such as law enforcement, 

transportation, and critical infrastructure. However, using fuzzy video footage frequently makes it 

difficult to analyse and identify people or things accurately. Consequently, using the data from the 

surveillance footage efficiently is challenging. This problem is addressed by the proposed video 

super-resolution, with a deep fusion network, which uses Recurrent Residual Networks (RRNs) 

with texture details to their full potential to discover the underlying structures and patterns in fuzzy 

and low-resolution video frames. Firstly, it improves the quality of video frames by successfully 

inferring missing high-frequency information by network and creating aesthetically pleasing, super-

resolved high-resolution video frames to identify people, cars, or other exciting items in 

surveillance footage. Secondly, the proposed network makes monitoring busy places or public 

locations easier to make crowds safer for people; with improved visual quality, the surveillance 

systems can better identify and monitor any questionable activity or behaviour. Additionally, the 

experimental results demonstrate that the proposed method has much potential for improving the 

quality of video frames and can effectively and efficiently reconstruct HR video frames for 

surveillance datasets.  

 

Keywords: Video surveillance, video super-resolution, super-resolution, recurrent residual 

network, deep learning. 

 

 

1. Introduction 

Video surveillance systems have become increasingly critical in recent years, especially in 

improving public safety and security measures. These systems are widely used in many 

different places, including public spaces, highways, business buildings, residential 

neighbourhoods, banking institutions, and transportation hubs like airports and train stations 

(Socha & Kogut, 2020; Sreenu & Saleem Durai, 2019). They play vital roles in various fields, 

such as transportation, law enforcement, and infrastructure protection. Through video 

surveillance systems, criminal activity risk can be successfully reduced by quickly identifying 
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potential threats and suspicious activity and closely monitoring it. These systems are helpful 

to law enforcement because they allow them to obtain important information by looking at 

surveillance footage and asking about the presence of questionable people and vehicles (Chin, 

2022). Furthermore, during the investigative stage of criminal investigations, surveillance film 

frequently functions as objective evidence. As a result of developments in science, network 

research, and criminal technology, video surveillance has become a critical component of 

investigative technology, ranking as the fourth most important domain.  

Developing a network that utilises video surveillance for safety aids in preserving national 

security, and social order in the current environment. However, only real-time monitoring and 

manual case analysis using surveillance footage can be done with a traditional video 

surveillance system. It results in a low rate of video surveillance data utilisation. Low-

resolution (LR) video frequently makes it difficult to analyse and identify people or things 

clearly due to the limits of camera technology, which presents significant difficulty for 

surveillance systems. This problem is addressed by Video Super-Resolution (VSR) methods, 

which increase the clarity and detail of surveillance footage, resulting in better situational 

awareness and preventative safety measures. Deep learning (DL) based techniques are used to 

produce high-resolution (HR) frames from LR input (X. Liu, Chen, et al., 2022; X. Liu, Fu, et 

al., 2022). 

The use of VSR in public safety has several benefits. It enhances the quality of video frames 

for the identification of people, cars, or other interesting items in surveillance footage. HR 

videos offer characteristics that are crisper and easier to distinguish, allowing for more precise 

analysis and identification. Investigating crimes, responding to incidents, and taking 

preventative action are all aided by this. Numerous advanced video surveillance systems have 

been made available by large Internet corporations. On the other hand, the area of surveillance 

video limits easy-to-use auxiliary tools due to the expense of software product acquisition, 

operation, and maintenance. Video surveillance systems can intelligently analyse video 

information, identify odd behaviours, and uncover potentially hazardous behaviours with the 

use of artificial intelligence and DL technology (Guo et al., 2020; Zhang et al., 2021). On the 

other side, the existing security video suffers from LR and blurry visual perception due to 

equipment cost, hardware technology, and environmental limitations.  

In summary, there are two issues with the use of surveillance video in the context of public 

security: (1) Using LR video frames is challenging since high-frequency information is easily 

lost while zooming in to examine an object, leading to blurring and difficulty in recognising 

it.  (2) It is frequently necessary for viewers of surveillance footage to manually identify the 

object, which is wasteful and makes it simple to lose the item. 

Traditional VSR algorithms rely mainly on interpolation-based (Parihar et al., 2022)and 

frequency domain-based methods. Complex and varied patterns in video sequences are 

sometimes challenging for traditional VSR algorithms to manage. They might not perform as 

well as they might in diverse scenarios, lighting circumstances, and object movements, 

resulting in artefacts in the super-resolved video frames. Fine-grained features, such as texture 

and sharp edges, may be difficult for traditional VSR algorithms to capture and restore, 

especially when working with heavily compressed or subpar input movies. This restriction 

may lead to output that is fuzzy or less aesthetically pleasing. 
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To address these issues, this work uses the proposed DL-based VSR method to its full potential 

to discover the underlying structures and patterns in LR images. This proposed method can 

successfully infer missing high-frequency information and create aesthetically pleasing, super-

resolved frames by training on the dataset.  

In essence, the primary contributions of this study are: 

1. Proposed a VSR with Deep Fusion Network (VSRDFNet), which uses the recurrent residual 

framework to learn details from the ground-truth HR frame, and increases the performance of 

the model with high-quality visuals. The effectiveness and clarity of video analysis are 

enhanced by using recurrent residual learning. 

2. Additionally, developed a texture details framework from the ground-truth HR frame, and 

fused it with the recurrent residual framework to provide additional information for the Video 

SR process that allows it to achieve high performance and visually pleasing results. 

3. Constructed and optimized an End-to-End deeply fused network for surveillance video 

analysis. This proposed method used surveillance data to produce sharper visuals with 

improved resolution. 

The remaining section of the paper is organised as follows: Related work is summarised in 

Section 2. In addition, Section 3 provides a step-by-step description of the VSRDFNet 

architecture. Section 4 presents the experiment results; an overview of the findings is offered 

in Section 5 to conclude. 

 

2. Related Work 

To produce the matching HR image, the SR approach might use one LR image or a collection 

of LR images (H. Liu et al., 2022; Z. Wang et al., 2021). This technique functions at a low 

level in computer vision and is the basis of algorithms that work at a higher level. SR 

algorithms utilise Deep Convolutional Neural Networks (CNNs) to generate high-quality 

super-resolved images with unique texture features and rich high-frequency information. This 

sets a standard for research methodology. The majority of conventional Video Super-

Resolution (VSR) techniques were surpassed when Kappelar et al.(Kappeler et al., 2016) 

created the VSR neural network (VSRNet). Among other things, VSRNet stands out for using 

a three-layer convolutional neural network, a revolutionary technique in the VSR field. 

VSRNet's architecture is similar to that of SRCNN (Dong et al., 2016), but the main difference 

is how many input frames are processed by VSRNet as opposed to SRCNN's single frame.  

Handling motion within video frames incorporates motion estimation and compensation 

(MEMC) in addition to CNN. Compared to example-based SR techniques, this innovation can 

significantly improve the results of SR reconstruction by backpropagation, resulting in higher 

quality and efficiency. The challenge of building using convolutional neural networks with 

deep layers to enhance the extraction of features and characterisation capabilities is one of 

SRCNN's main drawbacks. ResNet, a residual network, solves this by using shortcut links to 

connect data from input to output (He et al., 2016). The convolutional layer, fundamental to 

building a deep neural network, basically entails understanding the distinctions between input 

and output data. This basic framework depends on maximising high-frequency information 
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essential to SR reconstruction. The learning process is very effective, especially in collecting 

rich high-frequency information, as many of these differences are almost zero. As a result, the 

residual network functions as the base network for VSR techniques, significantly improving 

the effectiveness and calibre of VSR reconstruction. The introduction of the residual network 

into the VSR field and the construction of a VSR network increases the receptive field and 

speeds up convergence (S. Li et al., 2019; Yang et al., 2018; Zhu et al., 2019). According to 

Li et al. (D. Li et al., 2018), a bidirectional recurrent neural network called the residual 

recurrent convolutional network (RRCN) learns a residual frame. The complete recurrent 

convolutional network proposed by RRCN is unsynchronized, that it receives input from 

numerous successive video frames, with only the middle frame being super-resolved. 

Recurrent residual VSR methods reconstruct video frames using a single network, and it is 

substantially faster and of higher quality than VSRNet. Therefore, many researchers prefer 

RRN algorithms to outperform high-quality results. Sajjadi et al. (Sajjadi et al., 2018) 

recommended performing warp and motion estimation procedures between the prior and 

present frames, and then recurrent super-resolving the aligned frame. However, incorrect 

motion estimations run the risk of producing unwanted artefacts and increasing the chance of 

error accumulation. To provide past information in feature space without explicit motion 

estimations, Fouli et al. introduced RLSP (Fuoli et al., 2019). This work method also 

disseminates previous information in the feature space and is related to RLSP. Additionally, 

each hidden state was given three RLSP frames in a row. With additional input frames, the 

hidden state is likely to encounter error accumulation, particularly if there is considerable 

motion between neighbouring frames. To retain the intricate characteristics over layers, 

identity mapping in the hidden state is employed in this work. In contrast to previous 

approaches, this proposed method uses a Recurrent Residual Network (RRN) to recover more 

information with great accuracy. 

. 

3. Video Super-Resolution with Deep Fusion Network 

An overview of the process flow and particular setups for the VSRDFNet approach are 

provided in this section. The system has a deep fusion network, which consists of simultaneous 

frameworks: RRN and texture detailing, that uses implicit motion information to integrate the 

reference and succeeding frames as input.  

3.1 VSRDFNet Network Model 

This work proposed a VSR approach to video surveillance based on a deep fusion network to 

address the issue that public security video surveillance systems lack basic and clever 

administration and analysis techniques. It aids in the tracking, identifying, and analysis of 

video for police as well as other surveillance video analysts. It involves improving the spatial 

resolution of low-quality video frames while reducing artefacts and maintaining significant 

features. By optimizing the proposed VSR algorithm, this work improves the quality of video 

frames, which assists the person in analyzing the video content. To reconstruct the HR video 

frame, this work employed the VSR approach depending upon a deep fusion network. It aids 

in raising the resolution of the LR frames, assisting the person watching the surveillance video 

to carefully examine the important object's features, and raising the standard of the content 
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analysis of the surveillance video.  

In the domain of public security, the proposed approach for surveillance video developed in 

this research can help security professionals monitor and analyse surveillance videos. To 

restore HR video frames from several LR frames, this work uses the VSR approach, which is 

an extension of image SR. However, the differences between video and image SR methods are 

very clear; usually the former makes use of inter-frame data.  

Figure.1. displays the work process of the proposed DL-based VSR architecture, which 

consists of real-time video surveillance footage and significantly changing video frames  and 

the VSR method to reconstruct the HR frames of the important video. So, for that model gather 

several matched LR and HR video sequences to create a huge dataset and ensure that the 

dataset includes various scenarios, motion styles, and content variants. 

To aid in training and enhance model generalisation, preprocess the data by cropping, resizing, 

and enhancing the video frames. This gives HR visuals that can help for monitoring and 

analysis purposes. The approach put forth in this study has the potential to resolve the issues 

with conventional video surveillance, offer viewers of surveillance videos effective support, 

and improve public safety (Ren et al., 2021). 

 

Figure 1. The work process of the proposed VSR method (Ren et al., 2021) 

3.2 Network Model Algorithm 

This architecture is made up of several interconnected modules that are intended to extract and 

combine data from various input sources. To efficiently capture spatial and temporal 

dependencies, this model used convolutional layers, skip connections, recurrent units and 

fusion techniques for optimal efficiency while maintaining computational performance. 

Longer videos can potentially be handled more easily by RNNs due to the smooth information 

flow provided by RRN architecture (Gao et al., 2021; Isobe, Jia, et al., 2020; Isobe, Zhu, et al., 

2020), which also lowers the chance that a gradient may vanish during training. Therefore, 

network model built in this paper consists of four steps: degradation, feature extraction, RRN 

learning and reconstruction. 
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Step 1: Use the degradation process to enhance the centre frame's reconstruction effect by 

utilising the information of nearby LR frames. A factor of k first scales down the HR image 

(IHR) to obtain the LR image (ILR). It is then downsampled to diminish its resolution with 

noise. 

  ILR =  (IHR *  k) ↓s + n                    (1)                                                        

Eq.1. represents the degradation process of a video frame, where ILR stands for LR frame, 

IHR for HR frame, ↓s for downsampling, k for blur, and n for noise.  

The VSR technique typically employs bicubic interpolation to HR frames to enhance its 

quality and downsampling it to reduce the resolution, which results in paired frames (LR, HR) 

for learning the mapping connection. This approach facilitates supervised DL. Eq.2., 

represents the VSR interpolation procedure. 
ILR=bicubic(IHR)↓s                                    (2) 

Step 2: Use the feature extraction module after the video frames are degraded. Using the LR 

frames, this stage involves extracting relevant spatial and temporal data. For every time step t, 

the RRN generates two outputs, ht and ot, for the subsequent time step, t+1, using a series of 

equations.: 

xo = σ(Wconv2D{[It−1,It ,o t−1,h t−1]})               (3) 

xk = g(xk−1) +F(xk−1),                             (4) 

 

Figure 2. Illustration of texture detailing 

where,k ∈ [1, K], ht = σ(Wconv2D{xK}), ot = Wconv2D{xK} Eq.3 uses the ReLU function 

represented by σ(•). The term g(xk−1) denotes an identity mapping in the k-th residual block, 

which means g(x k−1) = x k−1 in Eq.4. The term F(x k−1) learned the residual mapping. 

Due to the HR image's missing details problem, recovering it from its LR counterpart might 

be challenging. 

                           Feat(ILR_R) = xk                            (5) 
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Eq.5 represents feature extraction by the RRN framework. This research work used the texture 

detailing framework, as depicted in Figure 2, to get around this problem. This technique 

separates high-frequency information, such as texture, to improve the quality of the final 

image. By comparing the original image to a blurred version, it is possible to recover the high-

frequency details within an image, such as textures. This technique has been applied to simple 

image processing applications including boundary detection and image quality evaluation. 

The network has two input frames, current and previous, as It and  It-1, respectively shown in 

Eq.6. 

                    Foi  = HDecomp(It, I t-1)                           (6) 

                    Fo1 = Hf (It_C ),      Fo2 = Hf (It-1_C ) 

Where HDecomp (•) denotes the decomposition operation, It_C and It-1_C  denote the decomposed 

inputs.  

Step 3: Through the RRN learning module, mapping among LR and HR features is obtained. 

Instead of feeding a CNN recurrent network a single frame at a time step, the RNN utilised 

video frames with residual learning.  By including information from every frame in their 

hidden states, recurrent networks can handle sequential data. Therefore, the extracted details 

Foi (i = 1, 2) are put forward to Eq.7.  

                FFeat_T = HRRN (Foi)    ( i=1,2 )               (7) 

HRRN (•) denotes the residual RNN feature extraction module, consisting of residual learning 

to extract deep features (Feat). Furthermore, the extracted detail feature FFeat is then upscaled 

via the upsampling module to eliminate the pixelation effect and estimate extra image details. 

                  Feat(ILR_T)=Feat_T                              (8) 

Eq.8 represents feature extraction by texture detail framework. Typically, there are three stages 

in the process. First, we extract the LR features using the layer of convolution (Feature). LR 

to HR nonlinear mapping to be obtained by the residual network (Res). Afterwards, the same 

process is done using texture detail input. Figure 3 shows the framework for RRN with residual 

block presentation, where It-1, It represents the previous and current input frames,ht-1 represents 

the hidden state, and Ot represents the previous output, respectively.  

 

Figure.3. Recurrent residual framework 
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Step 4: Finally, reconstruct HR frames by combining predicted features with the upsampled 

LR frames. Eq.9 represents the fusion of these two framework features. The proposed network 

reconstructs the super-resolved HR video frames by fusing these results and scaling up the LR 

using the upsampling layer (Upsample) as per Eq.10. 

              Feat(ILR) = (Feat(ILR_R) , Feat(ILR_T))       (9) 

                 ISR = Upsample(Res(Feat(ILR)))          (10) 

To deal with observed issues, this work presents a novel technique to improve captured 

characteristics and produce high-quality frames. To achieve high accuracy and thorough 

reconstruction, the proposed network is built to learn the original frame's textural details and 

minute details of the ground-truth HR frame. 

Therefore, DL technology used with the VSR approach may significantly increase the 

accuracy of video content of video surveillance systems. It can rebuild high-quality frames by 

fusing the benefits of the two frameworks in a deep fusion network. 

 

4. Experimental Setup 

4.1 Datasets 

In this experimental investigation, authors trained their models using the publicly available 

Vimeo-90k (Xue et al., 2019) dataset. This dataset contains 90k high-quality video scenes. 

This technique used a dataset with a 64 x 64 patch size and a Gaussian blur with = 1.6. A 4x 

scale factor was used to further execute the downsampling. The proposed method was 

evaluated on the VID4 [34] dataset as well as on the institute campus gate surveillance dataset. 

The quantitative outcomes are compared using peak-signal-noise-ratio (PSNR) and structure 

similarity index metrics (SSIM) (Sara et al., 2019). 

Table 1. Quantitative comparison for 4x VSR 
METHOD 

 

BICUBIC 

 

TOFLOW 

(Xue et al., 

2019) 

FRVSR 

(Sajjadi et 

al., 2018) 

DUF 

(Jo et al., 

2018) 

RBPN 

(Haris et 

al., 2019) 

PFNL 

(Yi et al., 

2019) 

IPRRN 

(S. Wang et 

al., 2023) 

GRRN 

(Ashoori & 

Amini, 2023) 

PROPOSED 

 

PARAM[M] N/A 

 

1.4 

 

5.1 

 

5.8 

 

12.8 

 

9.5 

 

6.1 8.9 3.7 

 

RUNTIME 
[MS] 

N/A 
 

1658 129 1393 3482 295 57 123 46 

VID4 

DATASET 

23.78 / 

0.634 

25.89  / 0.765 26.70 / 

0.812 

27.13 / 

0.826 

27.41 / 

0.838 

27.40 / 

0.838 

28.36 / 

0.858 

27.36 / 0.827 28.47/ 

0.859 

4.2 Implementation Details 

The proposed method consists of residual blocks. Two convolutional layers with ReLU 

activation are placed between each residual block. The convolutional layer has a 3 x 3 filter 

size and 128 channels. The resolution of the LR features is increased to HR using sub-pixel 

convolution in this technique (Ledig et al., 2017).  At the initial step t0, the prior estimation is 

zero. To train models, the learning rate starts at 1 x 10−4  and drops by 0.1 per 60 epochs until 

70 epochs. 

L1 loss function (pixel-wise) with parameters β1 = 0.9, β2 = 0.999, are used. Adam (Cai et al., 

2022) optimizer and a weight decay of 5 x 10−4 are used to train the models. The luminance 
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(Y) channel is used to measure the outcomes, and all pixels within the original frames and the 

network's output have had the L1 loss applied to them. Throughout each experiment, Pytorch 

1.1 and Python 3.6.4 were used. 

4.3 Comparisons with State-of-the-Arts 

This section validates the proposed method with other state-of-the-art VSR methods to 

demonstrate its effectiveness, including Bicubic, TOFLOW(Xue et al., 2019), FRVSR(Sajjadi 

et al., 2018), DUF(Jo et al., 2018), RBPN(Haris et al., 2019), RLSP (Fuoli et al., 2019), 

PFNL(Yi et al., 2019),  IPRRN (S. Wang et al., 2023), GRRN (Ashoori & Amini, 2023). 

● Quantitative comparison:  

Table 1 compares the proposed method quantitatively with state-of-the-art VSR methods with 

and without alignment methods, like CNN and RNN. This work utilized the VID4 dataset (C. 

Liu & Sun, 2014) and institute campus surveillance datasets with a scale factor of ×4. 

Specifically, comparing the recovered results at ×4 scale on the given dataset, the proposed 

method shows an improvement of 0.11 dB, in terms of PSNR.  

Table 2 shows that the performance gets better with an increase in the number of residual 

blocks (RBs). The effects of increasing RB numbers reflect on reconstruction efficiency.  

Table 2. Study on the number of RBs in VSRDFNet on Surveillance dataset 
RB NUMBER PSNR(dB)/SSIM 

5L 26.30/ 0.712 

10L 27.28/ 0.764 

●  Qualitative comparison:  

The qualitative comparison of surveillance data with relevant frames consisting of persons and 

vehicles is further analysed in Figure 4, using different residual blocks, such as 5L and 10L. 

More intriguingly, the performance of the surveillance data is becoming better with the help 

of the proposed strategy. Visualisations demonstrate that residual block with 10L provides 

more precise details. To restore missing details, information from a previously hidden state is 

complementary. The suggested method established recursive architecture without increasing 

parameters to learn important semantic elements and explore further into the network level. 
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Figure 4. Qualitative comparison of surveillance dataset for 4x VSR 

4.4 Model Parameter Size Comparison 

Table 3 compares the proposed and state-of-the-art method's parameters. Among these popular 

methods, the proposed method consists of fewer parameters. Therefore, the proposed method 

produces better results with fewer parameters, resulting in the highest efficiency in terms of 

parameters compared to other methods, demonstrating exceptional performance with less 

computational overload.  

Table 3. Model size and performance with scaling 4x. 
Model TOFLOW 

(Xue et al., 

2019) 
 

FRVSR 

(Sajjadi et 

al., 2018) 
 

DUF 

(Jo et al., 

2018) 
 

RBPN 

(Haris et 

al., 2019) 
 

PFNL 

(Yi et al., 

2019) 
 

IPRRN 

(S. Wang 

et al., 
2023) 

GRRN 

(Ashoori & 

Amini, 2023) 

Proposed 

 

Parameter(M) 1.4 

 

5.1 

 

5.8 

 

12.8 

 

9.5 

 

6.1 8.9 3.7 
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5. Conclusion 

Safeguarding and ensuring public safety is the cornerstone of intelligent and safe cities. 

Throughout investigations, surveillance equipment widely placed in public areas can quickly 

identify suspicious indicators, use surveillance footage to learn more about suspicious vehicles 

and people and provide unbiased evidence for court cases. Traditional systems need help 

achieving effective video surveillance because they rely on human interpretation of indistinct 

video footage. Consequently, this work merges deep learning technology with the video super-

resolution system. It consists of real-time video surveillance footage, significantly changing 

video frames, and the VSR technique for reconstructing the HR frames for the essential video. 

This provides HR visualisations that might be useful for monitoring and analysing data. The 

strategy proposed in this study has the potential to address the problems associated with 

traditional video surveillance, provide appropriate support to those who watch surveillance 

footage, and improve public safety. Firstly, the RRN framework with residual learning focuses 

on learning abundant local features in frames. Then, the texture detailing framework enables 

the network to focus on information detail learning of the original frame, which can be 

supervised by the ground-truth HR frames and obtain satisfying results. Further, the proposed 

network fused these frameworks to focus on surveillance data to recover sufficient sharpness 

and archive high-quality visuals. Besides, this work can be applied to track objects in real-time 

applications for security and detection purposes in the future. However, video frames contain 

misalignment, significant motion, and occlusion, which are hard to handle compared to a 

single frame. Future researchers need to work on these challenges to improve the outcomes 

for real-time video surveillance applications.  
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