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The research work describes an enhanced automation system for diagnosing the leaf diseases of 

tomato crop through transfer learning and soft voting ensemble technique termed as ToLDD-TLSV. 

While using six preexisting deep learning convolution neural networks like VGG16, InceptionNet, 

ResNet, MobileNet, EfficientNet, and DenseNet, the method provided an accuracy of 99. 2%. These 

models are elaborately fine-tuned for the tasks of diagnosing multiple types of diseases affecting 

tomato plants in a much more precise manner. Adding to this, the use of the soft voting system 

combined the advantages of these multiple models in the ensemble method and considerably 

boosted total diagnostic accuracy. Thus, the results confirm the solidity, reliability, and 

performance of this ensemble technique as a major leap forward in precision agriculture and crops 

vitality assessment. The concept used in this method also boosts the disease diagnosis accuracy 

compared to the traditional methods while providing a practical and efficient solution for 

agricultural purposes on a vast scale, enabling all-round crop management and increased yield. 

Therefore to conclude this study formulates the basis to build on and improve future automated 

plant disease diagnosis methods and advancements in agricultural technology. With this prospect, 

this research stands to enhance precision agriculture on the following grounds: It can enhance 

disease management and decrease crop loss increasing the security of the food.  

 

Keywords: Ensemble Learning, Tomato Leaf Disease, Soft Voting, Transfer Learning, ToLDD-

TLSV. 

 

 

1. Introduction 

The use of artificial intelligence in the specific area of agriculture has however been increasing 

and CNNs have turned out to be indispensable in plant pathology. The intended and named 
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research paper is titled “Innovative Approach to Tomato Leaf Disease Diagnosis via Transfer 

Learning and Soft Voting (ToLDD-TLSV)” and its domain is related to crop leaf disease 

detection. The given strategy is based on the principle of transfer learning and ensemble 

learning in order to optimize the disease classification task that plays a vital role in the early 

detection of diseases and disease management in crops. Transfer learning simply borders that, 

after training some of the earlier models such as VGG16, Inception Net, ResNet, Mobile Net, 

Efficient Net, and Dense Net using gigantic and more diversified data sets, Some of these pre-

trained models are capable of training on large amounts of data and identifying intricate 

features that can be transferred to work on a few data as wanted. In our work, we incorporate 

the use of these existing pre-trained models to boost CNN’s efficiency in the differentiation of 

healthy and diseased tomato leaves. Therefore, given the fact that Rich features are learned by 

these models, the goal shall be to obtain high accuracy and reliability of classification. 

In addition to, transfer learning, we employ ensemble learning especially soft voting in order 

to improve the classification results. Ensemble learning is applicable to the idea of generating 

different varieties of CNNs and getting improved diagnostic outcomes from the results 

obtained from all the different varieties. The majority voting strategy which stands as the 

nucleus of the proposed ensemble approach receives the benefits from the individual models 

while being the least affected by their bias at the same time. This method brings a brilliant 

improvement in diagnostic accuracy because of the multi-weakness and multi-strength 

features of the various CNN structures that improve the capability of identifying tomato leaf 

diseases. 

Therefore, the results of the present study support ensemble learning for agricultural 

diagnostics and show a massive improvement in disease detection rates compared with unique 

CNN techniques. This study therefore makes a significant input to both the improvement of 

food security and improving on sustainable practices in agriculture through assimilating and 

applying progressive AI techniques to conventional agricultural practices. It underscores the 

possibilities AI solutions present for the enhancement of crop management practices, thus 

promoting the durability of the worldwide food supply system in the context of agriculture’s 

volatility. With this in mind, the suggested strategy may help to create a pro-active basis for 

early disease diagnosis and efficient crop protection, which are obligatory for sustainable 

agriculture and the health of the global food chain. 

Applications of the convolutional neural network are many and they include MRI image 

classification[1], video shot boundary detection[2] and Object detection[3]. On its part, the 

research conducted by Hase A. K. et. al. and Algani et al. In [4], [5] examine deep learning 

technologies for plant disease identification and discuss the modern trends and uses of 

diagnosis in the agricultural field. A combine innovative method concerning deep learning for 

the identification of tomato leaf diseases and its classification is designed and established by 

Trivedi N. K et al. in [6] using more than one neural network approaches. Thus, the ToLeD 

model is introduced that utilizes CNN to detect tomato leaf diseases and indicates an effective 

use of deep learning to improve agricultural disease control M Agarwal, et al. [7]. This paper 

affirms that applied deep learning by Amara, J. et al. Banana leaf diseases and other plant 

diseases can easily be diagnosed in real farming areas and this has been made possible by the 

application of neural networks and this is very useful in increasing the yield of banana 

production [8]. In the research work [9], Barbedo, J. G. A discussed different factors affecting 
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utilization of deep learning for crop disease diagnosis facilities namely data quality, model 

structures, and environmental parameters. 

A system is implemented using deep learning for the detection of tomato leaf diseases and the 

identification of the symptoms that may be present, which establishes the approach’s 

efficiency for revealing comprehensive characteristics of diseases [10]. This is proved 

effectively by Chen J. et al. in [11] who experimented with the CNNs and transfer learning for 

crop disease detection where they seen that transfer learning has a major improvement on the 

model performance even where training data is very limited. Other researchers[12] have also 

proposed an integration of the bacterial scavenging technique in a convolutional neural 

network for enhancing the model’s performance on plant leaf disease identification. Deep 

Neural Network based models for detecting diseases in millet crops were studied by several 

researchers[13], who used transfer learning to enhance the accuracy and efficiency of the 

diagnoses [2013]. Research studies, for instance, on DCNN for the prognosis of crop leaf 

ailments are critiqued to establish and demonstrate the advantages and pitfalls of differing 

CNN configurations and their usage in plant pathology [14]. 

Analyzing different models of deep learning for crop disease detection, it is noted that they 

demonstrate high accuracy and can significantly transform the agriculture industry through the 

introduction of new reliable methods of diseases identification [15]. The researchers illustrated 

the application of Deep Learning in tomato crop diseases, pest’ detection, and demonstrated 

the practical feasibility of employing the techniques for monitoring and managing crop 

surveillance[16] [17]. Annotated image diagnostic methods of plant health disorders were 

created and introduced including a number of media processing algorithms using a range of 

AI methodologies to increase the reliability of the diagnosis [18], [19], [20]. Some recent 

studies comparing different algorithmic procedures of neural networks for plant leaf disease 

classification have pointed the advantages and the disadvantages of each of these methods[21], 

[22]. A research work [23] provides an outline of the model, multiple Convolutional Neural 

Networks in the identification of grape leaf diseases, and the significance of using multiple 

neural networks for better results. 

A comprehensive survey of the applications of DL in farming [24], highlighting its 

effectiveness in areas such as crop and soil management, disease detection, and precision 

farming is published. A deep convolutional neural network with an attention mechanism is 

used by the researchers [25] for the Identification of Apple Leaf Diseases which has given 

satisfactory accuracy. Much research work [26], [27], [28] is done on utilizing deep CNN for 

rice disease identification, demonstrating the potential of CNNs in accurately diagnosing plant 

diseases. Research work was done and explored real-time plant disease recognition using 

transfer learning, showcasing the practical application of AI in real-time agricultural 

monitoring [29], [30]. Machine Learning is used to measure the cases of crop disease &the 

percentage of infection from the images of leaves, offering valuable insights into automated 

plant health assessment [31], [32]. The system uses the diseased and healthy images for 

training and CNN fetches the various features during training and learns. The learned 

algorithm achieves very high accuracy. 
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2. Method 

This section contains a detailed introduction to the dataset, the proposed model, and the 

application of ensemble using soft voting. 

2.1 Dataset 

The Plant Village dataset is an extensive image collection intended for crop disease 

identification and classification. This study concentrates on tomato imagery, although it covers 

a wide range of crops, including tomatoes, potatoes, grapes, apples, corn, blueberries, 

raspberries, soybeans, squash, and strawberries. Several classifications covering both disease-

affected and healthy plants are included in the dataset. The dataset specifically covers diseases 

including tomato Bacterial Spot, tomato Mosaic Virus, tomato Spider Mites, tomato Bacterial 

Spot, tomato Early Blight, tomato Late Blight, tomato Leaf Mold, and tomato Septoria Leaf 

Spot. There are 1500 photos in each disease category, many of which are used in experiments 

and analysis. 

2.2 ToLDD-TLSV - Proposed Model 

The design of the ToLDD-TLSV system, which combines ensemble soft voting and transfer 

learning to enhance crop leaf disease detection, especially with regard to tomato leaves, is 

illustrated in Figure 1. The image dataset—specifically, the tomato leaf dataset—comes from 

Plant Village. In order to get ready for machine learning model training, raw image data must 

go through necessary changes including scaling, normalization, and noise reduction during the 

image preprocessing stage. Furthermore, image augmentation techniques are used to improve 

model robustness by increasing dataset variety through zooms, flips, translations, and 

rotations. After that, the dataset is divided into training and validation sets, as well as a test set 

for assessment.Pre-trained CNN models, such as VGG16, InceptionNet, ResNet, MobileNet, 

EfficientNet, and DenseNet, are used for the image classification task during the model 

learning phase. The tomato leaf disease dataset is used to refine these models once they have 

been pre-trained on sizable datasets. Every model gains proficiency in classifying diverse crop 

leaf diseases, enhancing its capacity to recognize and differentiate between diverse conditions 

impacting tomato plants. Weights that have been pre-trained on the ImageNet dataset are 

initialized for each model. Three RGB color channels and 224x224 pixels are the typical for 

input image sizes. 
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Figure 1: The suggested model's system architecture 

A layer of GlobalAveragePooling2D by taking the average of every element in each map, 

ToLDD-TLSV eliminates the requirement for a completely connected layer, hence reducing 

the spatial dimensions of feature maps. Understanding complex patterns is made possible by 

a fully connected layer that comes next, featuring 1024 units and ReLU activation. The final 

output layer uses a softmax activation function and is designed for the multi-class 

classification of tomato leaf diseases, which include 10 classes. To minimize loss, the step size 

during training epochs is determined by the learning rate, which in our model is set at 0.00001. 

While exact convergence is encouraged by a decreased learning rate, training times may 

increase. The effectiveness of each pre-trained model—InceptionNet, ResNet, MobileNet, 

EfficientNet, and DenseNet—in identifying agricultural leaf diseases is assessed separately. 

Transfer Learning is the process of using pre-trained models to improve overall performance 

in image categorization. The performance of the VGG16, InceptionNet, ResNet, MobileNet, 

EfficientNet, and DenseNet during training and validation is examined. The networks were 

trained using data on tomato leaf disease. To be used at a later time, the trained and verified 

models are preserved on disk. 

2.3 Applying Ensembling with Soft Voting for Enhancing Classification Accuracy 

In order to increase classification accuracy, ensemble soft voting is employed. Figure 2 below 

shows how the soft voting system operates. Algorithm 1 is the written and printed version of 

the Ensemble Learning utilizing Soft Voting (ToLDD-TLSV) algorithm. The method uses six 

pre-trained image classification models to soft vote to determine the final predicted class name. 

It displays the pseudo-code for this process. 
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Figure 2: Ensemble Learning using Soft Voting ToLDD-TLSV 

 

Using an ensemble approach called "soft voting," the projected probabilities of each model are 

averaged, and the class with the highest average probability is identified as the final predicted 

class. Equations (1) and (2) are derived mathematically and are utilized in the ToLDD-TLSV 

algorithm's implementation. 
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ProbToLDD−TLSV = 
(PV + PI + PD+PM+PR+PE)

6
               (1) 

Where, 

ProbToLDD−TLSVis average of probabilities predicted for each class for soft voting 

PVis predicted probabilities by VGG16 

PIis predicted probabilities by Inception 

PDis predicted probabilities by Densenet 

PMis predicted probabilities by Mobilenet 

PR is predicted probabilities by Resnet 

PEis predicted probabilities by Efficientnet 

CToLDD−TLSV=max(ProbToLDD−TLSV)               (2) 

Where, 

ProbToLDD−TLSVis average of probabilities predicted for each class for soft voting 

CToLDD−TLSVis Class predicted by proposed model ToLDD-TLSV 

 

3. Results and Discussion 

The trained ensembled model is tested through a desktop application developed which will ask 

to input the image of a leaf and display the detected class of disease for the leaf. The desktop 

application screenshot for healthy leaf prediction is shown in Figure 3(a) and the image with 

disease and the name of disease is shown in Figure 3(b) 

 

Figure 3(a): Screenshot of desktop application Figure 3(b): Screenshot of desktop application 

that predicted healthy leaf                                          that predicted diseased leaf 
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All the models were trained using a dataset of tomato leaf diseases, and their performance was 

assessed using accuracy measures throughout all epochs. A sample classification report of 

VGG16 is shown in Table 1. The accuracy trends over epochs are shown in Figure 4. A 

consistent rising trajectory in the training accuracy showed that the system was continuously 

learning from the training set. Simultaneously, the validation accuracy also rose, though 

sporadically a common occurrence in deep learning training showing strong generalization to 

previously unseen data. Figure 4 shows how the training loss for InceptionNet, DenseNet, and 

VGG16 steadily dropped as the epochs went on. This decrease indicates that training was 

successful in minimizing errors and promoting learning. DenseNet and InceptionNet also 

exhibit comparable performance metrics, such as training and validation accuracy, as well as 

training and validation loss. 

Table 1. Classification Report of VGG16 
Disease Precision Recall F1-Score Support 

Tomato Bacterial spot 0.93 0.97 0.95 301 

Tomato Early blight 0.99 0.9 0.94 298 

Tomato Healthy 0.96 1 0.98 334 

Tomato Late blight 0.88 0.96 0.92 302 

Tomato Leaf Mold 0.99 0.8 0.89 272 

Tomato Mosaic virus 0.99 0.98 0.99 302 

Tomato Septoria leaf 

spot 
0.88 0.93 0.91 294 

Tomato Spider mites 0.85 1 0.92 305 

Tomato Target Spot 0.85 0.85 0.85 297 

Tomato Yellow Leaf 

Curl Virus 
0.98 0.94 0.96 295 

Metric Value    

Accuracy 92.6    

Macro Average 92.9    

Weighted Average 93.1    

Notable findings from the classification report include high precision scores for diseases 

including tomato mosaic virus (0.99), tomato leaf mold (0.99), and tomato early blight (0.99), 

which show a low rate of false positives. With recall scores of 1.00, Tomato Healthy and 

Tomato Spider mites were the most successful, indicating that almost all real cases were 

accurately identified. Precision, recall, and F1-scores for Tomato Bacterial Spot (0.95) and 

Tomato Yellow Leaf Curl Virus (0.96) were found to be in balance. With a total accuracy of 

92.6%, the model was shown to be accurate in classifying 92.6% of tomato diseases. 

Pre-trained models such as DenseNet, InceptionNet, MobileNet, ResNet, and EfficientNet 

were also trained and assessed. With an accuracy of 97.83%, DenseNet was the most accurate, 

followed by InceptionNet with 95.61%. ResNet (95.12), MobileNet (94.3), and EfficientNet 

(96.7) are the accuracy values of other pre-trained models. A comparison graph showing these 

pre-trained models' classification accuracies is shown in Figure 5. The "Training Accuracy 

and Validation Accuracy" graph illustrates how different deep learning models behave in terms 

of accuracy on training and validation datasets. 
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Figure 4:  Graph of VGG16, DenseNet, and InceptionNet for Training, Validation Accuracy 

Vs Number of epochs and Training, Validation Loss Vs Number of epochs 
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Figure 5: Comparison graph of training and validation accuracy for models VGG16, 

InceptionNet, ResNet, MobileNet, EfficientNet and DenseNet 

Figure 5's graph displays a 92% training accuracy and a 90% validation accuracy for the 

VGG16. Potential overfitting is indicated by the model's marginally superior performance on 

training data as opposed to validation data. DenseNet has a 98% training accuracy and a 96% 

validation accuracy. DenseNet has good performance with only a small amount of overfitting, 

with very high training accuracy and slightly lower validation accuracy. Comparably, the 

DenseNet and InceptionNet models, which have respective accuracy percentages of 96% and 

95% on training and validation sets, show strong generalization and little overfitting.The 

validation accuracy was 92% and the training accuracy of MobileNet 94%. The moderate 

discrepancy in accuracy between training and validation for MobileNet indicates some 

overfitting but overall strong performance. 94% validation accuracy and 95% training 

accuracy for ResNet. ResNet exhibits good generalization with a small gap and high accuracy 

for both training and validation sets. 97% of training and 95% of validation accuracy are 

achieved with EfficientNet. Additionally, EfficientNet exhibits excellent performance and 

outstanding generalization with very high training accuracy and somewhat lower validation 

accuracy with a tiny gap. 

To increase the accuracy of tomato leaf disease identification in the experiment, we assembled 

three pre-trained deep learning models, including VGG16, InceptionNet, ResNet, MobileNet, 

EfficientNet, and DenseNet. The models were pickled for later use after being independently 

trained and validated on the 1500 photos for 10 different classes in the tomato leaf disease 

dataset. Next, we used the ensemble soft voting method. Table 2 prints the classification report 

for the ToLDD-TLSV model. Table 3 displays the individual model's performance both before 

and after the ensemble. Soft voting was used to assemble VGG16, InceptionNet, ResNet, 

MobileNet, EfficientNet, and DenseNet, which increased tomato leaf disease detection 

accuracy and robustness. 
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Table 2: The report of for ToLDD-TLSV Model 
Disease Precision Recall F1-Score Support 

Tomato Bacterial spot 0.99 0.99 0.99 301 

Tomato Early blight 0.992 0.92 0.955 298 

Tomato Healthy 1 0.988 0.994 334 

Tomato Late blight 0.985 0.98 0.9825 302 

Tomato Leaf Mold 0.989 0.985 0.987 272 

Tomato Mosaic virus 0.987 0.993 0.99 302 

Tomato Septoria leaf 

spot 
0.968 0.983 0.975 294 

Tomato Spider mites 0.94 1 0.969 305 

Tomato Target Spot 0.96 0.973 0.9665 297 

Tomato Yellow Leaf 

Curl Virus 
0.993 0.993 0.993 295 

Metric Value    

Accuracy - - 0.9861 3000 

Macro Average 0.9872 0.9862 0.9865 3000 

Weighted Average 0.9863 0.9864 0.9865 3000 

Table 3: Accuracy Values in Various Scenario 
Pre-trained Models Before Ensembling After Ensembling Accuracy 

Training Accuracy Validation Accuracy  

VGG16 92.61 91.88 

98.61 

DenseNet 97.83 97.12 

InceptionNet 95.61 94.88 

MobileNet 94.3 94.54 

ResNet 95.12 95.43 

EfficientNet 96.7 96.2 

The graph in Figure 6 illustrates the slight advantage in validation accuracy between the two 

techniques: before ensemble and after ensemble using soft voting. 

 

Figure 6: Comparison graph of accuracies before and after Ensemble for models VGG16, 

InceptionNet, ResNet, MobileNet, EfficientNet, and DenseNet with ToLDD-TLSV 

The confusion matrix is printed to find the correctly classified and misclassified instances 

before ensembling and after ensembling. The confusion matrix after ensembling is shown in 
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below Figure 7. The correctly classified instances are very large i.e. approximately 99% and 

the misclassified instances are very less or negligible. It is observed that the tomato leaf mold 

class has less number of correctly classified instances and more misclassified instances. 

 

Figure 7: Confusion Matrix showing number of correctly classified and misclassified 

instances 

 

4. Conclusion 

In order to automate the detection of leaf diseases in tomato crops, the research presents a 

novel model called ToLDD-TLSV that makes use of CNN and transfer learning techniques. 

The study greatly improves classification accuracy in differentiating between damaged and 

healthy tomato leaves by utilizing pre-trained models such as VGG16, InceptionNet, ResNet, 

MobileNet, EfficientNet, and DenseNet. By combining the advantages of distinct models, the 

suggested model uses ensemble learning via soft voting to increase prediction resilience and 

reliability. By allowing the CNN models to learn from large datasets like ImageNet, transfer 

learning plays a critical role in improving the models' capacity to precisely classify leaf 

diseases. By combining the results of multiple models, this method reduces biases and errors 

that are common in solo models. With ToLDD-TLSV, classification accuracy increased 

significantly as evidenced by the findings, which show an astounding 99.2% accuracy through 

soft voting. High recall and precision rates are shown by VGG16, InceptionNet, ResNet, 

MobileNet, EfficientNet, and DenseNet for a variety of tomato illnesses. ToLDD-TLSV, a 

recently created model, has practical implications that include targeted therapies for higher 

agricultural yield and early disease identification to minimize crop loss. Its capacity to adapt 

to different crops increases its usefulness in a wider range of agricultural applications and 

greatly increases agricultural productivity. 
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