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This literature survey reviews recent advancements in transfer learning and domain adaptation, 

focusing on methodologies aimed at mitigating negative transfer and enhancing system 

performance across various domains. The survey analyzes 18 key papers published in 2023, 

highlighting the proposed systems, methodologies, performance metrics, advantages, limitations, 

and future research directions. Key findings include the development of meta-learning and 

adversarial networks for optimizing source domain selection, integrating generative models to 

improve detection accuracy, and applying domain-specific representation learning in challenging 

scenarios such as medical imaging, fault diagnosis, and energy forecasting. Despite all these 

improvements, some research gaps still require addressing, such as more generalized and 

computationally efficient techniques, improved handling of diverse and dynamic datasets, and 

simplifying complex models for real-can fill these gaps and further develop the field of transfer 

learning and domain adaptation. 
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1. Introduction 

Instead both transfer learning and domain adaptation are now recognized as vital 

components of machine learning, which allows models to apply knowledge from a source 

domain to another domain (target domain), in particular where data may be scarce or difficult 

to obtain. Medical imaging, fault diagnosis, energy forecasting and other fields have shown 

these techniques to have considerable potential. Yet the usefulness of transfer learning is often  
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affected by negative transfer, when knowledge from the source domain has a negative 

influence on the target task's performance. The primary reason lies in varying data 

distributions, label spaces or objective functions between source and target domains Recent 

work has sought to develop methods to detect and alleviate negative transfer, therefore 

improving transfer learning model performance overall. Several approaches like meta-

learning, adversarial training and generative models have been put forward for source domain 

selection optimization, feature enhancement extraction and models having capability across 

complex and diverse domains. This survey of the literature seeks to give a comprehensive 

review on modern transfer learning and domain adaptation technologies, but especially those 

published in the year 2023. It examines 18 key papers that are introducing novel systems and 

methodologies to deal with negative transfer difficulties. Each paper is explained, first in terms 

of its proposed system and secondly in the methodologies used to implement it; thirdly its 

performance metrics for instance those given by ROC curves; fourthly what advantages it has 

compared with other methods available in this area? The paper is then points out any limits 

restricting use of the method to some situations as well as potential directions for future 

research on this subject matter. In addition this survey touches on the diverse span of 

applications where transfer learning and domain adaptation are being applied. It also reviews 

recent efforts to improve their robustness and efficiency. In identifying any existing research 

gaps and future research questions, this study helps to provide a view of the current landscape 

of progress in transfer learning and domain adaptation. Such insights can be used as a guide 

for future developments. 

 

2. Related Work 

Significant progress has been made in the area of transfer learning and domain adaptation, 

particularly on negative-transfer discovery and alleviation. It happens when the knowledge 

from source domain adversely affects performance in target domain. All of the 18 reference 

papers that this literature survey considers utilize different techniques in order to tackle some 

aspect or other of transferring knowledge across domains. 

2.1. Meta-Learning for Source Domain Optimization 

An interesting variation of this, meta-learning to learn the selection of a source domain in 

transfer learning. PACOR deals with this problem by using only local information to adapt, it 

models all the static TCP properties but also internalizes a model of adapting to specific tasks 

which is further optimized in resource constrained environment like smartphones, Wi-Fi has 

CPU-limited too and many other high-priority activities are performed. The same holds true 

for optical fibre nonlinear equalization, where the worst negative transfer can successfully be 

eliminated with significantly lower convergence time and still maintaining a slightly better Q-

factor [1]. Future work in the domain could instead investigate different meta-learning tactics 

to tune system's generalization abilities even under challenging settings. 

2.2. Multiview Predictive Local Adversarial Network (MPLAN) in Fault Diagnostics 

One other creative approach is that of Multiview Predictive Local Adversarial Network 

(MPLAN) used for partial transfer learning in cross-domain fault diagnostics. To align the 

source and target domains without causing negative transfer because of outlier classes, simply 
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enables a local adversarial training (LAT) following dual classifiers in MPLAN. This does not 

imply that the system is recommended for sentence simplification tasks, but it shows a 

performance boost of 10% over baseline methods since we used off-the-shelf segmentation 

and latent-space representations. However, the use of generative adversarial networks 

introduces a significant computational cost and therefore needs to be addressed by optimizing 

it further [2]. 

2.3. Multi-round Transfer Learning and Generative Adversarial Networks (MTL-MGAN) for 

Lung Cancer Detection 

Multi-round transfer learning-mixed GAN (MTL-MGAN) is a potential solution in the scope 

of medical for early detection in lung cancer. This system gives priority to source domains and 

adapts loss functions in order not to have negative transfer, showing an important improvement 

of accuracy, sensitivity and specificity. Although effective for maintaining Cervical Adjacent 

Segment Degeneration, the complicated system limits its clinical application in real-time and 

may be simplified accordingly to enhance user convenience in future research [3]. 

2.4. Discriminative Manifold Distribution Alignment (DMDA) for Domain Adaptation 

The author introduce Discriminative Manifold Distribution Alignment (DMDA) that replaces 

the target domain data with generated samples, which enables to align both global and local 

distributions between different domains effectively in supervised learning scenario via 

manifold-based ideal separators. Experimental results on disparate domain adaptation tasks 

demonstrate that DMDA achieves state-of-the-art performance in classification accuracy, at 

the same time preserving local geometrical structures. That being said, this (computation) 

might need to become more efficient for high-dimensional data splitting, and hence one of the 

future research directions is on how to reduce computations in such settings [4]. 

2.5. Cross-Subject Emotion Recognition Using EEG Signals 

In the CSDS method, which is called Cross-Subject Source Domain Selection, source domain 

would be dynamically selected based on time slot for emotion recognition with EEG signals. 

The approach has been demonstrated as providing 2.8% improved classification accuracy and 

a corresponding runtime reduction of almost two-thirds on average compared to the state-of-

the-art reference method. While effective, this likely makes the method less suitable for a 

broader range of environments where quality in initial data may not be as good. Further work 

may be able to improve the robustness of this method across different conditions [5]. 

2.6. Dual Transfer Learning in Medical Image Classification 

In medical imaging, source and target domains which utilizes both the dual-transfer learning 

approach as well as the intersection of stock imagery patterns. In this variety of approach, the 

actual degree of performance improvement is above 10%. And when combined with data 

augmentation techniques, that level will be As it could be applied to a wide variety of models, 

including those like VGG16 and Xception Etc., then in the end the performance improvement 

may simply be viewed from either an exceedingly broad rather than very narrow perspective 

However, the dual transfer learning approach requires large labelled datasets, which can be a 

restriction on its use. In the future, new research should give direct attention to more efficient 

fine-tuning techniques that lessen the danger of over-fitting in smaller datasets while retaining 

a high level of predictive capacity. [6] 
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2.7. Deep Domain-Adversarial Anomaly Detection 

The challenge of anomaly detection is effectively met by a deep domain-adversarial approach 

with one-class transfer learning, especially for those cases where the difference between 

distributions is larger in scale. However, this method may raise detections and resistance to 

attack, yet it's lack of data that can make adjustments or adaptations in the face of such large 

distribution differences. Future work in this area will thus concentrate on finding ways to deal 

with such differences more effectively so as to reduce chances for overfitting [7]. 

2.8. Complementary Attention-Driven Contrastive Learning (CACHE) for Person Re-

Identification 

Person re-identification is a new area of unsupervised machine vision research. Traditional 

approaches to this problem rely heavily on high-quality labeled data Social media images, the 

most common source for training deep learning based person re-identification models 

currently in vogue, are often a displeasing environment. The CACHE algorithm attempts to 

improve unsupervised domain adaptive person re-identification. One method used in the 

CACHE framework is designed to greatly enhance clustering accuracy and reduce the number 

of noisy pseudo-labels. It also significantly improves mean Average Precision (mAP) and 

Cumulative Matching Characteristics (CMC). When applied to larger datasets, however, the 

algorithm may need help with scalability. Feature extraction processes optimized to ensure 

scalability without sacrificing performance are an important goal for future research [8]. 

2.9. Active Broad-Transfer Learning for Class-Imbalanced Fault Diagnosis 

Addressing class imbalance is a key open problem in fault diagnosis research. Active Broad-

Transfer Learning technique achieves high algorithm classification performance by improving 

feature space representation; however, when it comes to the face of immediate kind. When the 

system is used in class-imbalance scenes, although its practicality is definitely there, its 

complexity and dependence on the accuracy pseudo-labelling of samples introduce that not so 

simple questions are raised up. Enhances the System's Practicality. Future research aims at 

simplifying feature selection processes, he suggested [9]. 

2.10. Multisource Domain Adaptation for Process Fault Diagnosis 

Introduce a multisource domain adaptation network for process fault diagnosis which varies 

according to load conditions. By employing both feature-level and class-level adaptation to 

minimize the influence of negative transfer, results from nine industrial cases can be obtained 

with high accuracy. However, implementation of such a system in real-world settings is 

complicated by its dependence on multiple source domains. It might be possible to streamline 

this process and make it more user-friendly in the future, thereby making it practical for 

deployment in industrial applications [10]. 

2.11. Weighted Domain Adaptation with Double Classifiers for Open Set Fault Diagnosis 

To do fault diagnosis in an open environment, a method of dual weighted domain adaptation 

classifiers (abbreviated as WDADC) is offered. This method solves the open set recognition 

problem by doing what it can to induce positive transfer between the learned partial classifier 

and the target classes in false positives problem really exist in the cases. Thus the methodology 

has general advantages but may still encounter some risk of negative transfer in unsupportive 
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environments. The extension of the method's range in applications to still more dynamic 

scenarios is a key problem for further study [11]. 

2.12. Domain Adaptation for Electronic Nose Drift Compensation 

A complex domain adaptation technique combines dictionary learning, canonical correlation 

analysis, and locality-preserving projection to address asymmetric shift changes in electronic 

nose drift calibration. This method accomplishes great classification precision yet may require 

substantial computation, constraining its utilization in real-time situations. Subsequent 

analyses could concentrate on streamlining these processes for real-time purposes without 

sacrificing result quality, possibly by employing approximation methods or parallelizing 

segments of the calculations. The system shows promise but would benefit from optimization 

to better serve rapidly evolving real-world needs [12]. 

2.13. Transformer-Based Domain-Specific Representation for Vehicle Re-Identification 

A self-taught neural network analyzed vehicle footage across domains autonomous. It 

customized its representations according to each location's idiosyncrasies, surpassing all 

unsupervised domain adaptation techniques for vehicle identification. However, the network's 

demands were considerable, implying future work must maximize results while minimizing 

requirements like this system. Additionally, researchers should investigate how to impart this 

network's cross-domain learning prowess to other contexts so all autonomous systems can 

benefit from its versatile vision [13]. 

2.14. LSTM-TL for Building Energy Demand Forecasting 

While long short-term memory networks equipped with transfer learning capabilities 

demonstrate promising potential for energy demand prediction in the face of weather 

fluctuations, their dependence on historical data renders the system less nimble against the 

backdrop of abrupt changes. Looking ahead, enhancing the model's reactivity to sudden shifts 

through mechanisms like online training may strengthen its forecasting acuity even under 

conditions marked by unpredictability. Namely, continuing model self-updates rooted in 

streaming observations could help the architecture stay one step ahead of capricious 

environmental factors. For now, leveraging past knowledge remains pivotal for enhancing 

forecast precision when circumstance veer off course gradually [14]. 

2.15. Combining MAML with Transfer Learning for Regression Problems: 

Integrating model-agnostic meta-learning (MAML) with transfer learning has shown promise 

for improving regression performance across varying datasets. Nevertheless, the complexity 

of current ensemble techniques threatens practical implementation. Future work should aim to 

simplify these approaches while preserving effectiveness, possibly through clever 

modularization or pruning of less impactful components [15]. 

2.16. Double-Stage Transfer Learning for Brain-Computer Interfaces (BCIs) 

A double-stage transfer process was proposed to enhance brain-computer interface decoding 

accuracy via adaptive trial alignment and weighting of electroencephalography signals. 

However, overreliance on precise alignments may limit functionality in noisier environments 

outside tightly-controlled studies. Continued exploration of robust alternatives, like 

incorporating alignment uncertainty or exploiting commonalities across diverse signal 
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patterns, could help extend this system's utility to real-world scenarios encompassing greater 

inter-subject and intra-subject variability [16]. 

2.17. Generative Inference Network for Imbalanced Domain Generalization 

While generative inference networks show promise for addressing imbalanced domain 

generalization by augmenting minority domain samples, their effectiveness remains 

constrained by the diversity and availability of source data used to train the model. GINets 

introduce a novel approach for improving model generalization through sample generation to 

balance underrepresented domains. Future research exploring techniques to expand the 

applicability of this method to an even broader range of data presentations, regardless of source 

variances, could help unlock its full potential for tackling domain imbalances. The 

development of strategies for enriching a GINet's knowledge beyond limited initial training 

datasets may strengthen its capacity to generalize across disparate domains [17]. 

2.18. PEACE: Domain-Adaptive Retrieval Framework  

The PEACE framework capitalizes on label embedding’s along with adversarial training to 

bolster cross-domain retrieval across divergent datasets. While highly proficient, the system 

could benefit from approaches to accommodate noisy and diverse annotation metadata more 

gracefully. Prospective analysis may refine how the algorithm interprets multifaceted labels to 

provide steadier results regardless of domain specifics within the data. Moreover, integrating 

mechanisms to leverage label correlations when such tags are less than well-defined holds 

promise for enhancing dependability [18]. 

Table 1. Literature review 
SI. 

No 

Proposed 

System 

Methods Metrics Cons Limitations Future Work 

[1] 

Meta-learning 

for optical 

fibre 

equalization 

Dataset 

construction, 

neural network 

training 

Q-factor 

improvement, 

convergence time 

Efficient 

adaptation 
High complexity 

Exploration of 

other meta-

learning strategies 

[2] 

MPLAN for 

fault 

diagnostics 

Adversarial 

training, dual 

classifiers 

10% improvement 

Avoids 

negative 

transfer 

Computationally 

intensive 

Optimizing 

adversarial 

network 

[3] 

MTL-MGAN 

for lung 

cancer 

detection 

Multiround TL, 

GAN 

Accuracy, 

sensitivity, 

specificity 

High accuracy Complexity 
Simplification for 

real-time use 

[4] 

DMDA for 

domain 

adaptation 

Manifold 

learning, 

alignment 

Classification 

accuracy 

Maintains 

local 

structures 

Inefficiency in 

high-dimensional 

data 

Application to 

broader domains 
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[5] 

CSDS for 

emotion 

recognition 

Dynamic data 

selection, 

Copula model 

2.8% accuracy 

gain 

Improved 

classification 

Data selection 

dependency 

Generalization to 

diverse datasets 

[6] 

Dual transfer 

learning for 

medical 

images 

Pattern 

convergence, 

pre-trained 

models 

Performance 

improvement 

Effective with 

data 

augmentation 

Needs large 

datasets 

Fine-tuning 

optimization 

[7] 

Domain-

adversarial 

anomaly 

detection 

Hypersphere 

adaptation, 

neural network 

Detection 

accuracy 

Robust 

detection 
Potential overfitting 

Addressing 

distribution 

differences 

[8] 
CACHE for 

person re-ID 

Contrastive 

learning, 

attention 

module 

mAP, CMC 

Improved 

clustering 

accuracy 

Scalability issues 
Enhancing feature 

extraction 

[9] 
ABTCI for 

fault diagnosis 

Time-frequency 

features, 

pseudo-labeling 

Performance in 

class-imbalanced 

tasks 

Handles class 

imbalance 
Complexity 

Simplifying 

feature selection 

[10] 
FC-MSDA for 

fault diagnosis 

Feature-level, 

class-level 

adaptation 

High accuracy 

Effective 

across 

domains 

Implementation 

complexity 

Streamlining 

multisource 

adaptation 

[11] 

WDADC for 

open set 

diagnosis 

Weighted loss, 

double 

classifiers 

Open set 

recognition 

accuracy 

Promotes 

positive 

transfer 

May not fully 

mitigate negative 

transfer 

Extending to 

dynamic 

environments 

[12] 

Domain 

adaptation for 

EN drift 

Dictionary 

learning, 

projection 

Recognition 

accuracy 

High accuracy 

in drift 

scenarios 

Computational 

intensity 

Real-time 

application 

optimization 

[13] 
TDSR for 

vehicle re-ID 

Transformer-

based learning 

Outperforms 

SOTA 

Effective 

domain-

specific 

learning 

Requires significant 

resources 

Reducing 

computational 

demands 

[14] 

LSTM-TL for 

energy 

forecasting 

Transfer 

learning, LSTM 

Improved 

prediction 

accuracy 

Accurate 

under varying 

conditions 

Data dependency 

Adapting to 

rapidly changing 

environments 

[15] 

MAML with 

TL for 

regression 

Ensemble 

methods 

Superior 

Performance 

Handles 

diverse 

distributions 

Complexity 
Simplifying 

implementation 

[16] DSTL for BCI 

EEG alignment, 

feature 

extraction 

Improved 

classification 

Effective 

transfer 

Alignment 

dependency 

Enhancing 

robustness in 

noisy 

environments 

[17] 

GINet for 

domain 

generalization 

Generative 

inference, 

sample 

augmentation 

Model 

generalization 

Addresses 

imbalance 

Source data 

dependency 

Extending to 

diverse data 
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[18] 
PEACE for 

retrieval 

Label 

embeddings, 

adversarial 

learning 

Cross-domain 

retrieval 

performance 

Effective 

retrieval 

Pseudo-label 

challenges 

Enhancing 

diversity handling 

The literature summarized in table 1 outlines 18 reference papers examining proposed systems, 

employed methodologies, evaluated performance metrics, noted advantages, limitations, and 

recommendations for future work. Approaches ranged from utilizing efficient and robust 

transfer learning to address domain challenges. One paper designed a system that transferred 

knowledge across domains using self-supervised learning to overcome distribution shifts while 

maintaining state-of-the-art performance. However, the model struggled with significant 

differences between source and target domains. Alternatively, a second effort used adversarial 

training to align feature representations in an unsupervised manner without requiring paired 

data. While demonstrating strong generalization capabilities, the approach was complex and 

computationally expensive. Going forward, developing simplified yet effective transfer 

learning methods for diverse applications remains an important area for additional study. 

 

3. Existing Research Gaps 

The literature indicates progress has been made regarding transfer learning and domain 

adaptation, particularly addressing negative transfer. Nonetheless, gaps persist. Many 

proposed systems necessitate sizable labelled datasets for effective training, which may only 

sometimes be feasible, especially where data collection proves challenging [6]. Furthermore, 

the intricacy of certain techniques, including adversarial preparation and generative models, 

can restrict practicality in real-time applications. Additionally, dynamically and diversely 

adapting data recurrently presents difficulties in avoiding overfitting or generalizing aptly [3, 

8]. Future studies should focus on more generalized and computationally economical methods 

applicable across a broader spectrum of uses while tackling scalability and adaptability in 

genuine situations [7,11]. The studies should produce approaches minimizing demands for 

vast annotated information while managing complexity to allow practical, timely use. 

Addressing changing, diverse data and boosting generalizability despite limited samples can 

additionally benefit researchers and users. 

3.1. Future directions based on the literature survey: 

1. Exploration of alternative meta-learning strategies involves investigating diverse 

approaches to optimize source domain selection and enhance adaptability across intricate 

tasks. 

2. Optimization of adversarial networks structures on cultivating techniques to decrease 

computational complexity while maintaining effectiveness in avoiding negative transfer. 

3. Simplification for real-time applications focuses on streamlining elaborate transfer 

learning models like MTL-MGAN to render them more appropriate for real-time and clinical 

use without compromising precision. 



357 B. Adithya et al. Advancements and Challenges in Transfer...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S9 (2024) 

4. Expanding application to a wealth of domains emphasizes broadening methodologies 

such as DMDA to increasingly diverse and multidimensional subject areas to fortify 

generalization and efficiency. 

5. Augmenting generalization to varied datasets aims to bolster robustness and 

applicability across data that differs widely and under changing external conditions. 

6. Exploring enhanced fine-tuning techniques in dual transfer learning seeks more 

effective means of refinement, particularly with smaller labeled data, to reduce overfitting risk. 

7. Developing strategies to handle substantial distribution differences in domain-

adversarial learning targets decreasing overfitting proclivity and strengthening model 

sturdiness. 

8. Improving feature extraction processes in systems like CACHE aims to ensure 

scalability and sustained output with larger, more diverse information. 

9. Simplifying feature selection in active broad-transfer learning systems targets making 

them more usable and straightforward to employ in real applications. 

10. Streamlining multisource adaptation focuses on streamlining processes to lessen 

complexity and facilitate industrial deployment. 

11. Extending open-set fault diagnosis methods to more capably handle highly dynamic 

environments attempts to mitigate negative transfer risk in swiftly changing scenarios. 

12. Optimizing techniques for real-time applications: Focus on streamlining domain 

adaptation methods used in electronic nose drift compensation to minimize computational 

requirements while sustaining high accuracy for real-world use in real-time settings. 

13. Reducing computational demands of representation learning: Craft approaches to 

lessen the processing power needed for transformer-based domain-specific representation 

learning, making the methodology more accessible for widespread implementation at large 

scales. 

14. Improving adaptability to changing conditions: Enhance the flexibility of energy 

demand forecasting systems including LSTM-TL to rapidly shifting environmental situations, 

ensuring more precise and dependable predictions under diverse circumstances. 

15. Simplifying complex ensemble methods: Simplify the implementation of 

sophisticated ensemble methods combining MAML with transfer learning to streamline them 

for a broader assortment of regression issues. 

16. Boosting robustness in noisy environments: Focus on bolstering the robustness of 

double-stage transfer learning algorithms in erratic environments, confirming dependable 

performance in an assortment of conditions. 

17. Broadening applicability across diverse data: Widen the scope of generative inference 

networks such as GINet to handle a more extensive range of data scenarios, improving their 

generality and effectiveness when addressing imbalanced domains. 
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18. Enhancing handling of diverse labels: Forge approaches to boost the management of 

diverse labels in domain-adaptive retrieval frameworks including PEACE, confirming more 

reliable retrieval outcomes between different domains. 

These future directions highlight potential research avenues that can address current 

constraints and further progress the field of transfer learning and domain adaptation. 

 

4. Conclusion 

This literature review presents many important strides in transfer learning, Domain 

Adaptation, but those who conducted the studies weren't all thinking along the lines of how to 

avoid negative transfer. Each study has its special methods and systems that improve those 

currently in existence; however, there are several areas where research could be conducted. 

General limitations are that the method often requires large label datasets, computational 

complexity is high, under diverse and dynamic data situations there are many difficulties. We 

need still more generalized, robust and computationally efficient systems for research in the 

future, to assure transfer learning and Domain Adaptation methods can be used more widely 

effectively. This review of related work describes the progress made in the field. It identifies 

the areas which still need to be explored in order to tap fully into the potential of transfer 

learning and Domain Adaptation techniques. 
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