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The application of EEDSC—electroerosion dispersion, sorption and coagulation
(using in situ dispersion in plasma of aluminium or iron)—allowed efficient water
purification from heavy metal ions and radioactive alkali ions (of Fe, Cr, Cu, Mo, Zn,
Co, Ni, Cd, Mn, As, Sn, Pb, Al, Ba, Co, Cs and Sr) as well as from organic
contamination. Intensive ozonization should be applied because of intensive foam
formation as a result of complex electrohydrodynamic effects during removal of the
“heavy” organic contaminants (such as from liquid waste from landfills) during
EEDSC. The method of electroerosion dispersion is very effective for the production
of nano and submicron powders (5 nm–3 μm) of metals, oxides, nitrides and carbides
as well as for recycling of any conductive materials such as cemented carbides, alloys
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of heavy metals, metallic waste products etc. The iron oxide polyvalent magnetic
nanoparticles produced by electroerosion dispersion attract considerable interest in
many fields of research and application. They have high potential for applications in
the field of biomedical sciences (diagnostics and therapy), ferrofluids, catalysis,
coloured pigments, high-density magnetic recording, printer toners, Li-ion batteries,
wastewater treatment and absorption of electromagnetic waves.
Keywords: aluminium oxides, electroerosion dispersion, iron oxides, nanopowders,
sorption and coagulation, water purification

1.  Introduction

Wastewater and drinking water treatment is a major problem. There are no universal methods of
water treatment and each type of contaminated water needs a special approach. The known
industrial manufacturing methods for nano and submicron spherical powders of refractory metals,
hard and heavy alloys, metals having high plasticity, and chemically active, toxic and radioactive
metals, are expensive, energy-consuming, environmentally hazardous and difficult to implement.

The processes of electroerosion dispersion (EED) and electroerosion dispersion, sorption
and coagulation (EEDSC) using in situ dispersion in plasma of aluminium or iron granules or
chips  and equipment for their implementation have been patented by us in 2005–6 [1–4] and
described [5–7]. The proposed EED method can be easily industrialized and gives the
possibility of cheap and low power-consuming production of nano and submicron polydisperse
powders of metals and their oxides, hydroxides, carbides and nitrides. They can be crystalline
or amorphous, with particles of spherical or of arbitrary shape depending on the régime of EED.
The aluminum and iron oxides and hydroxides can be used as sorbents and coagulants for waste
and drinking water treatment—removal of ions of heavy, alkali, alkali earth and radioactive
metals. EEDSC can yield inline production of iron or aluminum ions, hydrooxides and oxides
in wastewater and parallel destructive, deodorization and disinfection effects of plasma on
contaminants in the treated wastewater.

Many researchers have studied the method of electrochemical coagulation for wastewater
treatment [8–11]. But these methods are rather selective and do not have all the advantages of
electroerosion dispersion, sorption and coagulation proposed by us [6]. Similar technologies
were developed somewhat later [12–13]. Many different methods of water purification from
radioactive and heavy metals and from organic contamination using membrane filters, sorbents
and coagulants or ozonization (without the application of electric or electric discharge
technologies) have been developed [14–43]. The proposed EEDSC method using in situ
dispersion in plasma of aluminium or iron unites the different cleaning methods in a single
process. The method is cheap, efficient, provides a high degree of purification and is
ecologically friendly; the developed equipment for accomplishing EEDSC is very compact.

2.  Experimental

The technological equipment for the energy-efficient production of nano and submicron
powders (5 nm–3 μm) of metals, oxides, nitrides and carbides as well as for recycling of any
conductive materials such as cemented carbides, alloys of heavy metals, any metallic waste
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products etc. was developed, designed and produced by Monastyrov (e.g., Figure 1). The units
incorporate disintegration reactors and pulse generators, allowing varying discharge frequency
(100–500 Hz) and voltage (100–500 V). The EED method is based on disintegration of metal
granules or chips in liquids (water, alcohol, kerosene etc.) by metal evaporation in plasma
generated by pulsed electric discharges between the metal granules or chips with subsequent
condensation of vapour or microdroplets. Metal vapour and microdroplets almost immediately
(in about 10–6 s) solidify in the cold zone in the liquid. Despite the temperature in the places of
plasma discharge being about 15 000 °C, the temperature of the walls of the reactor are near to
room temperature. Metals may be oxidized by oxygen, which is produced in the plasma due to
water decomposition, or may turn into carbides or nitrides if they are dispersed into carbon- or
nitrogen-containing media. EED allows operation with temperature gradients up to ±106 K/mm;
as a result, micrograins form in distinctly nonequilibrium conditions. Such particle formation
conditions result in many unique properties of the powder grains (including deformation of
crystalline lattices and high specific surface of the grains).

Figure 1. EED dispersion installation: 1, generator; 2, reactor; 3, sedimentation tank; 4, pump for liquid.

EEDSC is in fact an EED method, but the dispersion of metal granules or chips is into
contaminated water, which is pumped via the reactor, thus aluminum or iron is evaporated
directly into the contaminated water under the influence of plasma, which appears between the
granules or chips because of the generated electrical pulses.
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The installation for intensive ozonization is shown in Figure 2a. The volume of the
contaminated water tank is 2 m3. Ozone is generated in situ from the surrounding air by
powerful pulses of current delivered via electrodes (Figure 2b).

Figure 2. Installation for the intensive ozonization of landfill water (a); and the process of ozone
synthesis in a glow discharge (b).

(a) (b)

3.  Results and discussion

The processing line for EED dispersion with a capacity of 10 m3/hour can be located in an area
of 36 m2, and with a capacity of 50 m3/hour for an area less then 80 m2. The compactness of the
equipment is a big advantage for powder manufacturing in industrial volumes. The cost of
electroerosion dispersion is about the same for all metals (10–12 USD per kg). Price varies
depending on the preparation of granules, (some materials have to be chipped, others crushed).
The technology allows recycling into powder of any conductive waste (metallic, hard alloys,
heavy alloys, beer cans, chips, granules etc.). The specific energy intensity of the process is 1.5
to 3 kW for the production  of 1 kg of powder. The process is cheap and ecologically friendly
and there are no drains, no gas and no dust emissions. The EED method is most competitive in
cases when high-quality powders are required (especially fine-grained, superclean, spherical or
with a highly developed surface, etc.) and in the case of processing metals with extreme
physical and chemical properties. The technology can be used for the industrial production of a
wide range of high-tech competitive products, including nanostructured materials.

An X-ray study of dried EED powders showed that iron-based powder contains practically
spherical particles of Fe3O4 (mainly) and some FeO and Fe [6]. The aluminum-based powder
after drying contained 92% of bayerite (Al(OH)3), 5.5 % corundum (α-Al2O3), less than 1% of
gamma aluminium hydride (γ-AlH3), and about 2.4 % of aluminium (Al).

The EED-produced nanopowders (20–50 nm) of iron and aluminum oxides are effective
sorbents and coagulants. Tables 1 and 2 present the results of cleaning water from heavy metal
ions using dried EED aluminum- and iron-based oxides, which were mixed with contaminated
water for 8–10 minutes. For optimal operation of the technology, the total concentration of
heavy metal ions should not exceed 100 mg/L. If this limit is exceeded, cleaning does occur but
the consumption of powder increases and the productivity of the equipment decreases; it is
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better to first dilute the contaminated water to a concentration that will allow efficient sorption-
coagulation using the proposed sorbents: wastewater treatment powder of iron oxides
(consumption 6–7 grams of dry powder per gram of impurities). The quality of the treated
wastewater corresponds to the requirements of the usual sanitary norms and state standards for
wastewater treatment.

Metal ion Initial concentration  
/mg dm–3 

Concentration after 
purification  
/mg dm–3 

Al3+ 16.2  <0.05  
As3+ and As5+ 49.2  0.01  
Cd2+ 0.103 <0.001 
Co2+  19.4  0.08  
Cr 6+ 144.4  0.01  
Cu2+  1.27  0.002  
Fe2+ and Fe 3+ 55.5  0.5  
Mn2+  1.94  0.0006  
Mo2+  8.71  <0.05  
Ni2+  25.7  0.05  
Pb2+ 3.3 <0.1 
Sn2+ 6.9  0.1  
Zn2+  100.2  0.36  

 

Table 1.  Degrees of extraction of heavy metal ions from the galvanic drains of the radio
engineering plant in Nikolaev (“Zarya”—“Mashproekt”), the Antonov aircraft plant, and the

“Alkon-serviskomplekt” (acidic waste water) in Kiev, with EED-produced  iron oxide powder.

Table 2. Degrees of extraction of heavy metal ions from the galvanic drains of the experimental
plant of the Leningrad (St Petersburg) Radio Engineering Research Institute with EED-produced

aluminium oxide powder.

a According to sanitary norms and state standards for wastewater treatment.

1st test 2nd test  

Metal ion 

Allowable 
concen-
trationa  

/mg dm–3 

Initial 
concen- 
tration 

 /mg dm–3 

Concen- 
tration after 
purification 
 /mg dm–3 

% purifi-  
cation 

Initial 
concen- 
tration 

 /mg dm–3 

Concen- 
tration after 
purification 
 /mg dm–3 

% purifi-  
cation 

Al3+  0.02  16.2  < 0.05  99.7  13.0  <0.05 99.2  
Cd 2+ 0.001 78  0.43  99.4  1.8  <0.01 99.4  
Cr

6+
  0.03  234  0.07  100  180 <0.01 100  

Cu2+ 0.002  149.5  0.69  99.5 42.5 0.05 99.9  
Fe+2+ and Fe3+ 0.5  55.5  0.50  99.1  2.4  0.005 99.8  
Ni2+ 0.04  25.7  0.18  99.3  56  0.05 99.9  
Pb2+ 0.5  3.3  < 0.2  94.0  0.45  <0.03 93.3  
Sn2+ –  6.9  0.09  98.7  4.4  <0.05 99.0  
Zn2+ 0.02  25.5  0.28  98.9  17.2  <0.005 100  
Total  –  594.6  2.49  99.6  317.75  0.26 99.9  
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Iron oxide-based sorbent can be successfully used for drinking water treatment (for
removing of As, in particular). At the beginning, the drinking water should be passed through a
self-cleaning filter (e.g., AMIAD) with mesh sizes of 10 μm to remove sand. After As
sedimentation by iron oxides the drinking water is ozonized in order to remove the dissolved Fe
ions (which usually are present in the groundwater as well). In the final stage, the drinking water
is passed through carbon filters.

The iron oxide polyvalent magnetic nanoparticles produced by electroerosion dispersion
have considerable potential use in many fields of research and application. They can be used in
the biomedical sciences (diagnostics and therapy), as ferrofluids, catalysts, coloured pigments,
for high-density magnetic recording, printer toners, Li-ion batteries, wastewater treatment and
absorption of electromagnetic waves [6].

Aluminum oxide slurry prepared by EED was delivered to the Chernobyl power plant
(near Kiev, Ukraine) after storage for 60 hours and in the Chernobyl laboratory it was mixed
with water contaminated by radioactive impurities. The results of the radioactive ion extraction
can be seen in Table 3. Comparatively low coagulation and sedimentation of Cs ions can be
explained by the decreasing activity of the aluminum-based oxide slurry.

Radioactive solution №1 Radioactive solution №2 Radioactive solution №3 
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241Am  3.1 *   100 31 *   100 155 *   100 
60Co 1.08 *  100 10.8 *   100 54 2,55±0.28 21 95 
137Cs  1,62 1.2±0.48 1.4   26 16 10.1±0.51 1.6 37 80 48.2±1.3 1.7 40 
90Sr  0.87 < <MDA   100 8.7 0.6±0.09 14.5 93 87 11.2±0.56 7.8 87 

Table 3. Results of a study in the Central Analytical Laboratory “Ecocenter” (Chernobyl, Ukraine) of
radioactive ion extraction from solutions by mixing with EED-prepared aluminum oxide sludge (after

more than 60 h since preparation).

In situ experiments using model solutions (contaminated by nonradioactive isotopes of Cs
and Sr)—prototypes of real  (contaminated by the same elements, but their radioactive isotopes)
of similar concentration in the EED reactor (or implementation of EEDSC technology) allowed
us to essentially totally remove all contaminating ions. Dispersion in plasma-evaporated metal
(Al) can pass through all valences before being finally oxidized and thus producing in situ
sorbents-coagulants, which trap even ions having +1 (Cs) and +2 valences (Sr). As one can see
from Table 3 even “old” EED-produced aluminium oxide-based sludge is able to effectively
extract caesium-137 (137Cs), americium-241 (241Am), strontium-90 (90Sr), cobalt-60 (60Co),
zinc (Zn) and lead (Pb) radioactive ions from polluted water.

* Was not detected.
a Decontamination factor дK = Ai / Af, where Ai and Af are, respectively, initial and final activities.
b Percentage deactivation BA = [Ai – Af / Ai ] × 100.
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 Alongside the metallic ions in radioactive water, it is usually additionally polluted by
organic contaminants. When a series of electropulse discharges passes through the water,
powerful electrohydrodynamic shocks ensue with electromagnetic, ultrasonic and ultraviolet
radiation pulses, and cavitation takes place, which effectively destroys all types of organic
matter found in water in the form of oils, sodium ethylenediamine acetate etc. The complex
effect on the water of such harsh physical agents engenders the destruction of the contaminating
molecules, breaking chemical bonds. Chemical compounds that enter the zone of impact of the
plasma discharge are reverted to the level of simple chemical elements with the subsequent
reverse synthesis of compounds. Water is activated with the nucleation of OH– radical ions,
excited H2O–, H2, O2, H2O+, H+ ions and electrons e–. The high local concentration of active
particles determines their partial recombination and the synthesis of molecular products: H2,
H2O2, H3O2, H2O, O3 etc. A distinctive feature of the process is that at the same time, particles
with opposite properties are generated, providing oxidative (OH–, H2O–, H2O2, O2, O3) and
reducing (H2, H2O+, H+) reactions.

Unfortunately, the EEDSC method is inapplicable to landfill water contaminatet with
“heavy” organic matter. The destruction of organic contaminants occurs so efficiently that large
amounts of foam are formed (Figure 3),  preventing effective cleaning, while the intensive
ozonation is of great help using the installation shown in Figure 2. Using this installation, 1 m3

of heavy organic-polluted water with a chemical oxygen demand (COD) of 9000 mg O2/dm3

can be cleaned in 24 h (using 79.5 kWh of electricity) resulting in 16 mg O2/dm3, which is 10
times lower than the safe limit.

Figure 3. The foam formed as a result of destruction of heavy organic contaminants.
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4.  Conclusions

The presented technologies of electroerosion dispersion (EED) of powder production and
electroerosion dispersion, sorption and coagulation (EEDSC) for water purification have a wide
spectrum of applications, are very efficient, cheap and ecologically friendly. The technology of
intensive ionization mimics natural processes of water cleaning, is very efficient for drinking
water treatment and helps to solve the problems with sewage water. The level of technological
development allows us to design and manufacture industrial equipment for particular needs.
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