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Speaker identification plays a crucial role in numerous applications such as security systems, voice-

controlled assistants, forensics, and automated customer services systems. The abilities to 

accurately identify individuals based on their voices enhance security and the user experiences in 

these applications making speaker identification an essential part of modern technology. Traditional 

methods often struggle with background noise and require significant pre-processing, which can 

limit their effectiveness in the real world. To address these challenges, this study introduced a 

pioneering PSO-CFNN framework designed to authenticate speaker identification tasks effectively. 

The proposed framework incorporates several advanced techniques to improve accuracy and 

robustness. Initially, the wavelet denoising technique is applied to eliminate noise interferences in 

the audio signals, enhancing the quality of the input data. Then, spectrograms are generated from 

the denoised audio signal and used as inputs for VGGVox architecture, a deep learning model 

known for its robust feature extraction capabilities in speaker recognition tasks. Following feature 

extraction, the Particle Swarm Optimization Algorithm is employed to optimize hyperparameters 

of Convolutional Fuzzy Neural Networks (CFNN). The optimization step ensures CFNN finely 

tunes to achieve the best possible performance. In the final stage, CFNN architecture is utilized as 

a classifier to facilitate automatic speech recognition (ASR). The integration of fuzzy logic within 

CFNN allows for handling ambiguity and uncertainty in data, further enhancing model robustness.  

 

Keywords: Speaker identification, Deep learning, Particle swarm optimization algorithm, 

VGGVox, Spectrograms.  
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1. Introduction 

Speaker identification and classification are crucial tasks in many domains such, as security 

systems, voice-controlling assistants forensics, and customer service automation. These 

applications require identifying individuals based on their voices which enhances security user 

experiences and operational efficiencies [1]. Traditional methods for speaker identifications 

often face challenges such as background noise variability in speech patterns, and the need for 

extensive pre-processing. To address these issues, Deep Learning and Optimization 

Algorithms have emerged as powerful tools [2]. 

Deep learning revolutionized the field of speaker identifiers by providing a model that learns 

complex patterns and features from raw audio data [3]. Convolutional Neural Networks 

(CNN), and Recurrent Neural Networks (RNNs) have demonstrated exceptional performance 

in extracting high-level features from an audio signal [4]. These models can handle the 

variabilities in speech patterns and adapt to different speakers, making them highly effective 

for speaker identification tasks [5]. Deep learning models automatically extract relevant 

features from audio data eliminating the need for manual feature engineering. These models 

can learn to distinguish between a speaker's voice and a background noise improving accuracy. 

Deep learning models can train on large datasets enabling them to generalize well to new 

unseen data [6]. Optimization algorithms play a crucial role in enhancing the performance of 

deep learning models. This algorithm is used to fine-tune hyperparameters, assuring those 

models achieve optimal performances [7]. Algorithms help to select the best set of 

hyperparameters, like learning rate, and batch size, along with the number of layers that are 

critical to model performance. These algorithms accelerate the training process [8]. It guides 

the model to an optimal solution that is more efficient. Techniques such as fuzzy logic, 

integrating with optimization algorithms, can manage uncertainty and ambiguity in data, next 

improving model robustness ability [9].  

This paper presents a novel approach to Automated Speaker Identification, which is termed 

the Convolutional Fuzzy Neural Network enhanced by Particle Swarm Optimization 

Algorithm (PSO-CFNN). In the PSO-CFNN framework, the Wavelet Denoising method is 

used strategically to eliminate noise from audio signals effectively. After removing noise, 

spectrogram data feeds into a VGGVox model—a deep convolutional neural network 

foundation for extracting key features. The PSO algorithm optimizes hyperparameters of 

VGGVox models to boost performance. For accurate automatic speech recognition and 

classification, the CFNN framework is robust and offers dynamic analysis tools. The 

performances and reliabilities of PSO-CFNN models have been validated through various 

experimental setups, which demonstrate their effectiveness toward meeting objectives. 

 

2. Related Works 

In [10], the author proposed a hybrid feature extraction model for speaker recognition 

utilization with a Deep Believes Network. The processes involved in converting audio scripts 

into spectrograms that are represented as two-dimensional matrices too capture both time and 

frequency dimensions. To reduce dimensions, PCA-based techniques were applied, 

transforming the frequency data into lower-dimension spaces. Latent features from audio 
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signals were extracted using an MFCC and combined with features derived from the 

unsupervised deep belief network. 

In the study [11], some text-independent speaking identification systems based on one 

Convoluted Network (CNN) were introduced. In such a system, every audio signal sample is 

converted into spectrogram images, which then are inputted as grayscale images to the 

network. The CNM model was trained from scratch using three convolutional layers and two 

pool layers. The performance of this proposed method compared with the MFCC method and 

the CNN approach applied directly to the signal wave. 

The author [12] develops a speaker identification model by incorporating a self-attention layer 

into two well-known CNN architectures Visual Geometry Group (VGG) nets and Residual 

Neural Networks (ResNets). By utilizing a structured self-attention layer with many attention 

hops, the proposed approach can manage variable, and length speech signal segments this 

model also learned the characteristics from speakers of various aspects of the input sequences 

including MFCC, FBanks, and spectrogram data. One text-independent speaker recognition 

system that is capable of operating in noisy, and reverberant conditions was proposed by the 

author [13]. The system utilizes MFCCs, spectrums, and log-spectrum features extracted from 

the input speech signal. An LSTM-based neuron network be employed as a classifier to 

perform speaker-recognition tasks. 

A lightweight convolutional Neural Network (CNN) architecture was proposed in [14] for 

extracting deep features from speech spectrograms. The speech signals were converted into 

segments of similar lengths using a short-term Fourier transform algorithm. To compute the 

Fourier spectra, the fast Fourier transform method is employed. A multiples-feature bunch 

methodology, leverages three advanced feature extraction techniques: a Mel Spectrogram, Mel 

Frequency Cepstral Coefficients, and Crossing Rate—have been proposed in [15]. Deep 

learning models which include CNNs, EfficientNet, and MobileNet along with traditional 

classifiers such as SVMs and perceptron, were used in various ways to train each feature 

separately, as well as in combinations of two or three features. The performances of each 

configuration were assessed on accuracy and testing times. The study referenced in [16] 

explored the application of speaker identifications in a courtroom setting. It investigates if a 

judge's ability to identify a speaker is more or less accurate compared to the results produced 

by the forensic voice comparisons system. In [17], the author introduces a novel Convolutional 

Neural Network (CNN) architecture called the VGG-13 for dependent speaker identification 

systems. All short segments of audio samples were converted into a log-mel spectrogram and 

a data augment technique was applied to the segment. These process segments were fed to the 

VGG-13 architecture comprising 10 convolutional layers. The Rectified Linear Unit (ReLU) 

acts function was used in all layers. To optimize the architecture, the number of filters in the 

existing VGG-13 architecture was reduced, significantly reducing training times and memory 

consumption.  

A study in [18] examines both times-domain and frequency-domain futures to enhance the 

robustness of a speaker's identification in environments with noises and reverberations. The 

work proposed in [19] addresses the challenge of identifying speakers in environments that 

are noisy, stressful, and emotionally charged. The study presented in [20] proposes an 

ensemble model that integrates a Convolutional Neuronal Network (CNN), Long Short-Term 
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Memory (LSTM), and the Gated Recurrent Unit (GRU) for speech emotion recognition. This 

research examined the effectiveness of using an ensemble's deep learning modeling, which 

combines various deep learning structures, to enhance the understanding of emotions on 

speech signals. 

 

3. Proposed Work 

This paper introduces a novel PSO-CFNN framework for Speaker Identification design. This 

innovative model utilized a dataset comprising 7500 instances collected from five different 

speakers, where the audio was recorded at a 16 kHz sampling rate. The dataset is split into 

training and validation sets—70% is used for training, and the remaining 30% is left for 

validation. Speech segments within this dataset range between 3 to 5 seconds each. Initially, 

the PSO-CFNN framework applies the Wavelet Denoising (WD) method to remove noise from 

the audio signal. Next, spectrograms serve as input to the VGGVox model. Then comes the 

Particle Swarm Optimization (PSO) algorithm; it fine-tunes the hyperparameters of the CFNN 

model. In its final phase, CFNN models are utilized to classify tasks related to automatic 

speech recognition (ASR). Fig. 1 provides an illustration detailing the comprehensive 

methodology adopted by the PSO-CFNN strategy. 

 

Fig. 1. Overall architecture of PSO-CFNN Approach 
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3.1. Wavelet Denoising based noise removal 

Wavelet Denoising (WD) is often used for noise removal in audio signals, including in 

speaker-identifying tasks. It works by decomposition the signal into different frequency bands, 

utilizing wavelet transform; applying thresholding for attenuating noise in each band, and then 

reconstructing the denoised signal [21]. Wavelet transform decomposes an input signal into 

different frequency components at various scales. It provides a time-frequency representation 

of the signal, letting us analyze both time-localized and frequency-localized features. The 

wavelet transform of a signal x(t) can be expressed by Eq. (1): 

W(a, b) =  ∫ x(t)Ψa,b
∗ (t)

∞

−∞

 dt                (1) 

Where Ψa,b
∗ (t)  is the wavelet function scaled by a and shifted by b, and W(a, b) represents the 

wavelet co-efficients. After decomposing the signals into wavelet coefficients, thresholding is 

applied to those co-efficients to remove or reduce noises. The primary concept is that the signal 

co-efficients are usually bigger than noise coefficients, so it's are distinguishable from each 

other based on their size. There are various methods for thresholds, such as hard thresholds 

and soft thresholds. Soft thresholding, for example, sets coefficients that are below a specific 

threshold to zero- while damping the rest of the coefficients.  

Mathematically, soft thresholding can be defined as shown in Eq. (2): 

Tλ(w) =  sign(W) ·  max (|W| − λ, 0)            (2) 

Where Tλ(w)  is the denoised wavelet coefficients, sign (.) returns the sign of W, |W| is the 

absolute value of W, and 𝜆 is the threshold parameter. After thresholding, the denoised wavelet 

coefficients are reconstructed to obtain the denoised signal. This is achieved by the application 

of inverse wavelet transform for the denoised coefficients.  

The inverse wavelet transformation of the denoised coefficients, Tλ(w) yields the denoised 

signal x̂(t) is  as shown in Eq. (3): 

x̂(t) =   ∫ Tλ(w)Ψa,b(t)
∞

−∞

 da                   (3) 

Wavelet denoising effectively removes noises from sound signals while preserving the 

important signal features. By adaptive thresholds of wavelet coefficients, it can attenuate 

noises without significant distortions of the underneath signals. This makes it especially 

suitable for speaker identification tasks where the preservation of the Integrity of the speech 

signals is essential for adequate analyses and classifications. 

3.2. Convert audio signals into spectrograms using STFT 

After the noise has been eliminated from the audio signals, the spectrograms are converted by 

using a Short-Time Fourier Transform (STFT). Following the denoising process, those 

denoised audio signals need segmenting into Short overflowing frames [22]. These frames 

ought to be tiny enough to grasp the local propensities of the signals but also provide enough 

frequency resolutions. Then, the windowing function is applied to reduce the spectral leakage. 

Now, compute the Short-Time Fourier Transform (STFT) for every frame using those 
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windowed segments; STFT computes the Fourier transform of every segment and encapsulates 

it into the time-frequency domains. 

The STFT, of a Signals x(t) uses a window function, ω(t), at time t and Frequency, ω, it is 

given by in Eq. (4): 

X(ω, t) = ∫ x(τ)ω(τ − t)e−jωT∞

−∞
 dτ     (4) 

  Where X (ω, t) represents the STFT magnitude at the frequency ω and time t, x(τ) is 

the original signal, and ω(τ −  t)  is the window function centered at time t. 

The magnitude of STFT coefficients stands for the energy distribution across various 

frequencies and time frames. Square the magnitude of each STFT coefficient to snag the power 

spectrum. Stack the power spectrum of all the frames over time, to create the spectrogram- 

where the x-axis shows time. The Y-axis shows frequency, and the color intensity represents 

the magnitude of the power spectrum. When converting denoised audio signals into 

spectrograms utilizing STFT, we obtain a time-frequency representation of the signal that 

captures, both temporal and spectral information. This spectrogram representation is often 

utilized as an input feature for speaker identification tasks; it Allows machine learning 

algorithms to analyze the spectral characteristic of the speech signals, across different 

frequency bands and time frames. 

3.3. Feature Extraction using VGGVox 

After obtaining the spectrograms from the denoised audio signals; feature extraction using 

VGGVox involves processing these spectrograms through a convolution neural network- CNN 

architecture [23]. VGGVox is a specific CNN architecture designed for speaker identification 

tasks, typically consisting of convolution layers followed by fully connected layers as depicted 

in Fig. 2. The inputs to VGGVox are singularly a spectrogram derived from denoised audio 

signals, representing the times-varying frequency content of the audio signal. They are often 

computed using Short-Time Fourier Transforms (STFT) or similar methodologies. The input 

spectrogram, get passes through a series of convolutional layers in VGGVox. Each 

convolutional layer applies a group of learnable filters. These filters, also known as kernels do 

convolutions, to extract features from the input spectrogram. The depth of these convolution 

layers deepens gradually, letting the network learn more complex and abstract features. After 

each convolutional operation, an activation function gets applied on an element-by-element 

basis, to toss in some non-linear feels into the network. Some typical activation functions 

embarking like the Rectified Linear Unit, ReLU, up-jumps sparsity, and speed the 

convergence. Meanwhile, Max-pooling layers are often inserted between the convolutional 

layers to squash that spatial enlightenment of the features maps while preserving important 

information. 
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Fig.2. Feature extraction using VGGVox 

Max-pooling extracts the maximum value found across all areas of the features map. These 

pooling layers, aid in making the learned features much more invariant to small translations 

and distortions in the input spectrogram. The output feature maps of the convolutional layers 

get flat into a one-dimensional feature vector. This Vector has the high-level representations 

from the input spectrogram learned in the convolutional layers. Flattening collapses the space 

dimensions of those feature maps into a single vector, ready to be processed by fully connected 

layers. The flattened feature vectors are being passed through one or more fully connected 

layers in VGGVox. This layer learns to map the extracted feature to speaker identities. Fully 

connected layers introduce complex interaction between features learned by convolutional 

layers. They perform the final mapping to speaker identities. The output from the last fully 

connected layer was getting passed through a softmax activation function; which normalizes 

output scores into probability distributions over speech identities. The softmax layer assigns 

probabilities to each speaker's identity to indicate the likelihood that the input spectrogram 

belongs to that speaker. The final result of VGGVox is the probability distributions over 

Speaker Identities. However, the almost last layer- right before the softmax- could also be used 

like the extracted features for downstream tasks like similarity comparisons or clustering. By 

processing, and inputting spectrograms through convolutional layers, pooling layers, and fully 

connected layers, VGGVox learning extracts top-level representations of the discriminative 

audio signal for speaker identification. The learned features capture local and global patterns 

in the spectrograms, enabling accurate speaker recognition in several conditions. 

3.4. Hyperparameter tuning using PSO 

Tuning the hyperparameter of a Convolutional Fuzzy Neural Network (CFNN) by utilizing 

Particle Swarm Optimization (PSO) involves optimizing parameters such as filter sizes, 

numbers of filters, learning rates, and fuzzy membership functionaries to max the performance 

on specific tasks of the CFNN. Particle Swarm Optimization (PSO) is a naturally inspired 

optimization algorithm that is used for finding optimal solutions to problems by simulating the 

social behaviors of bird flocks or fish schools [24]. In PSO, a group of potential solutions, 

what's known as particles, is moving around in a search space to find the best solution based 

on their own experiences and the neighbor’s experiences.  

Particle Swarm Optimization (PSO) consists of several phases or core components that 

collectively enable the optimization process. These phases describe the sequences of action 

and interactions between particles within a Swarm. The main phases of the PSO included 
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initialization, movement updates, fitness evaluations, and termination. 

• Initialization Phase 

PSO starts by initializing a population of particles into the search space, each particle 

represents a potential solution to an optimization problem. Next, Particle positions and 

velocities are randomly initialized in within the specified bounds of the search space. Then, 

each particle's personal best position (pbest) was initially set to its current position: and the 

global best position (gbest) was initialized to the best positions among all particles. 

• Movement and Position Update Phase 

In every iteration, particles update their velocity based on their current velocity, cognitive 

component (being influenced by personal Best), and social component (being under the 

influence of a global best) as shown in Eq. (5): 

𝐯𝐢(𝐭 + 𝟏) = 𝐰𝐯𝐢(𝐭) + 𝐜𝟏𝐫𝟏(𝐩𝐛𝐞𝐬𝐭𝐢  − 𝐗𝐢 (𝐭)) + 𝐜𝟐 𝐫𝟐 (𝐠𝐛𝐞𝐬𝐭 −  𝐗𝐢(𝐭))      (𝟓)  

Where: 

o 𝐯𝐢(𝐭) is the velocity of the particle ‘i’ at iteration ‘t’, 

o 𝐗𝐢(𝐭) is the position of a particle ‘i’ at iteration ‘t’, 

o ‘w’ is the inertia weight, 

o 𝐜𝟏 and 𝐜𝟐 are acceleration coefficients (cognitive and social components), 

o 𝐫𝟏 and 𝐫𝟐 are random numbers between 0 and 1 (random exploration components). 

After updating velocities, particles adjust their positions based on the new velocities using the 

Eq. (6): 

𝐗𝐢(𝐭 + 𝟏) =  𝐗𝐢(𝐭) +  𝐯𝐢 (𝐭 + 𝟏)         (𝟔) 

• Fitness Evaluation Phase 

After updating positions, each particle's fitness is evaluated using a fitness function 

𝐟(𝐗𝐢(𝐭 + 𝟏)) that measures a corresponding solution's quality or performance in search space. 

Each particle compares its current positioning with its personal best positioning (pbest) as 

shown in Eq. (7): 

𝐟(𝐗𝐢(𝐭 + 𝟏)) < 𝐟(𝐩𝐛𝐞𝐬𝐭𝐢)                    (𝟕) 

If the current positioning yields better fitness value, the particle updating it being pbest by 

𝐗𝐢(𝐭 + 𝟏). Similarly, the global best positioning (gbest) is updated based on the best fitness 

value among all particles as shown in Eq. (8): 

𝐟(𝐩𝐛𝐞𝐬𝐭𝐢) < 𝐟(𝐠𝐛𝐞𝐬𝐭)                      (𝟖) 

• Termination Phase 

PSO keeps iterating through the moving update and the fitness evaluation phases until the 

termination criteria are met. Common termination conditions include reaching a maximum 

number of iterations, achieving the desired fitness threshold, or observing minuscule 
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improvement over successive iterations. PSO converges when the particles collectively 

gravitate toward promising regions of the search space, idealistic converging toward an 

optimal solution. 

To maximize the accuracy of a classification model, let x be the vector of hyperparameters we 

were optimizing, and let accuracy(x) be the accuracy of the model with hyperparameters x. 

The fitness function f(x) can be defined as shown in Eq. (9): 

𝐟(𝐱) = 𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲(𝐱)                              (𝟗) 

3.5. Classification using CFNN 

To classify speakers, the feature vector is provided to a CFNN model. The Convolutional 

Fuzzy Neural Network (CFNN) is designed to leverage better the strengths of Convolutional 

Neural Network (CNN) and fuzzy logic for speaker identification [25]. CFNN model typically 

consists of three main components: a convolution network for feature extractions, a fuzzy layer 

for handling uncertainties and ambiguity in data, and a fully connected (FC) layer for 

classifications. Fig. 3 illustrates the architecture of CFNN. 

1. Network 1(Convolutional layer & Pooling layer): A convolutional network is in 

charge of extracting high-level features from inputted audial data. Audio signals are first 

converted into a spectrogram, which serves as inputs to the CNN. The convolutional networks 

consist of multiple layers, including convolution layers, activation functions, and pooling 

layers. The feature maps are defined as shown in Eq. (10) and the pooling operation is done 

using Eq. (11): 

𝐟 = (𝐖 ∗ 𝐗 + 𝐛)                                              (𝟏𝟎) 

𝐏𝐢,𝐣 = 𝐦𝐚𝐱(𝐗𝐢+𝐦,𝐣+𝐧)                                    (𝟏𝟏) 

In Eq. (10), W - denotes the Kernel/filter, X - denotes the input Spectrogram, b is the bias, * 

denotes the convolution operation and f is the activation function. In Eq. (11), the pooling 

operation takes the maximum value over a defined window size (m, n). 

2. Network 2 (Fuzzy layer): The fuzzy layer processes the features extracted by a 

convolutional network. It does fuzzy clustering to handle ambiguity and uncertainty in data. 

Each neuron in the fuzzy layer represents a fuzzy membership function that on the degree 

indicates which feature vector belongs to a specific cluster. The fuzzy membership function is 

defined in Eq. (12): 

𝛍𝐥(𝐱) = 𝐞𝐱𝐩 (−
∥ 𝐱 − 𝐦𝐥 ∥𝟐

𝟐𝛔𝐥
𝟐 )                         (𝟏𝟐) 

In Eq. (12),  𝛍𝐥(𝐱) is the membership value of input x to cluster l, 𝐦𝐥 is the center of the l-th 

cluster, 𝛔𝐥 is the standard deviation to control the fuzziness. The normalization condition 

ensures that the membership values sum to 1 for all clusters as shown in Eq. (13): 

∑  𝛍𝐥(𝐱)
 𝐋

 𝐥=𝟏
= 𝟏                                    (𝟏𝟑) 
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3. Network 3(Fully Connected Layer): The output of the fuzzy layer is fed into the fully 

connected (FC) layer, for the final classification. The FC layer assigns class labels to input 

based on the membership value as shown in Eq. (14): 

                                                                     𝐳𝐣 =  ∑ 𝐰𝐢𝐣𝛍𝐢(𝐱)𝐢 +  𝐛𝐣                     (14) 

𝐀𝐜𝐭𝐢𝐯𝐚𝐭𝐢𝐨𝐧 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧 (𝐲𝐣) =  
𝐞𝐱𝐩 (𝐳𝐣)

∑ 𝐞𝐱𝐩 (𝐳𝐤)𝐤
         (𝟏𝟓) 

In Eq. (14), 𝐳𝐣 denotes the input to the activation function for class j, 𝐰𝐢𝐣 is the weight 

connecting fuzzy neuron i to output neuron j, and 𝐛𝐣 is the bias for class j. In Eq. (15) 𝐲𝐣 is the 

probability of the input belonging to class j. 

 

Fig. 3. Structure of CFNN 

By combining these layers, the CFNN model effectively extracts, processes, and classifies 

audio features for robust speaker identification, handling both variabilities and uncertainty 

within input data. 

 

4. Experimental Results 

4.1  Implementation Setup 

In this section, the PSO-CFNN model was subjected to various experimental validation to 

identify the speakers by analyzing an audio file, considering all kinds of aspects. Testing 

phases used Python 3.6.5 on a system equipped with an i5-8600K CPU & 250GB SSD, a 

GeForce 1050Ti 4GB graphics card, 16GB RAM, and a 1TB hard drive. For validations, a 

benchmark dataset from Kaggle containing audio files was utilized [26]. The total number of 

test samples is detailed in Table 1. The evaluation of the PSO-CFNN model’s performance 

included key metrics such as accuracy, precision, recall, F-scores, & error rate as defined in 

Eqs. (13-16). A True Positive (TP) happens when the Model correctly identifies a positive 

category, True Negative (TN) occurs when the negative class is accurately identified by the 

model. False Positives (FP) are instances where the model incorrectly predicts the positive 

class, and False Negatives (FN) are cases where the model incorrectly predicts the negative 

class. The definition of these measures is as follows: 
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𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲 =
𝐓𝐏 + 𝐓𝐍

𝐓𝐏 + 𝐅𝐏 + 𝐅𝐍 + 𝐓𝐍
  × 𝟏𝟎𝟎                               (𝟏𝟑) 

  𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐏
                                                                (𝟏𝟒) 

𝐑𝐞𝐜𝐚𝐥𝐥 =
𝐓𝐏

𝐓𝐏 + 𝐅𝐍
                                                                       (𝟏𝟓) 

𝐅 − 𝐒𝐜𝐨𝐫𝐞 =
𝟐 ∗ 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 ∗ 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 + 𝐑𝐞𝐜𝐚𝐥𝐥
                                        (𝟏𝟔) 

 

Error Rate: An error rate means the portion of wrong answers seen in a method, network, or 

evaluation. It's often shown as percentages or ratios that compare error counts with total 

observations or tries conducted. 

Table 1. Dataset Details 
Class Number. of. Samples 

Speaker 1 1500 

Speaker 2 1500 

Speaker 3 1500 

Speaker 4 1500 

Speaker 5 1500 

Total 7500 

Fig. 4 and Fig. 5 illustrate the performance results of PSO-CFNN strategy usage in a 70:30 

train/test datasets split. Data clearly showed that the PSO-CFNN method achieves the highest 

accuracy for train and validation. Noticeably, test accuracy appears to surpass train accuracy. 

Also, Fig. 4 & Fig. 5 display the train and validation loss figures associated with the PSO-

CFNN approach using the same 70:30 train/test split. These results show that the PSO-CFNN 

algorithm achieved the lowest score for both train loss and validation loss, with validation loss 

being lower than training loss. 

Table 2. Average Outcomes of the PSO-CFNN Model with Various Metrics a 70:30 Split of 

the TR/TS Data 
Class Accuracy (%) Precision (%) Recall (%) Error Rate (%) F-Score (%) 

Training Phase (70%) 

Speaker – 1 96.92 100.00 88.24 3.08 93.75 

Speaker – 2 98.46 92.31 100.00 1.54 96.00 

Speaker – 3 100.00 100.00 100.00 0 100.00 

Speaker – 4 98.46 93.75 100.00 1.54 96.77 

Speaker – 5 100.00 100.00 100.00 0 100.00 

Average 98.77 97.21 97.65 1.23 97.30 

Testing Phase (30%) 

Speaker – 1 98.00 100.00 98.24 2.00 96.75 

Speaker – 2 98.46 95.31 100.00 1.54 97.00 

Speaker – 3 100.00 100.00 100.00 0 100.00 

Speaker – 4 100.00 96.75 100.00 0 97.77 
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Speaker – 5 100.00 100.00 97.15 0 100.00 

Average 99.29 98.41 99.07 0.71 98.30 

Fig. 6 and Fig. 7 present the confusion matrices, Precision-Recall, and ROC curves produced 

by the PSO-CFNN model for different sizes of training (TR) and test (TS) datasets. The results 

indicate that the PSO-CFNN model excels in speaker recognition. Illustrated in Fig. 8 are the 

aggregate outcomes for classifying speakers utilizing the PSO-CFNN methodology on 70% of 

training data. Such outcomes suggest that the technique achieves enhanced performance across 

all categories. Specifically, Within the Speaker 1 category, the PSO-CFNN strategy 

accomplishes an accuracy of 96.92%, precision of 100.00%, Recall of 88.24%, Error rate of 

3.08%, and F_score of 93.75%. Regarding the Speaker 2 category, this approach secures an 

accuracy of 98.46%, precision of 92.31%, Recall of 100.00%, Error rate of 01.54%, and 

F_score of 96.00%. In the context of Speaker 3, the strategy achieves an accuracy of 100.00%, 

precision of 100.00%, Recall of 100.00%, Error rate of 0%, and F_score of 100.00%. For the 

Speaker 4 category, the model achieves an accuracy of 98.46%, precision of 93.75%, Recall 

of 100.00%, Error rate of 01.54%, and F_score of 96.77%. Regarding the Speaker 5 category, 

this approach secures an accuracy of 100.00%, precision of 100.00%, Recall of 100.00%, Error 

rate of 0%, and F_score of 100.00%. Table 2 depicts the overall performances of the PSO-

CFNN model for speaker identification, using 70% of the data for training and 30% for testing. 

The result highlights the model's ability to identify each speaker category accurately. 

 

Fig. 4. Accuracy Graph Based on Training and Testing Set 

 

Fig. 5. Loss Graph Based on Training and Testing Set 
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Fig. 6. (a) Confusion Matrix based on TR set (b) Confusion Matrix based on TS set 

 

Fig. 7. (a) Precision-Recall Curve (b) ROC Curve 

Illustrated in Fig. 9 are the aggregate outcomes for classifying speakers utilizing the PSO-

CFNN methodology on 30% of testing data. Such outcomes suggest that the technique 

achieves enhanced performance across all categories. Specifically, Within the Speaker 1 

category, the PSO-CFNN strategy accomplishes an accuracy of 98.00%, precision of 100.00%, 

Recall of 98.24%, Error rate of 2.00%, and F_score of 96.75%. Regarding the Speaker 2 

category, this approach secures an accuracy of 98.46%, precision of 95.31%, Recall of 

100.00%, Error rate of 01.54%, and F_score of 97.00%. In the context of Speaker 3, the 

strategy achieves an accuracy of 100.00%, precision of 100.00%, Recall of 100.00%, Error 

rate of 0%, and F_score of 100.00%. For the Speaker 4 category, the model achieves an 

accuracy of 98.46%, precision of 93.75%, Recall of 100.00%, Error rate of 01.54%, and 
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F_score of 96.77%. Regarding the Speaker 5 category, this approach secures an accuracy of 

100.00%, precision of 100.00%, Recall of 97.15%, Error rate of 0%, and F_score of 100.00%. 

 

Fig. 8. Average outcome of PSO-CFNN approach on 70% training of data 

The comparison of the experimental results for the feature parameters used in this work with 

other existing works [27] tested in this paper is shown in Table 3. It indicates that the proposed 

model outperforms other existing methods. Here, we tested MFCC, IMFCC, MFCC+IMFCC, 

& the feature parameters detailed in this paper. 

Table 3. Evaluating the ERR of the Feature Extraction Ablation Experiments for PSO-CFNN 

Model versus Contemporary Techniques 
Parameters ERR (%) t-DCF 

MFCC 5.26 0.181 

IMFCC 8.09 0.240 

MFCC + IMFCC 3.56 0.153 

PSO-CFNN 1.71 0.100 

A comparative analysis was performed to prove the superior performance of the PSO-CFNN 

configurations presented in Table 4 [27]. Also, Fig. 10 gives accuracy comparisons among the 

PSO-CFNN approach and other modern methods. The analysis reveals that the MFCC-SOFM-

MLP-GD framework records the lowest rates of success and accuracy, at 96.92%. Little better 

performance was noted in MFCC-SOFM-MLP-GDM, MFCC-SOFM-MLP-BR, MFCC-FW, 

and fusion various methods; it is achieving accuracies rates 97.05%, 97.62%, 97.32%, and 

97.81%. However, the proposed method PSO-CFNN showed better results, reaching a high 

accuracy rate of 99.29%. 
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Fig. 9. Average outcome of PSO-CFNN approach on 30% of testing data 

Table. 4. Evaluating the Accuracy of the PSO-CFNN Model Versus Contemporary 

Techniques 
Models Accuracy (%) Error rate (%) 

MFCC-SOFM-MLP-GD 96.92 03.08 

MFCC-SOFM-MLP-GDM 97.05 02.95 

MFCC-SOFM-MLP-BR 97.62 02.38 

MFCC-FW 97.32 02.68 

FUSION 97.81 02.19 

Proposed PSO-CFNN 99.29 00.71 

 

Fig. 10. Comparisons of the Accuracy of the PSO-CFNN Framework with existing 

methodologies 
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5. Conclusion 

In the study, a novel  PSO-CFNN model effectively authenticates speaker applications. This 

cutting-edge PSO-CFNN mechanism starts with the first use of Wavelet Denoising (WD) 

approaches to get rid of noise interference in audio signals. Then, a spectrogram is used as an 

input for the VGGVox architecture. Afterward, the Particle Swarm Optimization (PSO) 

Algorithm is applied to refine the hyperparameters linked to the CFNN design. Finally, the 

CFNN architecture functions like a classifier to aid automatic speech recognition (ASR). The 

efficacy of PSO-CFNN frameworks is tested through a detailed series of tests. A comparative 

analysis highlights the superior performance of the PSO-CFNN framework over other existing 

methods. This demonstrates the potential for strong ASR in real-time speaker identification 

scenarios. Looking ahead, a combined approach employing a fusion-based deep learning 

model might be explored to further enhance PSO-CFNN framework performance. 
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