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In this scenario, we consider a compact Hausdorff space X and an unceasing map f : X → X. We 

examine the space K(X), comprising all compact subsets of X with the Hausdorff metric H. A 

mapping ϕ : K(X) → K(X)) is defined as ϕ(K) = f(K). We explore the relationship between the orbit 

of ϕ and the orbit of f. Assuming the transitivity of ϕ, we demonstrate the connection between these 

orbits, shedding light on the dynamics of the system under consideration. We show that X contains 

a cantor set C with orb(ϕ,C) is dense in K(X). Also we discuss some interesting properties of this 

Cantor set in K(X).  
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1. Introduction 

In mathematical analysis, particularly in the research of dynamical systems, understanding the 

behavior of a hyperspace within a compact metric space is crucial. Researchers typically 

investigate this by examining a dynamical system characterized by a continuous map. 

f: X → X, where X represents the compact metric space. This map f describes how points in 

X evolve under certain transformations or iterations. Additionally, researchers consider the 

induced map ϕ: K(X) →K(X), where K represents compact subsets of X. This induced map ϕ 

describes how compact sets within the hyperspace K(X) evolve under the action of f. By 

analyzing the behavior of these maps, researchers gain insights into the intricate dynamics and 

geometric properties of the hyperspace within the compact metric space. 

In this article, researchers demonstrate a unique phenomenon where a Cantor set C exists 

within a space X, which is nowhere dense in X but has an orbit that is dense in space K(X). 

This suggests a surprising lack of correlation between individual and collective confusion. The 

properties of this Cantor are set within K(X). are also examined, shedding light on the intricate 
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dynamics of confusion within different contexts. This discovery challenges traditional 

perceptions of confusion, revealing its intricate dynamics at both individual and collective 

levels. It sheds light on the nuanced relationship between chaos and order within systems, 

highlighting their interplay. This insight suggests that confusion is not merely disorderly but 

rather an integral part of organizational functioning, influencing how individuals and groups 

navigate complexities and maintain equilibrium. 

 

2. Main results 

1 Hyperspace and Induced Map 

In this mathematical context, X denotes a compact Hausdorff metric space devoid of 

inaccessible points, characterized by a metric function d. The function f maps points from X 

to X continuously. Here, H represents the Hausdorff metric on K(X), the collection of all 

compact subsets of X, determined by the metric d. The function ϕ operates on compact subsets 

of X, denoted as K, and assigns them to their images under the mapping f. Essentially, ϕ(K) = 

f(K) transforms each compact subset K of X into its corresponding image under the continuous 

mapping f. This framework refers to the study of dynamical systems and chaos theory, 

focusing on the behavior of trajectories subjected to continuous mappings on compact spaces. 

It allows for the analysis of how these trajectories evolve over time, offering valuable insights 

into the long-term behavior and stability of complex systems. By examining how systems 

change and interact within defined boundaries, researchers can better understand the intricate 

dynamics and potential for chaos within these systems. This approach provides a foundation 

for predicting and interpreting the behavior of dynamic systems across various disciplines, 

from physics and biology to economics and engineering. 

Definition 2.1. The ω-limit of a point x below a dynamical system f is the collection of all limit 

points of the orbit generated by repeatedly applying f to x. It represents the long-term behavior 

of the system starting from x and is denoted as ω(x, f). 

Definition 2.2. A subset S of set X is invariant under function f if every element of S, when 

operated on by f, remains within S. If f(S) equals S, S is strongly invariant under f, implying 

that every element of S is mapped back to itself by f. 

Definition 2.3. If A = {Aµ}µ∈ℸ is a collection of non-empty subsections of X, then mesh(A ) = 

sup{diam(Aµ),µ ∈ ℸ}. 

In [2] it is proved that (K(X),H) is compact. In [4] it is proved that ω(x, f) is closed. We state 

these results as lemmas. 

Lemma 2.4. (K(X),H) is compact. 

Proof. 

see[2] 

Lemma 2.5. In a compact space X, for every point x, the accumulation points of the orbit of x 

under a map f are guaranteed to exist, forming a non-empty set that is closed within X. 

Furthermore, this set remains invariant under the action of f, implying that as the map f iterates 



1269 Amalraj P et al. Some Properties of the Cantor Set...                                                                                              
 

Nanotechnology Perceptions Vol. 20 No. S8 (2024) 

over the space X, the set of accumulation points remains consistent and unaltered. This 

property highlights the stability and predictability of the behavior of orbits under continuous 

maps within compact spaces, a fundamental concept in dynamical systems theory. 

Proof. 

see[4] 

Lemma 2.6  

If   orb(ϕ, K) = X then for individually A ∈ orb(ϕ,K) and for all x ∈ A, orb(f, x) = X 

Proof. 

Let n ∈ N and x ∈ fn(K) . 

We have to demonstrate that orb(f, x) = X. 

Take y ∈ X and ϵ > 0. Since orb(ϕ, K) = X we have orb(ϕ, f n(K)) = K(X) 

Let {y} ∈ orb(ϕ, f n(K)), then there exist j ∈ N such that H (f j(f n(K), {y})) < ϵ. 

Hence f j(x) ∈ f j(f n(K)) ⊆ Bϵ(y) 

So Bϵ(y) ∩, orb(f, x) ≠ ∅ 

There fore , orb(f, x) = X. 

For any natural number n and x in the nth iterate of the compact set K, we aim to show that 

the orbit of f containing x equals the entire space X. Consider y in X and any positive ε. Since 

the orbit closure of ϕ over K equals K(X), it follows that the orbit closure of ϕ over the nth 

iterate of K equals K(X). Therefore, orb(f, x)  is dense in X. 

Theorem 2.7. If ϕ is transitive, then f is transitive. 

Lemma 2.8. If X is weekly mixing, then any power X × X × ··· × X is ergodic. 

Proof. 

see[1] 

Theorem 2.9. Let ϕ : K(X) → K(X) be transitive. Then there exist a cantor set C ⊆ X such that  

orb(ϕ, C) = K(X). 

Proof. 

Let δ₀ represent the diameter of the set X. For every positive integer n, we define a series of 

finite open covers of X, denoted by Vñ = {Vn,1, Vn,2, … . , Vn,tn
} where each Vn,i is a nonempty 

subset. These covers are constructed such that the size of each cover is smaller than δₙ. In 

essence, this arrangement ensures that each element of the set X is contained within at least 

one open set in the cover, and as n increases, the covers become increasingly finer, converging 

towards the set's diameter. 

Step 1 
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-------- 

Let us assume W0 and W1 to be two non-empty disjoint open sets in X and mesh({W0∩W1} < 

δ1. Let λ1 = {1,2, … . , t1} × {1,2, … . , t1} = {(a, b)|a, b ∈ {1,2, … . , t1}}. 

Let us take into consideration the following  t1
2+1 collection of open sets 

(W0,W1) and {(V1,a,V1,b) : (a,b) ∈ λ1} 

Then, by Lemma 1.4 [see 1], two closed subsets of X, C0 and C1, having the following 

characteristics, exist: 

• Each int(Ci) is nonempty and which is contained in Wi for i = 0,1. 

Hence C0 and C1 are disjoint. 

• for each A ∈ ⟨C0,C1⟩ = {𝑩 ∈ 𝑲(𝑿): 𝑩 ⊂ (𝑪𝟎 ∪ 𝑪𝟏)𝒂𝒏𝒅 𝑩 ∩ 𝑪𝒊 ≠ ∅ }and for each (a,b) ∈ 

λ1,there exist n ∈ N such that fn(A) ∈ ⟨U1,a,U1,b⟩. 

•   Also, fn(A ∩ C0) ⊂ U1,a and fn(A ∩ C1) ⊂ U1,b. 

Let ℂ𝟏= ⟨C0,C1⟩. Then diam(ℂ𝟏) < δ1 for each A ∈ ℂ𝟏, orb(ϕ,A) is δ1-close to F2(X),where 

F2(X) = {A ∈ K(X)\|A| ≤ 2}. 

For, given any {p,q} ∈ F2(X), there exist (a,b) ∈ λ1 such that p ∈ U1,a and q ∈ U1,b. 

Since there exist n so that fn(A) ∈ ⟨U1,a,U1,b⟩. We conclude that H({p,q},fn(A)) < δ1 

Step 2 

--------- 

Let W0,0,W1,0,W0,1.W1,1 are 4 non-empty open subsets of X with  

𝑾𝟎,𝟎 ∩ 𝑾𝟏,𝟎 = ∅  and 𝑾𝟎,𝟏 ∩ 𝑾𝟏,𝟏 = ∅   

𝑾𝟎,𝟎 ∪ 𝑾𝟏,𝟎 ⊂ 𝑪𝟎 and 𝑾𝟎,𝟏 ∪ 𝑾𝟏,𝟏 ⊂ 𝑪𝟏 and    𝒎𝒆𝒔𝒉({𝑾𝟎,𝟎, 𝑾𝟏,𝟎, 𝑾𝟎,𝟏, 𝑾𝟏,𝟏 }) < 𝜹𝟐. 

Let λ2 = {1,2,...t2}4 = {(a1,a2,a3,a4)\ai ∈ {1,2,...t2}}. Consider the following t4
2 + 1 collection of 

open sets 

(𝑾𝟎,𝟎, 𝑾𝟏,𝟎, 𝑾𝟎,𝟏, 𝑾𝟏,𝟏),{(𝑼𝟐, 𝒂𝟏, 𝑼𝟐, 𝒂𝟐, 𝑼𝟐, 𝒂𝟑, 𝑼𝟐, 𝒂𝟒)}. 

Given four non-empty open subsets of X, 𝑾𝟎,𝟎, 𝑾𝟏,𝟎, 𝑾𝟎,𝟏, 𝒂𝒏𝒅 𝑾𝟏,𝟏, where 𝑾𝟎,𝟎 and 𝑾𝟏,𝟎 

are disjoint, as are 𝑾𝟎,𝟏 and 𝑾𝟏,𝟏. Each pair of subsets is contained within different closed 

sets, 𝑪𝟎and 𝑪𝟏, respectively. The mesh of these subsets is less than δ2. Then, λ2 consists of 

all possible combinations of indices from 1 to t2. A collection of open sets is formed from the 

given subsets and λ2. 

By the same result of Lemma 1.2[see 1] there exist 4 closed sets C0,0, C0,1,C1,0, C1,1 with the 

following properties: 

1. Each int(Ci,j) is nonempty and contained in Wi,j for {i,j} ∈ {0,1} × {0,1} 
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2. For each A ∈ ⟨C0,0,C0,1,C1,0,C1,1⟩ and for each (a1,a2,a3,a4) ∈ λ2 there exist  𝒏 ∈ 𝑵such that 

fn(A) ∈ ⟨U2,a1,U2,a2,U2,a3,U2,a4⟩, subsets of ℂ𝟐 namely ℂ𝟐
𝒊  with 𝒇𝒏(𝑨 ∩ ℂ𝟐

𝒊 ) ⊂ 𝑼𝟐, 𝒂𝒊 for 𝟏 ≤

𝒊 ≤ 𝟒 , where ℂ𝟐  = ⟨𝑪𝟎,𝟎, 𝑪𝟎,𝟏, 𝑪𝟏,𝟎, 𝑪𝟏,𝟏⟩. 

Note that diam(ℂ𝟐) < δ2 and ℂ𝟐⊂ ℂ𝟏 let A ∈ ℂ𝟐 and {p1,p2,p3,p4} ∈ F4(X), then there exist 

(a1,a2,a3,a4) ∈ λ2 such that pi ∈ U2,ai 

Since there exist n so that fn(A) ∈ ⟨U2,a1,U2,a2,U2,a3,U2,a4⟩. 

We conclude that H({p1,a2,a3,a4},fn(A)) < δ2. 

So for every A ∈ℂ𝟐 ,orb(ϕ ,A) is δ2-close to F4(X) . 

Step 3 

------- 

Let's say that ℂ𝒓 has previously been defined and has the following attributes: 

ℂ𝒓  is defined as a collection of closed sets of X, represented as ⟨C0,0,0,...,...,C1,1,...⟩, where each 

closed set is indexed by a binary sequence :{Cj1,j2,...,jr\(j1,j2,...,jr) ∈ {0,1}r}. This indexing 

scheme corresponds to 2r possible combinations, denoting the presence or absence of each 

closed set in ℂ𝒓. Each combination delineates the composition of ℂ𝒓 and its constituent closed 

sets. 

• (𝒋𝟏, 𝒋𝟐, … , 𝒋𝒓) ∈ {𝟎, 𝟏}𝒓 and 𝒊𝒏𝒕(𝑪𝒋𝟏𝒋𝟐….𝒋𝒓
) is non empty,𝑪𝒋𝟏𝒋𝟐….𝒋𝒓

⊂ 𝑪𝒋𝟐….𝒋𝒓
 and 

𝒅𝒊𝒂𝒎(𝑪𝒋𝟏𝒋𝟐….𝒋𝒓
) < 𝜹𝒓 

• diam(ℂ𝒓) is less than δr and ℂ𝒓  contained in ℂ𝒓−𝟏 

• For each pair (𝒋𝟏, 𝒋𝟐, … 𝒋𝒓) ≠ (𝒍𝟏, 𝒍𝟐, … . , 𝒍𝒓) in {0,1}r; 

𝑪𝒋𝟏𝒋𝟐….𝒋𝒓
 and 𝑪𝒍𝟏𝒍𝟐….𝒍𝒓

 are disjoint. 

• For each A ∈ ℂ𝒓 and each (𝒕𝟏, 𝒕𝟐, … , 𝒕𝟐𝒓)in λr = {𝒕𝟏, 𝒕𝟐, … 𝒕𝒓}𝟐𝒓
there exist 𝒏 ∈ 𝑵,𝒇𝒏(𝑨) ∈

〈𝑼𝒓, 𝒕𝟏, 𝑼𝒓, 𝒕𝟐, … . , 𝑼𝒓, 𝒕𝟐𝒓〉, subsets of ℂ𝒓 namely ℂ𝒓
𝒊  with 𝒇𝒏(𝑨 ∩ ℂ𝒓

𝒊 ) ⊂ 𝑼𝒓, 𝒕𝒊, for 𝟏 ≤ 𝒊 ≤

𝟐𝒓. 

Then for if 𝑨 ∈ ℂ𝒓, then 𝒐𝒓𝒃(𝝓, 𝑨) is 𝜹𝒓 close to 𝑭𝟐𝒓(X).  

Similarly, for ℂ𝒓+𝟏. 

Step 4 

------- 

So we get a declining order of compact subsets of 𝑿, {ℂ𝒓}𝟏
∞

 

Let {𝑪𝒍𝟏𝒍𝟐….𝒍𝒓:(𝒍𝟏, 𝒍𝟐, … , 𝒍𝒓) ∈ {𝟎, 𝟏}𝒓} be the 𝟐𝒓 compact subset of X that define ℂ𝒓 . 

∞ 

Let  𝑪 = ⋂ (∪ {𝑪𝒍𝟏,𝒍𝟐,…𝒍𝒓
, (𝒍𝟏, 𝒍𝟐, … , 𝒍𝒓) ∈ {𝟎, 𝟏}𝒓})∞

𝒓=𝟏  . 

Then C is a cantor set in X . 
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for all 𝒓, 𝑪 ∈ ℂ𝒓, so 𝒐𝒓𝒃(𝝓, 𝑪) = 𝑲(𝑿). 

We establish a descending sequence of compact subsets in X. Let {𝑪𝒍𝟏𝒍𝟐….𝒍𝒓:(𝒍𝟏, 𝒍𝟐, … , 𝒍𝒓) ∈

{𝟎, 𝟏}𝒓} denote the 𝟐𝒓 compact subsets defining ℂ𝒓. By repeating this process infinitely, we 

obtain the Cantor set C in X. For any r and C in ℂ𝒓, it follows that orb(ϕ,C) dense in  K(X). 

This implies that the orbit of ϕ acting on C covers the entirety of X. Therefore, C represents a 

Cantor set that exhausts the space X, providing a comprehensive characterization of its 

structure through the Cantor-like construction. 

Theorem 2.10. Let ϕ : K(X) → K(X) be transitive. Then there exists a cantor set C ⊆ X such 

that 𝒐𝒓𝒃(𝒇, 𝒙) = 𝑿 , for every x ∈ fn(C)  and for all n ∈ N. 

Proof. clear from Theorem 2. 

Theorem 2.11. Let ϕ : K(X) → K(X) be transitive. Then there exist a cantor set C ⊆ X such 

that 𝒐𝒓𝒃(𝒇, 𝒙) = 𝑿 for each x ∈ C 

Proof. clear from lemma 2.6 and theorem 2.9 . 

Theorem 2.12. if orb(ϕ,K) is dense in  K(X), then for each A ∈ K(X) and for each x ∈ K, x is 

not a intermittent point of  f. 

Proof. 

for each x ∈ K, 𝒐𝒓𝒃(𝒇, 𝒙) = 𝑿. ie, each point of K admits dense orbit. Hence the Theorem 

For every point x belonging to set K, the orbit of f at x covers the entire space X, implying that 

the orbit is dense. Therefore, the theorem holds true because it confirms that every point in K 

has a dense orbit under the function f. 

Theorem 2.13. Let ϕ : K(X) → K(X) be transitive. The there exist a Cantor set C ⊆ X such 

that for each x ∈ C, x is not a periodic point of f. 

Proof. Clear from Theorem 2.11 and 2.12 . 

Theorem 2.14. Let X be a continum, k ∈ X and A1,A2,...,Ak ∈ K(X). Given j ∈ {1,2,3,...,k},let 

Λj = {A ∈ K(X) : Aj ⊆ A} and Λ = A1 ∪A2 ∪ ··· ∪ Ak. Then Λ is not solid in K(X). 

Proof. 

see[3] 

Theorem 2.15. Let X be a continum. Assume that ϕ : K(X) → K(X) be transitive. Let C be the 

Cantor set in K(X) with orb(ϕ,C) is dense in K(X). Then for every m ∈ N ∪ {0}, the set fm(C) 

has an empty interior in X . 

Proof. 

The proof is grounded on the process of contradiction. So assume that there exists an s in N 

such that intX(fs(C)) is nonempty. 

Now take V = fs(C). 
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Note that orb(ϕ,C)  is dense in K(X). 

Let 𝑥 ∈ 𝑖𝑛𝑡𝑋(𝑉) and let 𝜖 > 0 such that 𝐵𝑋(𝑥, 𝜖) ⊆ 𝑉. 

Since {x} ∈𝑜𝑟𝑏(𝜙, 𝐶) = 𝐾(𝑋)., we can find r ∈ N such that H(fr(V ),{x}) < ϵ. 

Then fr(V ) ⊆ BX(x,ϵ) ⊆ V . 

So we have fr(V ) ⊆ V 

=⇒ fr(n+1)(V ) ⊆ frn(V ), for each n ∈ N . 

Hence {frn(V )}n is declining order in K(X) so it converges to W =⋂ 𝑓𝑟𝑛(𝑉)∞
𝑟=1  

This implies that ω(ϕr,V ) = {W} and since ω(ϕr,V ) is strongly invariant under ϕr . 

We have 

{fr(W)} = ϕr(W) = ϕr((ω(V,ϕr)) 

= ω(V,ϕr) = {W} 

That is ,fr(W) = W 

From this inequality we have if t ≥ r and t ≡ j(modr) for  

j = {0,1,2,...,r − 1},fj(W) ⊆ ft(C) 

this implies orb(ϕ,ft(C)) ⊆ Λ where Λ = ⋃ {𝐹 ∈ 𝐾(𝑋): 𝑓𝑗(𝑊) ⊆ 𝐹}𝑟−1
𝑗=0  

Since orb(ϕ,ft(C)) is solid in K(X), we have Λ is solid in K(X), a contradiction to Theorem 

2.14 

This proof employs the concept of contradiction, assuming the existence of a set within a 

specific context. By demonstrating a series of logical deductions, it establishes the 

convergence of a sequence within a certain space. The convergence implies the existence of a 

stable point under repeated iterations of a function. However, the subsequent analysis reveals 

a contradiction by showing that this stable point violates a fundamental theorem. This 

contradiction highlights the intricacies of mathematical reasoning and underscores the 

importance of rigorous proof techniques in establishing mathematical truths. 

Theorem 2.16. Let X be a continum and ϕ : K(X) → K(X) be transitive. 

Let C be the Cantor set in K(X) with orb(ϕ,C) is dense in K(X). Let V ∈ K(X) and j ∈ N such 

that V ⊆ fj(C). Then 

1. V ⊈ fj+k(C) for some k ∈ N 

2. V ⊈ f(V ) and f(V ) ⊈ V 

Proof. 

Assume on the conflicting that V ⊆ fj+k(C) for each k ∈ N.  

Let Λ = {W ∈ K(X) : V ⊆ W}. 
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Then orb(ϕ,fj(C))is dense in  K(X), we have Λ is dense in K(X). 

This is a contradiction to Theorem 2.14 

This proves (1) 

Now we prove (2), if we assume f(V ) ⊆ V , then we have fn+1(V ) ⊆ fn(V ) for every n ∈ N 

and this leads that {fn(V )}n is a declining order K(X) and it converges, in the Hausdorff metric, 

to  

𝐹 = ⋂ 𝑓𝑛(𝑉)∞
𝑛=1 . Note that F ∈ K(X) and that j ∈ N is such that F ⊆ fj(C), so by (1), there is 

an k in N such that F⊈ fj+k(C) 

Since V ⊆ fj(C), we have fn(V ) ⊆ fj+n(C) for each n ∈ N. 

Thus F ⊆ fj+n(C) for every n ∈ N. 

This contradiction displays that f(V ) ⊈ V .  

Now assume that V ⊆ f(V ) . 

Then, fn(V ) ⊆ fn+1(V ), for each n ∈ N . 

Hence V ⊆ fj(C), we have fn(V ) ⊆ fj+n(C) for each n ∈ N. 

This implies, V ⊆ fj+n(C) for each n ∈ N 

This contradicts (1),hence we have V ⊈ f(V ) 
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