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Earthquake forecasting has become a continuous evolving discipline for the essential actions to be 

taken before the natural calamity strikes and raises its consequences on the life on earth, 

infrastructure and environment. Effective prediction and management of these disasters are critical 

to minimizing their devastating impact. Artificial Intelligence (AI) has automated several 

seismological processes due to its powerful algorithms for analysing complex and dynamic 

datasets, deriving nonlinear relationships in the voluminous datasets and building predictive models 

using Machine Learning (ML) and Deep Learning (DL) techniques. Deep learning has been applied 

for problem solving not only in the classification and segmentation problems in seismology but also 

can be trained for pattern recognition, signal detection, nonlinear modeling, and regression tasks. 

This research study exercises the power of the deep neural networks and designs the optimized 

architectures for the real-world Standard Earthquake Dataset (STEAD) waveforms, to predict the 

magnitude of the earthquake. The three- component (3C), one minute long, 6000 samples per 

component and with sampling rate of 100 Hz waveforms are used to model the real-world scenario.  

This study compares comprehensively the performance of various deep neural network model 

architectures based on their evaluation metrics namely mean absolute error, mean squared error, 

root mean squared error, mean absolute percentage error, and r-squared score. The results are also 

visualized in terms of training vs validation losses, prediction vs actual values, residuals values and 

prediction errors. On comparing different deep learning architectures, it is found that Long Short 

Term Memory and Bidirectional Long Short Term Memory neural networks outperformed the 

others in terms of the performance metrics.  Long Short Term Memory model edges out the 

Bidirectional Long Short Term Memory slightly in terms of the simplicity, computational time and 

efficiency. The other architectures were comparatively less effective in capturing the complex 

relationships on the given dataset.  

 

Keywords: Deep Learning, Long Short Term Memory, Bidirectional Long Short term Memory, 

Earthquake Magnitude Prediction, Seismological characterization.  
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1. Introduction 

Seismological prediction has become most complex scientific challenge due to the 

unpredictable nature of its occurrence. It is very essential to perform seismological 

characterization so as to safeguard the mankind and the ecosystem. It plays an essential role 

in mitigating the consequences of the devastating earthquakes and ensuring the safety and 

well-being of all forms of life. Nowadays, Artificial Intelligence (AI) is transforming every 

industry sector and operationalizing various domains. AI has become the key solution for 

complex applications such as pattern recognition, visual perception, signal processing, 

biological imaging, speech recognition, non-linear modelling, classification, and many more. 

AI enhanced Seismology emphasizes on developing immaculate machine learning and deep 

learning model architectures that learn from and make predictions based on data and thus, have 

shown significant potential to enhance earthquake prediction and modelling. Deep learning is 

a sub discipline of Artificial Intelligence which works on a very large, complex and non-linear 

datasets and are based on training neural networks to model high-level abstractions in data. 

The emerging domain of geotechnical engineering is leveraging artificial intelligence (AI) to 

identify patterns and make informed decisions. 

Historically, the approach to forecasting these events has evolved from reliance on traditional 

statistical methods to more sophisticated machine learning techniques, which offer the promise 

of higher accuracy and earlier detection. The increasing application of machine learning (ML) 

in scientific and technological fields has revolutionized the way complex data are analyzed 

and interpreted. The size of an earthquake is measured using various attributes such as 

earthquake magnitude, depth, p-wave and s-wave characteristics, signal-to-noise ratio etc. 

Earthquake magnitude is most significant amongst all attributes to deduce the nature and size 

of an earthquake and its related dire consequences.  There are multiple scales on which an 

earthquake’s magnitude is measured such as Local Magnitude (ML), Moment Magnitude 

(MW), Surface-Wave Magnitude (MS), Body-Wave Magnitude (Mb), Duration Magnitude 

(Md), Energy Magnitude (Me) and Coda Magnitude (Mc). The most common scale is Local 

Magnitude (ML) developed by Charles F Richter in 1935 and is represented as ML=log10

(A)−log10(A0) [1] measured on a Wood-Anderson instrument, where A is the amplitude of the 

seismic waves and A0 is a standard amplitude. 

With the evolution in the seismological data collection strategies, billions of bytes of 

continuous stream of non-linear and highly dynamic data are generated using sophisticated 

seismometers. As a result, this poses a great challenge for the seismological experts to analyze 

high voluminous data and derive the indicative attributes. Therefore, there is a critical need 

for the optimized AI models to process and analyze large scale datasets. This research study 

performs comprehensive analysis to predict the magnitude of the earthquake by considering 

the real-world earthquake waveform dataset of Alaska region. The study trains the deep 

learning model architectures for the real-world scenarios, so as to make it closely aligned with 

actual conditions and are reflective of real-life challenges and complexities. Various neural 

network model architectures are trained and optimized using waveforms of Standard 

Earthquake Dataset (STEAD). 
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2. Literature Review 

In the early era, simple earthquake forecasting methods were adapted in analysing simple 

observations. Earlier people used to predict earthquakes by observing the atypical behaviour 

shown by the animals. The period followed when seismograms were predominantly analysed 

based on the intuition and logical reasoning of seismological experts. Later, there were several 

methods adopted by experts for earthquake analysis for long and short-term predictions such 

as mathematical and statistical models to analyze small earthquake data. Nowadays, the 

enormous collection of data from all over the world and the astonishing evolution of artificial 

intelligence and computing resources has made it possible to unfold its capability in the field 

of seismology. AI integrated with traditional seismological approaches, may lead to more 

accurate, timely, and reliable predictions, ultimately enhancing disaster preparedness and 

mitigation strategies. The use of artificial intelligence in seismological characterization 

performs much better and have many advantages over the traditional statistical methods for 

earthquake detection.  

There are several precursors that represent changes within the earth that may lead to the 

occurrences of earthquakes. The deviations of the physical parameters from their normal value 

are indicative of some unusual activities in the internal structure of earth. Therefore, the 

detailed study of the earth is critical in order to lessen the impact of natural disasters such as 

earthquakes, cyclones, Tsunamis etc. Nowadays, due to the availability of high-resolution data 

from the global remote sensing devices, it has now become possible to detect the presence of 

anomalies in real time and to explore their complementary behaviour during the earthquake 

formative period. Therefore, the early detection of such anomalies may deduce the warning 

information about the impending natural tremors. 

A list of the various aspects to consider while studying the earth’s internal state include 

basement rock condition, change in soil resistivity, electromagnetic waves emission, electric 

potential change, variation in the radon gas emission, change in water level in wells and 

temperature of thermal springs, change in animal behaviour etc. [2]. 

The internal structure of earth is affected by natural forces such as micro-tremors, microseisms, 

wave, wind, tide, air pressure, precipitation and a variety of human induced sources such as 

hydraulic fracturing, oil prospecting explosions, cavern collapsing, mining etc. [3]. 

The analysis of ten earthquakes in Delhi/NCR of magnitude in the range from 2.5 to 4.5, 

revealed stress drop of 3-13 MPa using Fourier acceleration spectra [4]. GPS and DEMETER 

detected ionospheric anomalies and ULF emissions before the December 12, 2009 earthquake, 

suggesting potential for short-term predictions [5]. 

Conventional seismic prediction methods rely on data, but lacks accuracy and timeliness, 

necessitating innovative, precise approaches. Also, it is arduous for a seismological expert to 

analyse billions of bytes of continuous stream of highly dynamic data using his expertise and 

logic. The remote sensors above the earth and below the seas generate terabytes of data and it 

is very challenging to derive the indicative attributes from the continuous stream due to the 

complex nature of seismic data. Therefore, there is a critical need for pre-trained AI models to 

process and analyse large-scale seismic data efficiently, identify patterns, and predict potential 

earthquakes with higher accuracy and timeliness than traditional methods. 



                                                 Artificial Intelligence in Seismology- Deep…  Manka Vasti et al. 902  
 

Nanotechnology Perceptions Vol. 20 No. S9 (2024) 

The applications of machine learning in seismology primarily focus in producing earthquake 

early warning systems, ground motion predictions, seismic tomography and illuminating 

geophysical structure, earthquake geodesy and non-inertial deformation [6]. The conventional 

approaches may not be adequately sufficient in the scenario where a region is more susceptible 

to large number of small seismic events [7].  

In a deep learning neural network, trained using more than 131,000 mainshock-aftershock 

pairs to predict aftershocks on a test dataset comprising of more than 30,000 mainshock-

aftershock produced results of 0.849 AUC (area under curve) as compared to 0.583 AUC using 

classic Coulomb failure stress change [8]. 

A research study presented an early earthquake warning method called PreSeis (Pre-sesimic) 

based on two-layer feed forward neural network that estimates the earthquake hypocentre 

location, the moment magnitude, and the expansion of the evolving seismic rupture [9].  

A deep Convolutional Neural Network (CNN) trained with 200, 3D synthetic seismic images, 

adam optimiser with learning rate of 0.0001 and 25 epochs generated an accuracy of 95% and 

loss converging to 0.01 in the 3D seismic fault segmentation [10].  

[11] applied twenty machine learning models such as support vector machine, neural networks, 

random forest, gradient boosting, logistic regression etc. for seismic facies analyses. The 

efficiency achieved to predict seismic facies is upto 98.3% with error upto 0.004%.  

A research work proposed a framework called PhaseLink to identify for the grid -free phase 

association [12].To discriminate noise from the earthquake event, a Generative Adversarial 

Network (GAN) with Random Forest classifier is used to learn the characteristics of the first 

arrival of p-waves in 3,00,000 waveforms with 99.2% and 98.4% for earthquake p-wave 

detection and noise detection respectively [13]. 

In order to handle the challenges of massively generated seismological dataset, a cloud-based 

analytics system unveils the seismic attributes, selects features, and performs the seismic 

interpretation process [14]. [15] reviewed some of the finest AI techniques in the application 

area of pile foundations. ConvNet, a Convolutional Neural Network, is used to detect phases 

of seismic body wave even when the seismograms are affected by noise [16].  

Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), Combine CNN 

and LSTM, and Attention-based deep learning models were used to predict the number and 

strength of aftershocks following a major earthquake [17]. 

A simple convolutional neural network with 67,939 parameters distinguished earthquakes 

from noise with an accuracy of 96.7%, 95.3%, and 93.2% in training, validation and test 

dataset. The dataset comprises of three component seismograms of 3,04,878 earthquakes 

comprising of 6,29,095 earthquake waveforms and 6,15,847 noise waveforms from 1487 

broad band receivers [18]. 

A random forest method for classifying large earthquake occurrences and Long Short-Term 

Memory (LSTM) provided a rough estimation of earthquake magnitude on large earthquake 

datasets [19].  

A convolutional neural network method which is able to process complex-valued seismic data 

in the time–frequency domain by using complex convolutional and complex activation 
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functions trained the model and achieved a Mean Absolute Error (MAE) of 4.51 km for 

epicentral distance, 6.15 km for depth, and 0.26 for magnitude estimation [20].   

The study on Turkey’s earthquake catalogue dataset from January 2014 to August 2023 

leveraged Artificial Neural Network (ANN) for the prediction of earthquake magnitude and 

risk assessment. The trained ANN model achieved a Root Mean Square Error (RMSE) 0.18 

and the value of R-Squared (R2) equal to 0.99 [21]. 

A novel research study to estimate the earthquakes magnitude based on the LSTM network 

architecture using two decades of seismic events could perform the short-term earthquake 

prediction accurately [22]. 

The relationship between Total Electron Content (TEC) in Ionosphere and earthquake 

occurrences has been identified using LSTM based prediction models [23]. The study 

compares the performance metrics of LSTM based predictions with Support Vector Machine, 

Linear Discriminant Analysis and Random Forest Classifier to evaluate the proposed models 

for earthquake prediction.   

A regressor named MagNet based on convolutional and recurrent neural network models and 

trained on single station waveforms is capable of predicting the local magnitudes with an 

average error of nearly zero and 0.2 standard deviation [24]. 

A temporal-convolutional neural network architecture is trained to learn epicentral distance 

and P-wave travel time from a single station 1-minute seismograms. The trained neural 

network achieved the evaluation of epicentral distance and P-wave travel time with mean 

errors of 0.23 km and 0.03 seconds, and standard deviations of 5.42 km and 0.66 seconds, 

respectively [25]. 

An approach comprising of two models, the first one used the LSTM model architecture 

predicting the year, location, and magnitude of earthquakes and the second model followed 

decomposition method of dividing the dataset based on magnitude ranges and applying LSTM 

models to the segmented data. The decomposition model proves to be more efficient, 

especially in predicting large magnitude earthquakes. The results of the research study of these 

models are also compared with ANN models and found to result in better performance metrics 

[26]. 

A research study pursued the implementation of recurrent neural network named LSTM on 

the earthquake dataset and found the results to be far better than feed forward neural networks 

[27]. 

Deep neural networks used on unlabeled data for performing the clustering of seismic data and 

optimizing feature representations for specific tasks, achieved high precision supporting 

earthquake early warning systems and various other applications [28]. 

A proposed research study introduced a novel prediction method that applies an attention 

mechanism (AM), convolutional neural network (CNN), and bi-directional long short-term 

memory (BiLSTM) models. It predicts the number and maximum magnitude of earthquakes 

in mainland China using the regional earthquake catalog [29]. 

This study enhances earthquake forecasting by applying deep learning (DL) and machine 

learning (ML) to lab-simulated earthquakes. It introduces autoregressive models and expands 
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on existing techniques to predict fault zone stress and labquake events, outperforming current 

methods. These advancements suggest improved accuracy in earthquake prediction, 

particularly in predicting the time to start and end of failure under various conditions, including 

pre-seismic creep and aperiodic events, offering promising potential for real-world 

applications [30]. 

 

3. Dataset  

The development of advanced techniques has led to collection of large earthquake datasets and 

more robust models to process and analyse the earthquake signals in real time. For supervised 

machine learning, labelled dataset is a prerequisite to build a model. There are many labelled 

datasets available, but the reliability of those datasets is always a matter of concern and thus, 

imposes a big hurdle in the processing. Therefore, a high-quality, large-scale global data 

recorded using highly sensitive seismometers are required to study the structural changes 

within the earth. The dataset used in this research study is a large scale, global dataset named 

STEAD (Standard Earthquake Dataset) [31] that comprises of 1.2 million samples of 

waveform data recorded from January 1984 – August 2018, associated with 4.5 lakh 

earthquakes. Each waveform is one minute long with sampling rate of 100 Hz i.e. 6000 

samples / minute. The overall dataset contains 19K hours of earthquake recordings by 2613 

seismometers located all over the world. Each earthquake is represented as Numpy arrays 

containing 6000 samples associated with 60 seconds of ground motion recorded in three 

components (3C) i.e.  north-south(N), vertical(Z) and east-west(E) directions. There are 35 

attributes in the metadata associated with each earthquake such as network code, location of 

the receiver, origin time, epicentral location, depth, magnitude, magnitude type, focal 

mechanism, arrival times, signal to noise ratio, coda end etc.  

To process the above dataset, this research study has used one of the very powerful toolboxes 

of python programming namely Seisbench [32]. Seisbench is an open-source toolbox that 

provides support of functions to data analyses using machine learning and deep learning 

models. The dataset API facilitates the downloading of seismic waveform datasets such as 

ETHZ, GEOFON, INSTANCE, STEAD, etc. for machine learning and deep learning 

algorithms. Seisbench datasets consist of two components i.e. the waveform traces and the 

metadata. Each dataset has two files namely a .csv file for the metadata and a. hdf5 file for the 

actual waveform traces. 

The study creates the most optimised Deep Learning (DL) architecture models using Artificial 

Neural Network, Convolutional Neural Network, Recurrent Neural Network, Long Short-

Term Memory network and Bi-directional Long Short-Term Memory network on the real-

world earthquake waveform dataset derived from Standard Earthquake Dataset (STEAD).  

All the neural network architectures are designed to be used for a regression task of predicting 

the earthquake magnitude. Deep Learning is a multi-layer network model that has the 

capability to derive features from the raw data thereby enhancing the functionality of the neural 

network to model complex earthquake data. The deeper the learning, the higher will be the 

degree of abstraction in the model. The most emphasis in such models are provided to 

hyperparameters optimization such as number of hidden layers, number of computing units in 
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each layer, activation functions used, optimiser adopted, weight manipulation, no. of epochs, 

no. of iterations and many more. The training phase, being most critical, requires weight 

updation in such a way so as to minimize the loss function. Therefore, amongst several 

optimizers namely Gradient Descent, Stochastic Gradient Descent, Adam stochastic 

optimization, Adagrad, Adadelta etc., the most suitable to the given application is selected. 

Deep learning applications generally require multi-processor graphics cards or GPUs for 

developing the model. It is envisioned to be the future trend to be followed in order to uncover 

the complex seismic prediction models. 

This research study develops deep learning model architectures on Standard Earthquake 

Dataset (STEAD) to predict the magnitude of earthquakes using three-Component (3C) 

earthquake waveforms. The dataset comprises of 17,324 waveforms containing 3 Components 

of 6000 samples each making it a total 31,18,32,000 data points for analyses. The dataset is 

split into training, validation, and test and the models are trained on 10 epochs, batch size of 

64 instances for training, validation and testing. The dataset considered under study is 

primarily of the Alaska region that is located in the northwest extremity of North America. 

Alaska is highly seismically active region and had many devastating magnitude earthquakes 

in the past and also has the potential to generate large magnitude earthquakes in the future. 

The details of the dataset used for the study are shown in Table 1. 

Table 1 : Dataset selection for prediction 
Description Data Samples 

STEAD - Original Dataset Traces (earthquake waveforms 

+ noise waveforms) 
1.2 million 

Earthquake Waveforms traces 

(3 Component dataset) 

10,30,231 

 

Noise Waveforms traces 

(3 Component dataset) 

2,35,426 

 

Total no. of samples per waveforms per component 6,000 

Sampling Rate (in Hz) 100 

No. of earthquake waveform traces of Alaska (AK) region 
141877 

 

No. of earthquake waveform traces of Alaska (AK) region 

with magnitude greater than 3.0 

17324 

 

Total Data points processed for study 
17324 x 6000 x 3 =  

31,18,32,000 

Output Earthquake Magnitude 

 

4. Evaluation Metrics 

In order to build and deploy a generalized model, the evaluation metrics have very high 

significance in finding the performance of the deep neural networks. The following evaluation 

metrics are used in this research study to compare the performance of the various deep neural 

networks used for the earthquake magnitude prediction. N is the total data points, yj is the 

actual output and ŷj is the predicted output: 
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a) Mean Absolute Error (MAE): Mean Absolute Error is defined as the distance between 

the Predicted and the Actual Values. MAE measures the average magnitude of errors without 

considering the direction. The calculation of Mean Absolute Error is shown by equation no.  

(1).  

MAE =
1

N
∑ |yj − ŷj|

N

j=1

 

b) Mean Squared Error (MSE): In Mean Squared Error, the square of the average errors 

between the predicted and the actual values are considered. The squared term is performed in 

order to avoid the cancellation due to negative terms. Also, higher magnitude errors when 

raised to their square, indicates more focus to be put on them. The calculation of Mean Squared 

Error is shown by equation no.  (2). 

 

MSE =
1

N
∑(yj − yĵ)

2

N

j=1

 

c) Root Mean Squared Error (RMSE): It is a metric that is derived from Mean Squared 

Error by taking the square root of MSE. Root Mean Squared Error is calculated as shown by 

equation no.  (3). 

 

RMSE = √
1

N
∑(yj − yĵ)

2

N

j=1

 

d) Mean Absolute Percentage Error (MAPE): It is defined as the average absolute 

percentage error between the predicted value and the actual value. MAPE is calculated as per 

the equation (4). 

 

MAPE =
1

N
 ∑

|yj − ŷj|

yj

N

j=1

 X 100 

e) Mean Squared Logarithmic Error (MSLE): It is used to evaluate the model when 

the data has wide range of values. This metric is particularly useful in the application that may 

see                               exponential growth such as population, stock etc.  

MSLE is calculated as shown in equation (5): 

 

 

(1) 

(2) 

(3) 

(4) 
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MSLE =
1

N
 ∑(loge(1 + yj ) −  loge(1 + ŷj))2

N−1

j=0

 

f) R-Squared (Coefficient of Determination): It is used to compare the trained model 

with the baseline model. Also, known as the Goodness of Fit, it is calculated as per the equation 

no. (6) given below. SSr is the Squared Sum Error of Regression Line. SSm is Squared Sum 

Error of Mean Line. 

R2 = 1 − 
SSr

SSm
 

 

5. Methodology 

This section provides the comprehensive details of the methodology adopted for the study. It 

provides details of the various deep learning model architectures implemented on the 

earthquake waveform dataset to derive the performance metrics of each of them for effective 

comparison.  

Fig 1. shows the methodology adopted for earthquake magnitude prediction using deep neural 

networks. 

 

Fig.  1: Methodology proposed for earthquake magnitude prediction using deep neural 

networks 

It includes the following steps: 

i. Waveform data Acquisition: The dataset acquired for the study, STanford EArthquake 

Dataset (STEAD) is the reliable global dataset comprising of over 1 million seismograms 

associated with 4.5 lakh earthquakes. Each earthquake seismogram is captured across three 

components i.e. Vertical (Z), North(N) and East(E) also known as 3Cs. The recorded 

waveform is real world earthquake data consisting of one-minute long, raw waveform with 

100Hz sampling rate, resulting in 6000 samples per component per event. Therefore, each 

(5) 

(6) 
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earthquake is represented with a total of 18000 samples. The computing resources to process 

such large dataset is always a big challenge. Therefore, the study is restricted to Alaska 

earthquake data with earthquake magnitudes > 3.0. This leads to a total of 17,324 earthquakes 

with 18000 samples per event, makes it total of 31,18,32,000 data samples to process for the 

study using deep learning models. 

ii. Data Pre-Processing: This step includes waveform data normalization, reshaping the 

data and splitting the dataset into train, test and validation datasets. 

• Set the Model Architecture: This requires deciding on the type of input, number of 

hidden layers, weights initialization, neurons per layers, activation functions, optimizer, loss 

function, batch size, no. of epochs etc.  

• Apply the deep learning models: This research study is based on the implementation 

of the following are the deep learning models. Each model is trained on the same dataset and 

is specifically tasked as regressor for the earthquake magnitude prediction. By providing the 

consistent training, validation and test dataset ensure the selection of the best model 

architecture capable to capture the underlying patterns in the seismic dataset and provides the 

most accurate earthquake magnitude predictions 

• Artificial Neural Network: A basic feedforward neural network used as a baseline for 

performance comparison. 

• Recurrent Neural Network: This is used for handling sequential data, therefore, RNNs 

are employed to capture temporal dependencies in the waveform data. 

• Convolutional Neural Network: Convolutional Neural Networks are utilized to 

automatically extract spatial features from the time-frequency representations of the seismic 

signals. 

• Long Short Term Memory: LSTM networks are implemented to model long-term 

dependencies in the seismic data, which is crucial for capturing patterns in the waveform 

sequences. 

• Bidirectional Long Short Term Memory: The Bidirectional LSTM architecture is 

tested to capture information from both past and future time steps in the sequence, providing 

a more comprehensive understanding of the seismic events. 

iii. Predict the earthquake magnitude values: After the successful training of the deep 

learning neural network, the prepared model is used for the prediction on the test dataset. 

iv. Compare performance metrics: This step allows for a comprehensive evaluation of 

each model's effectiveness in the critical regression task by comparing their performance 

metrics such as training loss, validation loss, test dataset’s Mean Absolute Error, Mean 

Squared Error, Root Mean Squared Error, Mean Absolute Percentage Error, and R-Squared 

values. 

v. Visualize results: For effective comparison, the results are visualized in terms of 

training vs validation loss, predicted vs actual values, model’s residual values, model’s error 

distribution and heatmap to represent the prediction errors. 
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vi. Select the best Model: By comparing all the performance metrics, the best model 

architecture for the given dataset is recommended for the most accurate earthquake magnitude 

predictions. 

 

6. Results 

In this section, the performance metrics of various deep learning models are evaluated and 

compared. The different deep learning models namely ANN, RNN, CNN, LSTM and Bi-

LSTM are tasked as regressors to predict earthquake magnitude using the STEAD waveform 

dataset. Each model was trained, validated and tested on the same pre-processed dataset 

ensuring same environment across all the models processing. The performance of deep 

learning models was compared using the key evaluation metrics including Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean 

Absolute Percentage Error (MAPE), R-Squared(R2), training loss and validation loss values. 

The results were plotted to indicate the strengths and limitations of each model in predicting 

earthquake magnitudes on the real-world seismic waveform dataset. The results in the study 

are achieved by training deep learning algorithms on the STEAD dataset using the fourth-

generation Tensor Cores, NVIDIA L4 Tensor Core GPU, paired with the CV-CUDA library, 

Hi-RAM environment of Google Colab Pro. 

The training and validation loss curves for all five deep learning models are shown in Fig 2 

(a) – (e). These loss curves show how well each model learnt from the training dataset and 

how effectively it generalizes to unseen validation dataset on 10 epochs of training. The LSTM 

and CNN models have more consistently stable loss curves, while Bi-LSTM stabilizes after a 

few epochs. ANN and RNN models also indicate smooth decline in loss curves and are 

effective as baseline models. 

 

Fig.  2 (a) – (e): Comparison of training vs validation losses over the epochs of training on 

the earthquake waveform dataset using various deep learning models. (a) Convolutional 
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Neural Network (b) Long Short Term Memory Neural Network (c) Bidirectional Long Short 

Term Memory Neural Network (d) Recurrent Neural Network (e) Artificial Neural Network 

Fig. 3 (a)-(e), represents the scatter plots between the predicted earthquake magnitude vs the 

actual earthquake magnitudes for all the five deep learning models. The diagonal line shows 

the ideal scenario where the predicted values are same as actual values. As seen in Fig. 3, 

LSTM and Bi-LSTM show better spread around the diagonal, indicating strong predictive 

accuracy. However, there are some magnitude overestimations by Bi-LSTM and 

underestimation by LSTM models. LSTM and Bi-LSTM models have the capability to capture 

temporal dependencies well and therefore, provide more consistent predictions as compared 

to other models. Though, CNN model also performed well, but it shows some issues with 

higher magnitude predictions. 

 

Fig.  3 (a) – (e): A comparison of Predictions Vs Actual values of the various deep learning 

models. 

RNN model has more outliers and ANN indicate many deviations from the actual values and 

hence, these models are less suitable for accurately predicting earthquake magnitudes. 

In Fig. 4 (a) – (e), the plots display the residuals, i.e. the difference between the actual values 

and the predicted values, versus the predicted values. Residuals help in understanding the 

accuracy and bias of the model. In the ideal scenario, the residuals are randomly scattered 

around zero to show that the model’s predictions are unbiased and accurate. 
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Fig.  4 (a) – (e): A comparison of residuals of the various deep learning models on 

earthquake waveform dataset 

These residual plots indicate that CNN, LSTM and Bi-LSTM models generally provide more 

reliable and accurate predictions over other models.  

The distribution of prediction errors for all five different models i.e. CNN, LSTM, Bi-LSTM, 

RNN, and ANN are presented across the subplots in Fig.5 (a)- (e). As can be seen from the 

Fig.5, LSTM model shows the narrowest spread with a peak near zero. This indicates that 

LSTM model generalizes well and predicts the most accurate earthquake magnitude values. 

 

Fig.  5 (a) – (e): A comparison of distribution of error of the various deep learning models 
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In Fig. 6 (a) – (e), the distribution of prediction errors in heatmaps are shown for CNN, LSTM, 

Bi-LSTM, RNN, and ANN models is shown. Heatmap shows the error magnitude difference 

between actual and predicted values for the samples in test dataset. The colour intensity 

representing the magnitude of the error. Lighter shades indicate larger errors, while darker 

shades indicate smaller errors.  

 

Fig.  6 (a) – (e): Heatmap shows the error magnitude difference between actual and predicted 

values 

The details of the hyperparameters such as the model architecture, optimizer, no. of parameters 

trained, activation function, loss function etc. are mentioned in Table 2. The research study 

includes the comparative analysis of the performance metrics of Artificial Neural Networks 

(ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long 

Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (LSTM). Table 2 

summarizes the performance of various deep learning models based on the metrics namely 

training loss, validation loss, mean absolute error, mean squared error, root mean squared error 

and mean absolute percentage error on the training dataset. Bi-LSTM and LSTM models 

exhibit the lowest error metrics and validation loss, indicating superior accuracy and 

generalization. 

Table 3 represents the comprehensive comparative analysis of evaluation metrics of various 

deep learning models implemented on test dataset. Overall, LSTM and Bi-LSTM have better 

values of performance metrics over other models. 
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Table 2 : Comparative Analysis of Performance Metrics of Various Deep Learning 

Algorithms for Earthquake Magnitude Prediction on Training dataset 
Name of the 

Neural 

Network 

Model 

Architectu

re 

Optimiser Param #   
Trainin

g Loss 
MAE MSE RMSE MAPE 

Validat

ion 

Loss 

Convolution

al Neural 

Network 

(CNN) 

Conv1D(3

2 – 64 – 

128 – 64 – 

32 – 1)                          

(Relu, 

Linear, 

Batch 

Normaliza

tion) 

Adam(learni

ng Rate = 

0.001), Loss 

= “Mean 

Squared 

Error” 

2,51,15,393 1.6482 0.6163 0.7808 0.8833 16.1306 1.04 

Long 

ShortTerm 

Memory 

(LSTM) 

LSTM (64 

– 1)                                        

(Relu, 

Linear, 

Batch 

Normaliza

tion) 

Adam(learni

ng Rate = 

0.001), Loss 

= “Mean 

Squared 

Error” 

17,729 0.2790 0.4130 0.2714 0.5208 11.1092 0.2579 

Bidirectiona

l Long 

ShortTerm 

Memory 

(LSTM) 

Bi-LSTM 

(64 – 1                                        

(Relu, 

Linear, 

Batch 

Normaliza

tion) 

Adam(learni

ng Rate = 

0.001), Loss 

= “Mean 

Squared 

Error” 

35,457 0.2318 0.3786 0.2233 0.4725 10.2138 0.1628 

Recurrent 

Neural 

Network(R

NN) 

LSTM (64 

– 1                                        

(Relu, 

Linear, 

Batch 

Normaliza

tion) 

Adam(learni

ng Rate = 

0.001), Loss 

= “Mean 

Squared 

Error” 

4,673 0.3463 0.4587 0.3417 0.5846 12.2990 0.2663 

Artificial 

Neural 

Network 

256 – 128 

– 64 – 32 – 

1 (Relu, 

Linear, 

Batch 

Normaliza

tion) 

Adam(learni

ng Rate = 

0.001), Loss 

= “Mean 

Squared 

Error” 

11,71,905 0.1272 0.4878 0.1272 0.3566 7.7800 0.2766 

Table 3 : Comparative Analysis of Performance Metrics of Various Deep Learning 

Algorithms for Earthquake Magnitude Prediction on Test dataset 
Name of the Neural Network MAE MSE RMSE MAPE R2 

Convolutional Neural Network (CNN) 0.419 0.261 0.511 0.116 0.932 

Long Short Term Memory (LSTM) 0.404 0.2 0.44 0.1027 0.892 

Bidirectional Long Short Term Memory 

(LSTM) 
0.412 0.2 0.44 0.1178 0.893 

Recurrent Neural Network (RNN) 0.363 0.21 0.45 0.0987 0.819 

Artificial Neural Network (ANN) 0.35 0.217 0.466 0.0958 0.887 

 



                                                 Artificial Intelligence in Seismology- Deep…  Manka Vasti et al. 914  
 

Nanotechnology Perceptions Vol. 20 No. S9 (2024) 

7. Conclusion 

Earthquake characterization and prediction is very crucial for saving humanity, infrastructure 

and the ecosystem. In the growing need for accurate and timely seismological characterization, 

this research study leverages AI techniques to transition the processes from the obsoleted 

traditional statistical methods to more advanced AI methodologies applied on the massive 

datasets. The highly dynamic, non linear and complex datasets generated from the modern 

seismological practices necessitates a drift from the traditional paradigms to more advanced 

seismological practices and thereby indicating the significance of integrating AI into 

seismological practices. As the volume and complexity of seismological data continue to grow, 

traditional methods become more insufficient for timely and accurate earthquake prediction. 

AI-enhanced seismology not only improves the ability to predict seismic events but also plays 

a vital role in mitigating their consequences. 

This research study has delved into the implementation of optimized neural network 

architectures using STEAD for analysing complex, nonlinear datasets to predict seismic events 

effectively. The research study emphasizes on designing, training and optimizing neural 

network models to predict earthquakes magnitude. Using a comprehensive comparative 

analysis of different model architectures namely Convolutional Neural Networks (CNN), 

Long Short-Term Memory (LSTM) networks, Bidirectional LSTM (Bi-LSTM) networks, 

Recurrent Neural Networks (RNN), and Artificial Neural Networks (ANN), the study 

evaluates their performance basis various performance key indicators such as Mean Absolute 

Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and the coefficient of determination (R²). The results revealed that 

the LSTM and Bi-LSTM models outperformed other architectures, demonstrating superior 

accuracy and generalization in predicting earthquake magnitudes. The LSTM model is also 

slightly better over the Bi-LSTM model in terms of simplicity, computational efficiency, and 

overall performance, making it the most effective architecture for this specific task. The CNN 

model also performed well, especially in explaining the variance in the data, as indicated by 

its high R² value. However, it exhibited slightly higher error metrics compared to the LSTM 

models. The RNN model, while effective, showed more variability in its predictions, making 

it less reliable for capturing the complex relationships inherent in seismic data. The ANN 

model, although demonstrating the lowest MAE and MAPE, had a slightly lower R² value, 

and therefore, it may not capture the full complexity of the data as effectively as the LSTM-

based models. 

In conclusion, the findings of this research underscore the potential of AI-driven models to 

advance the field of seismology. The optimized deep learning architectures explored in this 

study offer significant improvements in earthquake prediction, providing a more reliable and 

efficient means of analysing complex seismic data. As seismological practices continue to 

evolve, the integration of AI will be indispensable in addressing the challenges posed by the 

dynamic and nonlinear nature of seismic phenomena, ultimately contributing to a safer and 

more resilient world. 

To further illustrate the comparison in various models, the plots of training vs validation loss, 

predicted vs actual values, model’s residual values, model’s error distribution and heatmap to 

represent the prediction errors were shown. The plots indicate that out of all the models, LSTM 



915 Manka Vasti et al. Artificial Intelligence in Seismology- Deep...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S9 (2024) 

and Bi-LSTM models performed the best as compared to other models on the given dataset. 
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