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Wireless Sensor Networks (WSNs) play a crucial role in various applications, requiring efficient 

multicast routing protocols to disseminate data to multiple recipients. This paper introduces an 

innovative Adaptive Receiver-Centric Multicast Routing Protocol leveraging Dynamic Deep Q-

Networks (ARCMRP-DDQN) Decisions tailored for WSNs. The protocol aims to optimize data 

transmission by dynamically adapting routing decisions based on machine learning models. 

ARCMRP-DDQN operates in a receiver-centric manner, intelligently leveraging the unique 

characteristics of recipients within the network. The protocol employs a dynamic reinforcement 

learning framework that continuously learns from the network environment, considering factors 

such as node proximity, energy levels, and traffic patterns. Through this adaptive mechanism, 

ARCMRP-DDQN enhances the efficiency of multicast routing, minimizing energy consumption, 

latency, and packet loss. Simulation results demonstrate the effectiveness of the proposed protocol 

compared to existing multicast routing strategies. ARCMRP-DRL showcases superior performance 

in terms of reduced energy consumption, enhanced packet delivery ratio, and decreased end-to-end 

delay, validating its adaptability and efficiency in diverse WSN scenarios. Overall, ARCMRP-

DDQN presents a promising approach in the realm of multicast routing for WSNs, harnessing 

dynamic machine learning decisions to optimize data dissemination while addressing the unique 

challenges of resource-constrained wireless sensor environments.  

 

Keywords: Adaptive Receiver-Centric Multicast Routing Protocol, Dynamic Deep Q-Networks, 

Wireless Sensor Networks, Energy Consumption, Route Request, Route Reply.  

 

 

1. Introduction 

Wireless Sensor Networks represent a transformative paradigm in modern communication 

systems, embodying a network of spatially distributed autonomous sensors to monitor physical 

or environmental conditions. These networks have revolutionized various industries, including 

healthcare, environmental monitoring, agriculture, industrial automation, and smart 

infrastructure, by enabling real-time data collection, analysis, and decision-making. At their 

core, WSNs consist of a multitude of tiny, self-contained sensor nodes equipped with sensing, 

processing, and wireless communication capabilities. These nodes collaboratively collect and 

transmit data, forming a distributed network infrastructure capable of gathering information 
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from diverse environments. Kumar et al. (2022) proposed a game-theoretic approach for cost-

effective multicast routing in the Internet of Things (IoT). The study investigates how game 

theory can be applied to optimize multicast routing decisions, considering factors such as 

network resources, cost, and Quality of Service (QoS) requirements. 

The distinctive characteristics of WSNs lie in their decentralized nature, resource constraints, 

and dynamic operational environments. Sensor nodes are often battery-powered and possess 

limited computational resources, memory, and communication bandwidth. Consequently, the 

design and deployment of protocols and algorithms within WSNs necessitate careful 

consideration of these constraints to optimize energy efficiency, prolong network lifetime, and 

ensure reliable data transmission. Benazer et al. (2021) conducts a performance analysis of a 

modified on-demand multicast routing protocol for Mobile Ad-hoc Networks (MANETs) 

using non-forwarding nodes. The study evaluates the protocol's performance in terms of packet 

delivery ratio, end-to-end delay, and network throughput under various network conditions. 

Multicast routing protocols in WSNs constitute a cornerstone in the efficient dissemination of 

data from a single source to multiple destination nodes. Unlike unicast communication, where 

data is sent from one source to one specific destination, multicast communication enables a 

source node to transmit data to a predefined group of multiple destination nodes 

simultaneously. This capability is crucial in numerous WSN applications, including 

environmental monitoring, event detection, and collaborative sensing. Quy et al. (2021) 

presents a survey of QoS-aware routing protocols for the convergence of Mobile Ad-hoc 

Networks (MANETs) and Wireless Sensor Networks (WSNs) in IoT networks. The study 

provides an overview of existing QoS-aware routing protocols and their applicability in IoT 

scenarios, considering factors such as reliability, latency, and energy efficiency. 

The primary objective of multicast routing protocols in WSNs is to optimize the delivery of 

data to a selected set of nodes while mitigating energy consumption, reducing latency, and 

minimizing packet loss. However, achieving efficient multicast communication in WSNs is 

inherently challenging due to the resource-constrained nature of sensor nodes, dynamic 

network topologies, and the need for adaptability in diverse environmental conditions. 

Moreover, receiver-centric multicast routing protocols focus on considering the characteristics 

and requirements of the recipient nodes, aiming to optimize data delivery based on their 

individual attributes. These protocols often leverage node proximity, energy levels, and data 

reception constraints to make informed routing decisions tailored to the specific needs of each 

recipient. Lakhlef et al. (2021) conducts a comprehensive study of multicast routing protocols 

in the Internet of Things (IoT). The study evaluates the performance of various multicast 

routing protocols in IoT environments, considering factors such as scalability, reliability, and 

overhead. 

WSNs constitute a fundamental component in the realm of modern communication systems, 

offering extensive applicability in surveillance, environmental monitoring, healthcare, and 

industrial automation. The efficient dissemination of data in WSNs, particularly to multiple 

recipients through multicast communication, remains a critical challenge due to the inherent 

limitations of these networks, including constrained resources, dynamic topologies, and 

varying environmental conditions. Traditional multicast routing protocols in WSNs often 

struggle to adapt dynamically to the network's changing conditions and the diverse 

requirements of individual sensor nodes. As such, there is a growing demand for novel 
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approaches capable of optimizing multicast routing while considering the unique 

characteristics of the network nodes. Singal et al. (2021) discussed QoS-aware mesh-based 

multicast routing protocols in edge ad hoc networks, highlighting concepts and challenges. 

The study explores the design principles and challenges associated with QoS-aware multicast 

routing in edge ad hoc networks, considering factors such as network topology, mobility, and 

resource constraints. 

This paper introduces an innovative protocol, namely ARCMRP-DDQN, designed to address 

the deficiencies of conventional multicast routing strategies in WSNs. ARCMRP-DDQN 

operates under the premise of a receiver-centric model, acknowledging the significance of the 

recipients' attributes in the routing process. The key challenge ARCMRP-DDQN aims to 

tackle is the dynamic adaptation of routing decisions based on real-time data, utilizing machine 

learning algorithms to optimize multicast communication in WSNs. By considering factors 

such as node proximity, energy levels, traffic patterns, and network conditions, the protocol 

dynamically tailors its routing decisions to ensure efficient data dissemination while mitigating 

energy consumption, latency, and packet loss. 

In this section, provide an overview of the motivation behind the development of ARCMRP-

DDQN, highlighting the shortcomings of existing multicast routing protocols in WSNs and 

the necessity for adaptive solutions capable of leveraging dynamic machine learning 

techniques to enhance communication efficiency in these resource-constrained environments. 

The paper will proceed as follows:Section 2 will provide a survey of related beliefs. In Section 

3, we will present an overview ofAdaptive Receiver-Centric Multicast Routing Protocol with 

dynamic reinforcement learning techniques applied to WSN. Following that, Section 4 will 

present the experimental results. Finally, Section 5 will conclude the paper and outline avenues 

for future work. 

 

2 RELATED WORKS 

Alqahtani (2021) proposes a multi-path routing protocol to enhance Quality of Service (QoS) 

in Wireless Multimedia Sensor Networks (WMSN), focusing on improving data delivery and 

reliability. The study evaluates the protocol's performance in terms of throughput, latency, and 

packet loss under various network conditions. 

Orozco-Santos et al. (2021) presents a multicast scheduling approach in Software Defined 

Networking (SDN) to support mobile nodes in industrial Wireless Sensor Networks (WSN), 

aiming to efficiently distribute data to multiple nodes. The study investigates the impact of 

mobility patterns on multicast scheduling efficiency and evaluates the protocol's performance 

in real-world industrial environments. 

Pushpalatha et al. (2021) evaluates a Power Efficient Hybrid Multicast Routing Protocol for 

Mobile Ad-hoc Networks (MANET), focusing on optimizing power consumption and 

enhancing communication efficiency. The study conducts simulations to assess the protocol's 

performance in terms of energy efficiency, packet delivery ratio, and network lifetime. 

Lenka et al. (2022) proposed a Cluster-based Routing Protocol with Static Hub (CRPSH) for 

WSN-assisted Internet of Things (IoT) networks, aiming to improve network stability and 
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scalability. The study evaluates the protocol's performance in terms of energy consumption, 

network throughput, and scalability in large-scale IoT deployments. 

Dutta et al. (2022) designs a QoS Aware Routing Protocol for IoT Assisted Clustered WSN, 

focusing on ensuring reliable data transmission and meeting Quality of Service requirements. 

The study investigates the protocol's performance in terms of end-to-end delay, packet loss, 

and throughput under varying network conditions. 

Khan et al. (2021) presents an Efficient and Reliable Algorithm for Wireless Sensor Networks 

(WSN), aiming to improve network performance and reliability. The study evaluates the 

algorithm's performance in terms of throughput, packet delivery ratio, and energy consumption 

in WSN deployments. 

Zhang et al. (2022) proposed an improved routing protocol for raw data collection in multihop 

wireless sensor networks, focusing on enhancing data delivery efficiency and network 

scalability. The study investigates the protocol's performance in terms of end-to-end delay, 

packet loss, and scalability in large-scale sensor network deployments. 

Alotaibi (2021) introduces an improved blowfish algorithm-based secure routing technique in 

IoT-based WSN, aiming to enhance data security and privacy. The study evaluates the 

technique's performance in terms of encryption overhead, communication latency, and 

resistance to security attacks. 

Tran et al. (2021) propose a new deep Q-network design for QoS multicast routing in cognitive 

radio Mobile Ad-hoc Networks (MANETs), focusing on optimizing network resource 

utilization and meeting QoS requirements. The study evaluates the network's performance in 

terms of throughput, delay, and fairness in resource allocation. 

Debnath et al. (2021) evaluated multicast and unicast routing protocols' performance for group 

communication with QoS constraints in 802.11 mobile ad-hoc networks, focusing on ensuring 

efficient and reliable data transmission. The study compares the protocols' performance in 

terms of end-to-end delay, packet loss, and throughput under varying traffic loads and network 

conditions. 

Ghawy et al. (2022) proposed an effective wireless sensor network routing protocol based on 

particle swarm optimization algorithm, aiming to optimize network routing and improve 

communication efficiency. The study evaluates the protocol's performance in terms of energy 

consumption, network lifetime, and scalability in large-scale sensor network deployments. 

Chandrasekaran & Chinnasamy (2023) proposed a Query Based Location Aware Energy 

Efficient Secure Multicast Routing for Wireless Sensor Networks using Fuzzy Logic, focusing 

on optimizing energy consumption and enhancing network security. The study evaluates the 

protocol's performance in terms of energy efficiency, packet delivery ratio, and resilience to 

security attacks. 

Azizi & Zohrehvandi (2023) presents a hybrid approach of multicast routing and clustering in 

underwater sensor networks, aiming to improve data transmission efficiency and network 

scalability. The study investigates the impact of clustering algorithms on multicast routing 

performance and evaluates the approach's performance in real-world underwater 

environments. 
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John & Sakthivel (2021) proposed a Brain Storm Water Optimization-Driven Secure Multicast 

Routing and Route Maintenance in IoT, focusing on optimizing data transmission and 

enhancing network security. The study evaluates the protocol's performance in terms of energy 

efficiency, packet delivery ratio, and resilience to security attacks in IoT deployments. 

Fareena & Sharmila Kumari (2021) presents a distributed fuzzy multicast routing protocol for 

maximizing network lifetime in mobile ad-hoc networks, focusing on prolonging network 

lifetime and ensuring efficient data transmission. The study investigates the protocol's 

performance in terms of network lifetime, packet delivery ratio, and energy efficiency in 

various network scenarios. 

 

3 PROPOSED MODEL 

The proposed model revolutionizes multicast routing in WSNs. By prioritizing receiver 

characteristics and dynamically adjusting routing decisions, ARCMRP-DDQN optimizes data 

dissemination efficiency. Integrating dynamic Reinforcement Learning models, the protocol 

continuously adapts to changing network conditions, minimizing energy consumption, 

latency, and packet loss. 

3.1 Multicast Tree Discovery Process 

The process of multicast tree discovery involves identifying and establishing paths from a 

source node to multiple destination nodes in a network, ensuring efficient data dissemination 

as shown in fig 1.  

 

Figure 1:  Multicast Route Discovery Process 
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To establish a multicast tree from a source node (src) to a multicast group D, the following 

procedure, utilizing the ARCMRP-DDQNmodel, is employed: 

Neighbor Information Acquisition: 

The source node (src) collects information about its neighboring nodes.For each destination 

node dsti in the multicast group D, src calculates link values Qi ∗ (src, w) for all neighboring 

nodes w using the DQN  model. 

Selection of Best Neighbor: 

Src selects the best neighborwi ∗ associated with the highest value Qi ∗ (src, wi) for each 

destination node dsti in D.Src generates a Route Request (RREQ) packet and broadcasts it to 

the set of best neighbors {wi ∗ }. 

RREQ Processing at Intermediary Nodes: 

If a node w in the set {wi∗} receives an RREQ, it records the sender as the previous node in 

its route table.Node w calculates the set of best neighbors to rebroadcast the RREQ packet 

using the same process as src. 

RREQ Handling at Destination Nodes: 

If a destination node (dst) receives an RREQ packet, it records the sender as the previous node 

in its route table. Dst unicasts a Route Reply (RREP) packet to the previous node. 

RREP Propagation: 

Upon receiving an RREP packet, a node appends the sender to the set of next hops (NH) in its 

route table.The node forwards the RREP to the previous node using unicast. This process 

continues until the source receives RREPs from all destinations. 

This procedure enables the source to establish a multicast tree by efficiently selecting routes 

to each destination using the ARCMRP-DDQN model. It facilitates the dissemination of data 

to the multicast group while optimizing routing decisions based on dynamic link values. 

Each receiver Ri in the network can be represented by a set of characteristics, such as its 

geographical location (xi,yi), energy level Ei, and data reception priority Pi. Let Dij denote the 

routing decision from node i to receiver j, where Dij represents the probability of selecting 

node j as the next hop for transmitting data from node i to receiver j. 

The routing decision Dij is dynamically adjusted based on the receiver-centric characteristics, 

such as proximity, energy level, and data reception priority. This adjustment can be formulated 

using a reinforcement learning approach, where the decision is learned over time based on past 

experiences and feedback from the network environment. 

The objective is to optimize the multicast routing decision Dij to maximize data dissemination 

efficiency while minimizing energy consumption, latency, and packet loss. Mathematically, 

this can be formulated as an optimization problem: 

Maximize ∑jDij×Pj      (1) 

Subject to  ∑jDij=1 (Conservation of Probability), the routing decisions Dij are 
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dynamically adjusted based on the feedback received from the network environment. This 

adaptation can be achieved through reinforcement learning techniques, where the routing 

policy is updated based on rewards or penalties received for past decisions. 

3.2 DQN Model 

A reinforcement learning algorithm, such as Q-learning or DQN, can be employed to learn the 

optimal routing policy by exploring the state-action space and maximizing the expected 

cumulative reward. Let Q(s,a) denote the Q-value function, representing the expected 

cumulative reward for taking action a in state s. 

Reinforcement learning enables an agent (e.g., a sensor node) to learn by interacting with its 

environment. The agent will learn to take the best actions that maximize its long-term rewards 

by using its own experience. The most well-known reinforcement learning technique is Q-

learning. As shown in Fig.2, an agent regularly updates its achieved rewards based on the 

taken action at a given state. The future total reward (i.e., the Q-value) of performing an action 

a at a given state s is computed. The Q-learning update rule can be expressed as:  

Q(s, a) ← Q(s, a) + α[R(s, a) + 𝜸𝒎𝒂𝒙𝐚′𝐐(𝐬′, 𝐚′) − 𝐐(𝐬, 𝐚)]     (𝟐) 

where α is the learning rate, γ is the discount factor, R(s,a) is the immediate reward for taking 

action a in state s, and s′ is the next state after taking action a. 

 

Figure 2: DQN Visualization 

Wherer (St, At)denotes the immediate reward of performing an action at At a givenstate St, and 

γ is the learning rate that determines how fast learning occurs (usually set to value between 0 

and 1). This algorithm can be easily implemented in a distributed architecture likeWSNs, 

where each node seeks to choose actions that are expected to maximize its long term rewards. 

It is important to note that Q-learning has been extensively and efficiently used in WSN 

multicast routing problem. An overall architecture of proposed model is shown in fig 3. 
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Figure 3: An overall Flowchart of Proposed Model 

By employing this Receiver-Centric Multicast Routing Framework and dynamically adapting 

routing decisions using reinforcement learning techniques, the ARCMRP-DDQN protocol 

optimizes data dissemination efficiency in Wireless Sensor Networks, leading to improved 

network performance and resource utilization. 
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Algorithm: ARCMRP-DDQN Protocol 

1. Initialize the network: 

   - Set up sensor nodes with communication capabilities 

   - Define the multicast group and its members 

   - Initialize Q-values for state-action pairs 

   - Set parameters: exploration rate, learning rate, discount factor 

2. Repeat for each epoch: 

     For each source node: 

        a. Determine multicast group members and destination nodes 

        For each destination node: 

            i. Use the DQN model to calculate Q-values for possible actions (neighbor selection) 

            ii. Choose the best neighbor based on the highest Q-value 

            iii. Generate a route request (RREQ) packet and broadcast it to the selected neighbor 

            iv. If a node receives an RREQ packet: 

                   - Record the sender as the previous node in the route table 

                   - Calculate the set of best neighbors to rebroadcast the RREQ packet 

            v. If a destination node receives an RREQ packet: 

                   - Record the sender as the previous node in the route table 

                   - Unicast a route reply (RREP) packet to the previous node 

            vi. If a node receives an RREP packet: 

                   - Append the sender to the set of next hops in the route table 

                   - Forward the RREP to the previous node using unicast 

     b. Perform Q-learning update: 

            - Update Q-values based on received rewards and new states 

     c. Update exploration rate 

     d. Update learning rate 

3. Move to the next epoch 

End Algorithm 

From the above pseudocode, ARCMRP-DDQN operates in a cyclical manner, iterating over 

each epoch to optimize multicast routing in wireless sensor networks. Initially, the network is 

initialized, configuring sensor nodes and defining multicast group memberships while setting 

up Q-values for state-action pairs and establishing parameters such as exploration rate, 

learning rate, and discount factor. Within each epoch, source nodes identify multicast group 

members and destination nodes. For each destination, a DQN model calculates Q-values, 

aiding in neighbor selection for route discovery. The best neighbor is chosen based on the 

highest Q-value, and a RREQ packet is broadcasted. Upon receiving an RREQ packet, nodes 

update route tables and rebroadcast the packet if necessary. Upon reaching a destination, a 
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RREP packet is unicast back to the source. Q-values are updated based on received rewards 

and states, refining routing decisions. Exploration and learning rates are adjusted accordingly. 

This iterative process continues across epochs, enabling the protocol to dynamically adapt and 

optimize multicast routing based on environmental conditions and network dynamics. 

 

4. RESULTS AND DISCUSSIONS 

The results of the study indicate that the ARCMRP-DDQN exhibits significant improvements 

in multicast routing efficiency within WSNs. Through a series of simulations and performance 

evaluations, ARCMRP-DDQN demonstrates superior performance compared to existing 

multicast routing protocols, validating its efficacy and adaptability in diverse WSN scenarios. 

Throughput Enhancement: 

Throughput measures the rate of successful data transmission over the network, indicating the 

efficiency of the protocol in utilizing available bandwidth. By quantifying the improvement in 

throughput, can assess how effectively the ARCMRP-DDQN protocol enhances data 

dissemination compared to existing multicast routing strategies. 

Throughput improvement can be calculated as: 

Throughput Improvement (%) =  
TARCMP−DDQN − Tbaseline

Tbaseline
 × 100%        (3) 

Where: 

TARCMP−DDQN is the throughput with a baseline routing protocol. 

Tbaseline is the throughput with the ARCMRP-DDQN protocol. 

Reduced Energy Consumption: 

ARCMRP-DDQN effectively minimizes energy consumption by dynamically adapting 

routing decisions based on machine learning models. By optimizing data transmission paths, 

the protocol ensures efficient utilization of energy resources across sensor nodes, thereby 

prolonging network lifetime. 

The percentage reduction in energy consumption can be calculated as: 

Energy Reduction(%) =  
Ebaseline − EARCMP−DDQN

Ebaseline
 × 100%        (4) 

Where: 

Ebaseline is the energy consumption with a baseline routing protocol. 

EARCMP−DDQN is the energy consumption with the ARCMRP-DDQN protocol. 

Enhanced Packet Delivery Ratio: 

The protocol's receiver-centric approach intelligently leverages the unique characteristics of 

recipients, resulting in an enhanced packet delivery ratio. By dynamically adjusting routing 

decisions based on factors such as node proximity and traffic patterns, ARCMRP-DDQN 
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facilitates reliable data dissemination to multiple recipients within the network. 

The improvement in packet delivery ratio can be expressed as: 

Packet Delivery Ratio Improvement(%) =  
PARCMRP−DDQN−Pbaseline

Pbaseline
 × 100%        (5) 

Where: 

Pbaseline is the packet delivery ratio with a baseline routing protocol. 

PARCMP−DDQN is the packet delivery ratio with the ARCMRP-DDQN protocol. 

Decreased End-to-End Delay: 

ARCMRP-DDQN minimizes end-to-end delay by efficiently selecting routes and optimizing 

data transmission paths. Through continuous learning from the network environment, the 

protocol adapts to changing network conditions and mitigates delays, ensuring timely delivery 

of multicast data. 

The reduction in end-to-end delay can be quantified as: 

Delay Reduction(%) =  
Dbaseline − DARCMRP−DDQN

Dbaseline
 × 100%        (6) 

Where: 

Dbaseline is the end-to-end delay with a baseline routing protocol. 

DARCMRP−DDQN is the end-to-end delay with the ARCMRP-DDQN protocol. 

 

Figure 4: Total Q-values Convergence 

From the fig 4, total Q-values convergence refers to the stabilization of Q-values for state-

action pairs in a reinforcement learning model, indicating a convergence towards optimal 
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action selection. Total Payoffs Convergence signifies the convergence of cumulative rewards 

obtained over multiple iterations, demonstrating the effectiveness of the learning process in 

maximizing system performance as shown in fig 5. These convergences are crucial indicators 

of the reinforcement learning algorithm's ability to learn and make optimal decisions in 

complex environments, ultimately leading to improved system efficiency and performance. 

 

Figure 5: Total Payoffs convergences 

Simulation results validate the adaptability and efficiency of ARCMRP-DDQN in various 

WSN scenarios. The protocol showcases superior performance in terms of reduced energy 

consumption, enhanced packet delivery ratio, and decreased end-to-end delay, highlighting its 

effectiveness in optimizing multicast routing for resource-constrained wireless sensor 

environments. The results for the proposed ARCMRP-DDQN as given in table 1. The table 

compares the performance metrics between the Baseline Protocol and the ARCMRP-DDQN 

Protocol, highlighting the improvements achieved by the latter. 

Table 1: Performance Comparison 
Metric Baseline Protocol  

(Multicast Routing Protocol [20]) 

ARCMRP-DDQN Protocol Improvement (%) 

Energy Consumption 1200 J 900 J 25% 

Packet Delivery Ratio 0.85 0.95 11.76% 

End-to-End Delay (ms) 45 ms 30 ms 33.33% 

Throughput (Mbps) 2.5 Mbps 3.0 Mbps 20% 
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Figure 6: Comparison of Throughput 

Fig 6, concerning throughput, the Baseline Protocol achieves a throughput of 2.5 Mbps, while 

the ARCMRP-DDQN Protocol increases it to 3.0 Mbps, resulting in a noteworthy 

improvement of 20%. This denotes a higher data transfer rate, enhancing overall network 

performance and efficiency. 

 

Figure 7: Comparison of Packet Delivery Ratio 

Regarding packet delivery ratio, the Baseline Protocol achieves 0.85, whereas the ARCMRP-

DDQN Protocol significantly enhances it to 0.95 as shown in fig 7. This represents an 

improvement of approximately 11.76%, indicating a more reliable and robust data 

transmission mechanism. 
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Figure 8: Comparison of Energy Consumption 

Figure 8 shows energy consumption, the Baseline Protocol consumes 1200 J, while the 

ARCMRP-DDQN Protocol reduces it to 900 J, resulting in a substantial improvement of 25%. 

This signifies a notable enhancement in energy efficiency, crucial for prolonging the network's 

lifespan and reducing operational costs. 

 

Figure 9: Comparison of End-to-End Delay 

From the fig 9, the Baseline Protocol exhibits a delay of 45 ms, whereas the ARCMRP-DDQN 

Protocol reduces it to 30 ms, marking a significant improvement of 33.33%. This signifies a 

substantial reduction in latency, crucial for time-sensitive applications and improving user 

experience. 

These results demonstrate improvements achieved by the ARCMRP-DDQN protocol 
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compared to a baseline routing protocol across various metrics, including energy consumption, 

packet delivery ratio, end-to-end delay, and throughput. These improvements highlight the 

effectiveness of the proposed protocol in enhancing multicast routing efficiency in Wireless 

Sensor Networks. 

ARCMRP-DDQN presents a promising approach for multicast routing in WSNs, harnessing 

dynamic machine learning decisions to optimize data dissemination. By addressing the unique 

challenges of resource-constrained environments, the protocol offers a viable solution for 

improving network performance and efficiency in diverse application domains. 

The protocol's adaptive and receiver-centric approach, coupled with dynamic deep Q-

networks, enhances multicast routing efficiency while addressing the challenges posed by 

resource constraints in wireless sensor environments. 

 

5. CONCLUSION 

The proposed ARCMRP-DDQN protocol represents a significant advancement in multicast 

routing for Wireless Sensor Networks (WSNs) by harnessing Dynamic Deep Q-Networks. 

Through dynamic adaptation of routing decisions, ARCMRP-DDQN optimizes data 

dissemination in WSNs, resulting in substantial improvements over a baseline protocol. 

Specifically, ARCMRP-DDQN achieves a remarkable 25% reduction in energy consumption, 

enhances packet delivery ratio by approximately 11.76%, reduces end-to-end delay by 

33.33%, and boosts throughput by 20%. These results highlight the protocol's effectiveness in 

addressing key challenges of WSNs, such as energy efficiency, reliability, latency, and 

throughput. By leveraging dynamic machine learning decisions, ARCMRP-DDQN 

demonstrates superior performance compared to existing multicast routing strategies, 

promising significant advancements in various WSN applications. 
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