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In our study, the generalized operator quasi-equilibrium problem (GOQEP) has been introduced 

and investigated in the framework of topological vector space. ϕ -condensing maps have been 

employed in multiple cases to prove that its solution exists. Additionally, the operator quasi-saddle 

point problem has been proven by us. For the purpose of obtaining the GOEP existence results, we 

have utilized the fixed point theorem. For this reason, the maximal element theorem has also been 

utilized. With the use of this research, we want to consolidate and generalize the conclusions of the 

comparable equilibrium problems that are already known.  
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1. Introduction 

In 1994, Blum and Oettle [3] started researching equilibrium problems. The classic variational 

inequality problem is generalized to provide the equilibrium problem. The equilibrium 

problem is equivalent to many other problems, eg; the complementarity problem, saddle point 

problem, and optimization problem. In 1998, Oettli and Schlarger [16] extended the 

equilibrium problem. A family of operator equilibrium problems was developed in 2005 by 

Kazmi and Raouf [11]. Examples of specific operator equilibrium issues are scalar equilibrium 

problems and vector equilibrium problems. For the operator equilibrium problems, they 

offered operator solutions. They created a lemma specifically for this particular class of 

equilibrium states. Using the lemma and the KKM theorem, a few existence theorems for the 

operator equilibrium issues were derived. Raouf further introduced general and mixed multi-

valued equilibrium issues. Perturbed equilibrium problems having operator solutions were 

considered by Kazmi and Raouf [18] in 2009. Kim and Raouf [13] looked into a set of 

generalized operator equilibrium problems in 2017. They proved several existence results for 

the problems relating to generalized operator equilibrium. In this work, we have constructed 
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certain existence theorems to deal with a new class of problems known as generalized operator 

quasi-equilibrium problems (GOQEP). 

 

2. Preliminaries 

In our paper, we used the notations that are listed below: 

Assume that Z and W are two Hausdorff topological vector spaces. We have considered 

topology of point-wise convergence and denoted the space of all the linear and continuous 

operators from Z to W equipped with this topology by L(Z,W). Consider a  nonempty convex 

set D ⊂ L (Z,W). We represent the family of all subsets of W by Π(W) and  then consider a 

multi-valued map C: D→ Π(W) in order to obtain a convex,open  and solid cone C(f) for any 

f ⊂ D such that 0 ∉ C(f) and C0(f)   =  C (f) ∪   {0}, 

Consider an ordering cone C (f) in an ordered topological vector space W such that C(f) ≠W. 

Also, consider a partial ordering  ≤C(f)defined by C(f) for each f ∈ D on W 

as follows;  h   ≤C (f)  g  iff  g − h ∈ C(f),   ∀g,  h ∈ C (f). 

Let's now assume that T: D → Π (D) is a non-empty multi-valued map. ℱ (D) represents the 

set of multi-valued maps from D×D to Π (W). Let H ∈ ℱ(D). 

In the current research, we have examined a generalized operator quasi-equilibrium problem 

(GOQEP) which is as under: 

Obtaining f ∈D so that 

f ∈ clDT(f) and    H (f,  h) ⊈ −C (f),         ∀h ∈ T(f),                         (1) 

where clDT(f) denotes the closure of T(f) in D. 

For appropriate selections of H, D, T, Z, W and C, we note that GOQEP (1) simplifies to the 

issues raised in ([5, 11–13]). The specifics are left out. 

Definition 2.1. Suppose there exists a multi-valued mapping Q: B ⊂ L ( Z, W) → Π (W) 

We define its graph as : G(f)   =   {(f,  w)    ∈   B × W :  f ∈ B,    w ∈ Q (f)} 

The inverse Q–1 of Q, where Q is a multi-valued map from range of Q to B, is defined as:  

f ∈ Q−1(w) if and only if  w ∈ Q (f). 

For each f ∈ B  and an open set K in W containing Q (f),the map Q is an upper semi-

continuous map on B if, there is an open neighbourhood U of f in B such that Q(f) ⊆ K for 

every f in U.  

Lemma 2.1 [2] Let us consider a compact subset B of L(Z, W) and   let S: L(Z,W) → Π (W) 

be an upper semicontinuous map. Then the set T(B) is a compact set. 

Lemma 2.2 [2] Suppose S: L(Z,W) → Π (W)is  a multi-valued map. Then, S is a closed 

mapping if it is upper semi-continuous on L(Z,W). Assume {Dn}n = 1
∞  to be an increasing 

sequence of compact non-empty sets. Suppose for all n ∈ N, Dn ⊆ Dn+1,   D =
∪n=1

∞   Dn,  is a subset of  L (Z, W). A sequence{fn}n = 1
∞  
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contained in D is called an escaping sequence  from D with respect to {Dn}n = 1
∞ if for every 

n,∃ an  

m ≥ M,  such that  fm ∉ Dn 
Consider multi-valued maps T, S :  D → Π (L( Z, W)).The multi-valued maps clDT,   coT,   T ∩
S: D → Π (L ( Z, W)) are then defined as  

(clDT) (f)   =  clDT (f), (coT) (f)   =  coT (f) and  

(T ∩ S) (f)   =  T (f) ∩  S (f),   ∀  f
∈ D,  where the convex hull of T(f) is represented by coT (f). 

Let us assume E to be a Hausdorff topological vector space. Also, take into consideration a 

lattice L possessing the least element, represented as 0. Examine the following map 

ϕ:Π (E)→L meeting the necessary requirements for any sets X, Y∈Π (E):  

(i) ϕ(X)   =  0  iff X is a pre-compact set 

(ii)  ϕ (c
⎽
oX)   =  ϕ (X),   wherethe c

⎽
oX  represents the closed convex hull of X 

(iii) ϕ(X ∪ Y)    =   max { ϕ(X),    ϕ(Y)}. 

Then, ϕ is called a measure of non-compactness  

As a result, (iii) would imply that  , if X  ⊆ Y, then ϕ(X)   ≤  ϕ(Y). Suppose J ⊆
E and suppose  

ϕ :   Π (E) → L represents a measure of non − compactness on a set  E  . Let S: J → Π(E) 

be a multi-valuedmap.It is referred to as a ϕ- condensing map if for X ⊆ J and ϕ (S(X)) ≥
  ϕ(X),we have  X to be a relatively compact set. 

The fact that every multi-valued map that we define on a compact set is unquestionably ϕ −
condensing  should be highlighted. Additionally, for any given measure of non-compactness, 

a compact multi-valued map (when S(J) is pre-compact) is certainly ϕ-condensing if E is 

locally convex. Furthermore, if E is a locally convex set, then a compact multi-valued map 

(where S(J) is pre-compact) is unquestionably a ϕ − condensing map for any given measure 

of non-compactness. 

S ∗  is categorically referred to as being  ϕ − condensing if  

S: J → Π (E)    is   a  ϕ − condensing   map  and     if   

  S ∗  :   J → Π (E) also satisfies the condition that S ∗   (b) ⊆ S(b) for all b ∈ J 

Theorem 2.1 [6] Let E be a topological vector space that is Hausdorff. Suppose that D is a 

closed, nonempty, convex subset of the space E.Consider multivalued maps T, S: D → Π (D) 

so that  

D  =  ∪  {intDT−1(y) :  y ∈ D}and coT (x)   ⊆ T(x) for each x ∈ D . 

Then the map S has a fixed point if S is a ϕ −condensing map. 

Theorem 2.2 [14] Let us consider a topological vector space X. Also, suppose that D is a 

subset of X where  𝑫 =∪𝒏=𝟏
∞  𝑫𝒏 𝒂𝒏𝒅  {𝑫𝒏}𝒏 = 𝟏

∞   an ascending sequence of non-empty 
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subsets of D. Suppose the sets  𝑫𝒏 are compact and convex. Let us suppose that the multi-

valued map𝑻: 𝑫 → 𝜫 (𝑫)meets the underlying prerequisites. 

(i)  𝑭𝒐𝒓 𝒏  =  𝟏,  𝟐,   . . . .. and for𝒆𝒗𝒆𝒓𝒚 𝒙 ∈ 𝑫,   𝑻−𝟏(𝒙) ∩ 𝑫𝒏 𝒊𝒔 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒔𝒆𝒕  𝒊𝒏 𝑫𝒏 

(ii)  𝑭𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒙 ∈ 𝑫, 𝒙 ∉ 𝒄𝒐𝑻  (𝒙) 

(iii) For every escaping sequence 
{𝒙𝒏} 𝒏 = 𝟏

∞  𝒊𝒏 𝑫 (𝒘𝒊𝒕𝒉 𝒓𝒆𝒔𝒑𝒆𝒄𝒕 𝒕𝒐 {𝑫𝒏}𝒏 = 𝟏
∞ )  𝒘𝒊𝒕𝒉 𝒙𝒏 ∈ 𝑫𝒏; 𝒏  =  𝟏, 𝟐, 𝟑,   . .., 

𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒔𝒕𝒔 𝒏 ∈ 𝑵 and     𝒚𝒏 ∈ 𝑫𝒏 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒚𝒏 ∈ 𝒄𝒐𝑻 (𝒙𝒏) ∩ 𝑫𝒏 

   Then,𝒙𝟎 ∈ 𝑫 𝒆𝒙𝒊𝒔𝒕𝒔 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕  𝑻 (𝒙𝟎)   =  ϕ 

 

3. Existence theorems: 

We will assume (without loss of generality) W to be a real topological vector space. Also, the 

family of all the subsets of W 𝒔𝒉𝒂𝒍𝒍 𝒃𝒆 𝒅𝒆𝒏𝒐𝒕𝒆𝒅 𝒃𝒚 𝜫 (𝑾) and suppose 𝑪: 𝑫 → 𝜫 (𝑾) is 

a multi-valued mapping.  For every𝒇 ∈ 𝑫, 𝑪(𝒇) denotes a convex, open and solid cone such 

that 𝟎 ∉ 𝑪 (𝒇) . 𝑨𝒍𝒔𝒐,  𝒍𝒆𝒕 𝑪𝟎(𝒇) = 𝑪 (𝒇) ∪   {𝟎}.  The family of mutli valued maps from𝑫 ×
𝑫 𝒕𝒐 𝜫 (𝑾) / {𝝓}𝒘𝒊𝒍𝒍 𝒃𝒆 𝒓𝒆𝒇𝒆𝒓𝒓𝒆𝒅 𝒕𝒐 𝒂𝒔  𝓕(𝑫).   𝑺𝒖𝒑𝒑𝒐𝒔𝒆 𝑯 ∈ 𝓕(𝑯). For 𝒇 ∈ 𝑫, the 

existence results for  𝑶𝑸𝑬𝑷 (𝟏)𝒂𝒓𝒆 𝒏𝒐𝒘 𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒆𝒅 𝒃𝒆𝒍𝒐𝒘. 

Theorem3.1.Let  𝒂 𝒎𝒖𝒍𝒕𝒊𝒗𝒂𝒍𝒖𝒆𝒅 𝒎𝒂𝒑 𝑪: 𝑫 → 𝜫(𝑾) be defined on D such that, 𝑪(𝒇) 𝒊𝒔 a 

solid, open and  convex cone 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇 ∈ 𝑫 and  𝟎 ∉ 𝑪(𝒇). Here, 𝑫 ⊂ 𝑳 (𝒁, 𝑾) is a convex 

and compact  set which is 

non-empty.𝑳𝒆𝒕 𝒖𝒔 𝒄𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒎𝒖𝒍𝒕𝒊𝒗𝒂𝒍𝒖𝒆𝒅  𝝓 −
𝒄𝒐𝒏𝒅𝒆𝒏𝒔𝒊𝒏𝒈 𝒎𝒂𝒑𝒑𝒊𝒏𝒈𝒔 𝑻,   𝒄𝒍𝑫𝑻: 𝑫 → 𝜫 (𝑫).For each  

𝒇 ∈ 𝑫, 𝒍𝒆𝒕 𝑻(𝒇) be non-empty and convex set. Also, for each 𝒉 ∈ 𝑫,  𝒍𝒆𝒕 𝑻−𝟏(𝒉) be open in 

D 

and  𝓕 :  =   {𝒇 ∈ 𝑫: 𝒇 ∈ 𝑻(𝒇)} be closed}. Let us suppose that 𝑯,  𝑮 ∈
𝓕 𝒎𝒆𝒆𝒕 𝒕𝒉𝒆 𝒖𝒏𝒅𝒆𝒓𝒍𝒚𝒊𝒏𝒈 𝒑𝒓𝒆𝒓𝒆𝒒𝒖𝒊𝒔𝒊𝒕𝒆𝒔:  

(i) For each 𝒇 ∈ 𝑫,   𝑮(𝒇,  𝒇) ⊈ 𝑪 (𝒇)𝒂𝒏𝒅{𝒉 ∈ 𝑫 :  𝑮 (𝒇,  𝒉) ⊆ −𝑪 (𝒇)} is a  convex  𝒔𝒆𝒕 

(ii)  T𝒉𝒆 𝒔𝒆𝒕 {𝒇 ∈ 𝑫 :  𝑯 (𝒇,  𝒉) ⊈ −𝑪 (𝒇)} 𝒊𝒔 𝒄𝒍𝒐𝒔𝒆𝒅 𝒊𝒏 𝑫 , 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉  𝒉 ∈ 𝑫 ; 

(iii) For all𝒇, 𝒉 ∈ 𝑫,    𝑯(𝒇,  𝒉)   ⊈  𝑪 (𝒇) if 𝑮(𝒉,  𝒇)   ⊈  𝑪(𝒇) 

𝑻𝒉𝒆𝒏 𝒘𝒆 𝒄𝒂𝒏 𝒇𝒊𝒏𝒅 𝒇𝟎 ∈ 𝑫 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 

𝒇𝟎 ∈ 𝒄𝒍𝑫𝑻 (𝒇𝟎) 𝒂𝒏𝒅 𝑯(𝒇𝟎,  𝒉) ⊈    −𝑪 (𝒇𝟎)  ∀𝒉  ∈ 𝑺 (𝒇𝟎). 

Proof: Using condition (ii), let a multi-valued map 𝑸: 𝑫 → 𝜫 (𝑫) 𝒃𝒆 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 

𝑸 (𝒇)   =   {𝒉 ∈ 𝑫  :    𝑯(𝒇,  𝒉) ⊆ −𝑪 (𝒇)}, for each f ∈ D,which is a convex set 

According to condition (iii), the complement of 𝑸−𝟏(𝒉) 𝒊𝒏 𝑫  is defined as: 

[𝑸−𝟏 (𝒉)]𝒄   =    {𝒇 ∈ 𝑫 :   𝑯 (𝒙,  𝒚) ⊈ −𝑪 (𝒇)} 

𝑺𝒊𝒏𝒄𝒆 𝒊𝒕 𝒊𝒔 𝒂 𝒄𝒍𝒐𝒔𝒆𝒅 𝒔𝒆𝒕 𝒊𝒏 𝑫 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒉 ∈ 𝑫, 𝒕𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,   
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𝑸−𝟏 (𝒉) 𝒊𝒔 𝒂𝒏  𝒐𝒑𝒆𝒏 𝒔𝒆𝒕 𝒊𝒏 𝑯 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒈 ∈ 𝑯 

𝑭𝒐𝒓 𝒂𝒏𝒚 𝒇 ∈ 𝑫 , 𝒘𝒆 𝒅𝒆𝒇𝒊𝒏𝒆 𝒕𝒉𝒆  𝒎𝒖𝒍𝒕𝒊𝒗𝒂𝒍𝒖𝒆𝒅 𝒎𝒂𝒑𝒔 𝑵, 𝑴: 𝑫 → 𝜫 (𝑫) 𝒂𝒔:    

𝑵 (𝒇)   =   {
𝑸 (𝒇)   ∩  𝑻 (𝒇)       𝒊𝒇     𝒇 ∈ 𝓕 ,

𝑻 (𝒇) ,           𝒊𝒇   𝒇 ∈ 𝑫\𝓕
 

                                        and  

𝑴 (𝒇)    =    {
𝑻 (𝒇)  ∩  𝑷 (𝒇)         𝒊𝒇    𝒇 ∈ 𝓕,

𝑻 (𝒇) ,           𝒊𝒇   𝒇 ∈ 𝑫\𝓕
 

𝒘𝒉𝒆𝒓𝒆 𝑷: 𝑫 → 𝜫 (𝑫) 𝒊𝒔 𝒂 𝒎𝒖𝒍𝒕𝒊 − 𝒗𝒂𝒍𝒖𝒆𝒅 𝒎𝒂𝒑 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔 

𝑷(𝒇)   =   {𝒉 ∈ 𝑫 :  𝑮(𝒉,  𝒇) ⊆ 𝑪(𝒇) Ɐ 𝒇 ∈ 𝑫. 

For every f ∈ 𝑫, 

  𝑵(𝒇) 𝒊𝒔 𝒂 𝒄𝒐𝒏𝒗𝒆𝒙 𝒔𝒆𝒕 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇  𝒃𝒆𝒄𝒂𝒖𝒔𝒆 𝑻 (𝒇) 𝒂𝒏𝒅 𝑸(𝒇) 𝒂𝒓𝒆 𝒂𝒍𝒔𝒐 𝒄𝒐𝒏𝒗𝒆𝒙.   

𝑺𝒐, 𝒃𝒚 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 (𝒊𝒗), 𝒄𝒐  𝑵 (𝒇) ⊆ 𝑴(𝒇) 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒇 ∈ 𝑫 

𝑺𝒊𝒏𝒄𝒆  𝑻−𝟏 (𝒉) 𝒂𝒏𝒅 𝑸−𝟏 (𝒉) 𝒂𝒓𝒆 𝒐𝒑𝒆𝒏 𝒊𝒏 𝑫, 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇 ∈ 𝑫, 

𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒍𝒚, 𝑵−𝟏(𝒉)   =   (𝑻−𝟏 (𝒉) ∩  𝑸−𝟏(𝒉))   ∪    ((𝑫\𝓕) ∩ 𝑻−𝟏(𝒉)) 

 

As is clear from Lemma 2.3 in [4] and since D/ℱ is an open set in D, hence,𝑵−𝟏(𝒉) 𝒊𝒔
 𝒂𝒍𝒔𝒐 𝒐𝒑𝒆𝒏 𝒊𝒏 𝑫.  𝑳𝒆𝒕 𝒖𝒔 𝒔𝒖𝒑𝒑𝒐𝒔𝒆 𝒕𝒉𝒂𝒕 𝒕𝒉𝒆 𝒔𝒆𝒕 𝑻 (𝒇) ∩ 𝑸(𝒇) ≠ 𝝓, 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇 ∈ 𝑫 

𝑻𝒉𝒆𝒓𝒆𝒇𝒐𝒓𝒆,  𝒇𝒐𝒓 𝒆𝒂𝒄𝒉  𝒇 ∈ 𝑫,   𝑵(𝒇) ≠ 𝝓 𝒂𝒏𝒅 𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒍𝒚 

𝑫 = ∪𝒉∈𝑫   𝑵−𝟏(𝒉)   = ∪𝒉∈𝑫   𝒊𝒏𝒕𝑫𝑵−𝟏(𝒉) 

Hence, M is 𝝓 −  condensing since 𝑻 𝒊𝒔 𝝓 − condensing and  

𝑴(𝒇) ⊆ 𝑻(𝒇) 𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇 ∈ 𝑫. 

Consequently, Theorem 2.1 shows the existence of 𝒇𝒐 ∈ 𝑫 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝒇𝒐 ∈ 𝑴 (𝒇). 

Additionally, based on the definition and meaning of ℱ and M, we have {𝒇 ∈ 𝑫 :   𝒇 ∈
𝑴(𝒇)} ⊆ 𝓕.  𝑻𝒉𝒊𝒔 𝒊𝒎𝒑𝒍𝒊𝒆𝒔 𝒕𝒉𝒂𝒕  𝒇𝒐 ∈ 𝓕 𝒂𝒏𝒅 𝒇𝒐 ∈ 𝑻(𝒇𝒐) ∩ 𝑷(𝒇𝒐) 𝒂𝒏𝒅, 𝒊𝒏 𝒑𝒂𝒓𝒕𝒊𝒄𝒖𝒍𝒂𝒓  

𝑮 (𝒇𝒐,  𝒇𝒐) ⊆ 𝑪(𝒇𝒐), which contradicts (𝒊).  𝑺𝒐, 𝒕𝒉𝒆𝒓𝒆 𝒍𝒊𝒆𝒔 

 𝒇𝒐 ∈ 𝒄𝒂𝒍 𝑯 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝑻(𝒇𝒐) ∩ 𝑸(𝒇𝒐)   =  𝝓 

That is,  

𝒇𝒐 ∈ 𝑻(𝒇𝒐) 𝒂𝒏𝒅  𝑯(𝒇𝒐,  𝒉) ⊈ −𝑪 (𝒇𝒐) 𝒇𝒐𝒓 𝒆𝒗𝒆𝒓𝒚 𝒉 ∈ 𝑻 (𝒇𝒐). 

The proof is therefore complete. 

By including  𝑮(𝒇,  𝒉)    =    −𝑯 (𝒉,  𝒇)  in the Theorem 3.1, the following conclusion is 

generated: 
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Corollary 3.1 Let us suppose that D is a real Hausdorff topological vector space. Also, D is a 

compact, convex and non – empty subset of L(Z,W). Consider a multi-valued map 𝑪: 𝑫 →
𝜫(𝑫). 𝑺𝒖𝒑𝒑𝒐𝒔𝒆  𝑪(𝒇) is a convex, solid and open cone, for every 𝒇 ∈ 𝑫. 𝑨𝒍𝒔𝒐, 𝟎 ∉
𝑪(𝒇).  𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓  𝝓 − condensing multi-valued maps 𝑻,  𝒄𝒍𝑫𝑻: 𝑫 → 𝜫(𝑫). Suppose T(f) is 

a non-empty  and convex set for each 𝒇 ∈ 𝑫.  Also,for each 𝒉 ∈
𝑫,  𝑻−𝟏(𝒉) 𝒊𝒔 𝒂𝒏 𝒐𝒑𝒆𝒏 𝒔𝒆𝒕 𝒊𝒏 𝑫 𝒂𝒏𝒅 

 𝓕: = {𝒇 ∈ 𝑫:  𝒇 ∈ 𝑻(𝒇)} 𝒊𝒔 𝒂 𝒄𝒍𝒐𝒔𝒆𝒅 𝒔𝒆𝒕. 

Suppose 𝑯 ∈ 𝓕 meets the following criteria: 

 For each f  ∈ D, 𝑯 (𝒇, 𝒇)    ⊈    𝑪(𝒇); {𝒉 ∈ 𝑫  :   𝑯(𝒇,  𝒉)   ⊆ −𝑪(𝒇)} is a convex set 

and {𝒇 ∈ 𝑫  :   𝑯 (𝒇,  𝒉) ⊈   𝑪(𝒇)} 

is a closed set in D, for each h  ∈   D. 

Then we can find 𝒇𝒐 ∈ 𝑫 such that  

𝒇𝒐 ∈ 𝒄𝒍𝑫𝑻 (𝒇𝒐) 𝒂𝒏𝒅 𝑯(𝒇𝒐,  𝒉)   ⊈   −  𝑪 (𝒇𝒐)∀𝒉 ∈ 𝑻(𝒇𝒐). 

When T is not 𝝓 −condensing necessarily, we can derive the following conclusion: 

Theorem 3.2 𝑳𝒆𝒕 {𝑫𝒏}𝒏 = 𝟏
 ∞  be an increasing sequence of convex, compact and non-empty 

subsets of D and  𝑫  = ∪𝒏=𝟏
∞  𝑫𝒏

. . .

𝑳𝒆𝒕 𝑫 ⊂ 𝑳 ( 𝒁, 𝑾) 𝒃𝒆 𝒏𝒐𝒏 −
𝒆𝒎𝒑𝒕𝒚 . 𝑪𝒐𝒏𝒔𝒊𝒅𝒆𝒓 𝒂 𝒎𝒖𝒍𝒕𝒊 − 𝒗𝒂𝒍𝒖𝒆𝒅 𝒎𝒂𝒑 𝑪: 𝑫 → 𝜫 (𝑫). Suppose for each 𝒇 ∈
𝑫,   𝑪(𝒇) is a convex, open and solid cone. Suppose 𝟎 ∉ 𝑪 (𝒇). Consider an ordered 

topological vector space (𝑾,  𝑪 (𝒇)). Let 𝑯 ∈ 𝓕(𝑫) . Consider multi-valued maps 

𝑻,   𝒄𝒍𝑫𝑻:  𝑫 → 𝜫 (𝑫) such that for each 𝒇 ∈ 𝑫, 𝑻(𝑫) is non-empty and convex set. Also, 

 𝑻−𝟏(𝒉) is compactly open in D for each 𝒉 ∈ 𝑫 and 𝓕: =    {𝒇 ∈ 𝑫:  𝒇 ∈ 𝑻 (𝒇)} is a closed set. 

Let 𝑯 ∈ 𝓕  𝒎𝒆𝒆𝒕 𝒕𝒉𝒆 𝒖𝒏𝒅𝒆𝒓𝒍𝒚𝒊𝒏𝒈 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂: 

(i)  For each 𝒇 ∈ 𝑫,  𝑯(𝒇,  𝒇) ⊈ −𝑪 (𝒇);  

(ii)   For each 𝒇 ∈ 𝑫, 𝒕𝒉𝒆 𝒔𝒆𝒕 {𝒉 ∈ 𝑫 :  𝑯 (𝒇,  𝒉) ⊆ −𝑪 (𝒇)} 𝒊𝒔  𝒄𝒐𝒏𝒗𝒆𝒙 and  

(iii)  {𝒇 ∈ 𝑫 :  𝑯(𝒇,  𝒉) ⊈ −𝑪 (𝒇)} is compactly closed in D for each 𝒉 ∈ 𝑫. 

(iv) Also, 𝒕𝒉𝒆𝒓𝒆 𝒆𝒙𝒊𝒔𝒕𝒔 𝒎 ∈ 𝑵 𝒂𝒏𝒅 𝒉𝒎 ∈ 𝑫𝒎   ∩ 𝑻 (𝒇𝒎)such that for every 𝒇𝒎 ∈
𝑻(𝒇𝒎),   𝑯(𝒇𝒎,   𝒉𝒎) ⊆          −𝑪 (𝒇𝒎), 𝒘𝒉𝒆𝒓𝒆 {𝒇𝒏}𝒏 = 𝟏

∞  𝒊𝒔 𝒂 𝒔𝒆𝒒𝒖𝒆𝒏𝒄𝒆 𝒊𝒏  𝑫,  𝒇𝒏 ∈
𝑫𝒏,   𝒏 ∈ 𝑵 which is an escaping sequence from D            relative to {𝑫𝒏}𝒏 = 𝟏

∞  

      Then we can find 𝒇𝟎 ∈ 𝑫 where 

𝒇𝟎 ∈ 𝒄𝒍𝑫𝑻 (𝒇𝟎) 𝒂𝒏𝒅 𝑯 (𝒇𝟎,   𝒉)   ⊈ − 𝑪 (𝒇𝟎),    𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒉 ∈ 𝑻 (𝒇𝟎). 

Proof: Using condition (ii), let us define a multi-valued map 𝑸: 𝑯 → 𝜫 (𝑯) 𝒂𝒔: 

𝑸(𝒇)   =   {𝒉 ∈ 𝑫 :  𝑯 (𝒇,  𝒉) ⊆ −𝑪 (𝒇)}, for each 𝒇 ∈ 𝑫. 

Q is convex. Using condition (iii), the complement of 𝑸−𝟏(𝒉) 𝒊𝒏 𝑯 𝒊𝒔 𝒅𝒆𝒇𝒊𝒏𝒆𝒅 𝒂𝒔: 

[𝑸−𝟏 (𝒉)]𝒄   =   {𝒇 ∈ 𝑫: 𝑯 (𝒙,  𝒚) ⊈ −𝑪 (𝒇) 

This is a closed set in D for all 𝒉 ∈ 𝑫. Thus,   𝑸−𝟏(𝒉) is open in D for each 𝒉 ∈ 𝑫. 
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 Let a multi-valued map 𝑵 : 𝑫 → 𝜫(𝑫)𝒃𝒆 𝒅𝒆𝒇𝒊𝒏𝒆𝒅  𝒇𝒐𝒓 𝒆𝒂𝒄𝒉 𝒇 ∈ 𝑫 by 

𝑵(𝒇)   =   {
𝑻(𝒇) ∩ 𝑸(𝒇)       𝒊𝒇       𝒇 ∈ 𝓕,

𝑻 (𝒇) ,        𝒊𝒇    𝒇 ∈ 𝑫\𝓕
 

 𝑵(𝒇) is convex for each 𝒇 ∈ 𝑫.Suppose now that there lies 𝒇𝟎 ∈ 𝑫 such that 

𝒇𝟎 ∈ 𝑵 ( 𝒇𝒐). 𝒇𝟎 ∈ 𝑻 (𝒇𝒐) ∩ 𝑸 (𝒇𝟎), 𝒊𝒇   𝒇𝟎 ∈ 𝓕. 𝑪𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕𝒍𝒚 , 𝑯(𝒇𝟎,   𝒇𝟎) ⊆ −𝑪 (𝒇𝟎), 

 which is a contradiction of (i). And, 𝑵(𝒇𝟎)   =  𝑻(𝒇𝟎), 𝒊𝒇 𝒇𝟎 ∉ 𝓕. 𝑨𝒔 𝒔𝒖𝒄𝒉,   𝒇𝟎 ∈ 𝑻 (𝒇𝟎), 

which is again a contradiction.  

Thus,   𝒇 ∉ 𝑵 (𝒇)    =   𝒄𝒐𝑵 (𝒇), for all 𝒇 ∈ 𝑫 

On applying (iii),   𝑸−𝟏(𝒉) is a compactly open set in D for each𝒉 ∈
𝑫.   𝑩𝒚 𝒖𝒕𝒊𝒍𝒊𝒔𝒊𝒏𝒈  𝒕𝒉𝒆 𝒋𝒖𝒔𝒕𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝒊𝒏 proof 𝒐𝒇  𝑻𝒉𝒆𝒐𝒓𝒆𝒎 𝟑. 𝟏,
𝒘𝒆 , 𝒕𝒉𝒖𝒔, 𝒄𝒐𝒏𝒄𝒍𝒖𝒅𝒆 𝒕𝒉𝒂𝒕 𝑵−𝟏(𝒉)is a compactly open set in D, for each 𝒉 ∈ 𝑫.   By 

Theorem 2.2, Condition (iv) implies Condition (iii). As a result, according to Theorem 2.2, 

there shall exist 𝒇𝟎 ∈ 𝑫 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕 𝑵(𝒇𝟎) 𝒊𝒔 𝒆𝒎𝒑𝒕𝒚. 𝑩𝒆𝒄𝒂𝒖𝒔𝒆 𝑻 (𝒇) is nonempty for each 

𝒇 ∈ 𝑫, so, we have 𝒇𝟎 ∈ 𝑻(𝒇𝟎)  𝒂𝒏𝒅 𝑻 (𝒇𝟎) ∩ 𝑸 (𝒇𝟎)   = 𝝓 . 𝑻𝒉𝒖𝒔,  𝒇𝟎 ∈ 𝑫 𝒔𝒖𝒄𝒉 𝒕𝒉𝒂𝒕  

𝒇𝟎 ∈ 𝒄𝒍𝑫𝑻(𝒇𝟎) 𝒂𝒏𝒅 𝑯 (𝒇𝟎,  𝒉) ⊈ −𝑪 (𝒇𝟎),   𝒇𝒐𝒓 𝒂𝒍𝒍 𝒉 ∈ 𝑻(𝒇𝟎) 

The proof is therefore complete  

 

4. Application 

We have applied Corollary 3.1 to prove operator quasi-saddle point problem in the present 

section. 

Definition 4.1. For i=1,2, suppose 𝑳(𝒁𝒊,  𝑾),   𝒊  =  𝟏,  𝟐 are real vector spaces that are 

topological. Consider non-empty and convex subsets 𝑫𝒊 𝒐𝒇 𝑳 (𝒁𝒊,  𝑾), 𝐰𝐡𝐞𝐫𝐞 𝐢   =   𝟏,   𝟐. 

Also, consider a multi-valued map 𝐓:   𝐃 = 𝐃𝟏 × 𝐃𝟐 → 𝚷 (𝐃) which is defined as T(f1,   f2)   =
 T1(f1) × T2 (f2) for all f1 ∈ D1  and   

f2 ∈ D2. Here,  Ti: Di → Π (Di)\{ϕ},   i  =  1,  2 are multi-valued maps.Also,ϕ : D →
W is a function with operator values and W and C are exactly the same as taken above. Then, 

we call  

f
⎽

  =   (f
⎽

1,     f
⎽

2) ∈ H1 × H2 as: 

(i) a regular C – saddle point of  the operator ϕ if  

for all (h1,   h2) ∈ D1 × D2, ϕ (h1,   f
⎽

2) − ϕ (f
⎽

1,   h2) ∉ −C ; 

(ii)a regular C – quasi-saddle point of the operator ϕ, if  

for all  (h1,   h2) ∈  T (f
⎽

),   ϕ (h1,    f2

⎽

) − ϕ (f1

⎽

,   h2) ∉    −  C , where f ∈ T(f
⎽

); 

 

Definition 4.2.Let us suppose that E is a real Hausdorff topological vector space. Also suppose 
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D is a non-empty, closed and convex subset of E and also suppose K is a real valued 

topological vector space. Suppose C is a cone that is pointed, proper, convex and closed   and 

intC ≠ ϕ. If 

(i) for all elements α ∈ K,   U(α)   =   {a ∈ D: ϕ (x) − α  ∉ −intC} is convex set, the function 

ϕ: D →       K is known as C −upper semi-continuous mapping on D 

(ii)  −ϕ is  a C −upper semi-continuous function on D, then ϕ is called C-lower semi-

continuous mapping on  D 

(iii) for allα ∈ K, {x ∈ D: ϕ (x) − α ∈ −C}    is a convex set in D, ϕ is called C-quasi-convex   

(iv)ϕ is C-quasi-convex then the set  {a ∈ D: ϕ (x) ∈ −intC}     is also convex. 

Theorem4.1. Consider Hausdorff topological vector spaces Zi and W, for i = 1 &  2. Let the 

spaces of all the continuous linear operators from Zi, i  =  1,  2 to W, with point-wise 

convergence topology be denoted by L (Zi,  W). Let Ki ∈ L (Zi,  W),  i  =
 1,  2,  be sets that are convex, closed and non-empty. 

Let us consider multivalued maps Ti: Di → Π (Di),   i  =  1,  2.Let us define multi-valued 

and  

ϕ -condensing map T: D  =   D1 × D2 → Π(D) as T (f1,   f2)   =  T1 (f1) × T2 (f2) for all f1 ∈
D1 and  f2 ∈ D2 so that for each function f ∈ D,   T(f) is a nonempty set which is also convex. 

Also, it is open in D for each  h ∈ D. 

Let a multi-valued map C: D → Π(W) be defined in such a way that for each f ∈ D,   C(f) is an 

open, convex and solid cone. Also, 0 ∉ C (f).   Let  ℱ: =    {f =   (f1,   f2) ∈ D1 × D2: f ∈ T(f)} 

be a closed set. Let ϕ ∶ D → W  be an operator-valued function such that:  

(i)  For each  f2 ∈ D2, the mapping h1 → ϕ (h1,   f2) is  C – lower semi-continuous and C – 

quasi-convex on D  

(ii) For each f1 ∈ D1, the mapping h2 → ϕ (f1,  h2) is  C – upper semi-continuous 

 and C −quasi-concave on H  

 Then, for the function ϕ,we get a regular C – quasi-saddle point. 

Proof: On considering H to be a single-valued mapping ,ie. H: D × D → W ( in corollary 3.1) 

and defining   

H(f,  h)   =  ϕ (h1,   f2) − ϕ (f1,  h2) 

for each f =   (f1,   f2),   h  =   (h1,  h2) ∈ D1 × D2, the desired outcome is attained  from 

Corollary 3.1. 

 

Remark 4.1.If T(f)   =  D,  for every f ∈ D and    H (f,  h)   =  ϕ (f) − ϕ (h)for every f, h ∈ D, 
where  

ϕ ∶ D → W  in Corollary 3.1, reduces to a problem of findingf ∈ D so that ϕ (f) − ϕ (h) ∉
C (f),  for all h ∈ D.Then, we obtain the existence result for operator minimization problem. 
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5. Conclusion : 

In this study, we have studied and explored the problem of operator quasi-equilibrium which 

is a generalization ofthe operator equilibrium problem. This type of equilibrium problems has 

been discovered recently. We made use of   C-quasi convex and C-quasi-concave functions 

and escaping sequence to prove existence results for it. The framework of topological vector 

spaces was employed by us. The problem of operator quasi-saddle point was obtained as an 

immediate application of corollary 3.1. 
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