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Earthquake forecasting has become a continuous evolving discipline for the essential actions to be
taken before the natural calamity strikes and raises its consequences on the life on earth,
infrastructure and environment. Effective prediction and management of these disasters are critical
to minimizing their devastating impact. Artificial Intelligence (Al) has automated several
seismological processes due to its powerful algorithms for analysing complex and dynamic
datasets, deriving nonlinear relationships in the voluminous datasets and building predictive models
using Machine Learning (ML) and Deep Learning (DL) techniques. Deep learning has been applied
for problem solving not only in the classification and segmentation problems in seismology but also
can be trained for pattern recognition, signal detection, nonlinear modeling, and regression tasks.
This research study exercises the power of the deep neural networks and designs the optimized
architectures for the real-world Standard Earthquake Dataset (STEAD) waveforms, to predict the
magnitude of the earthquake. The three- component (3C), one minute long, 6000 samples per
component and with sampling rate of 100 Hz waveforms are used to model the real-world scenario.
This study compares comprehensively the performance of various deep neural network model
architectures based on their evaluation metrics namely mean absolute error, mean squared error,
root mean squared error, mean absolute percentage error, and r-squared score. The results are also
visualized in terms of training vs validation losses, prediction vs actual values, residuals values and
prediction errors. On comparing different deep learning architectures, it is found that Long Short
Term Memory and Bidirectional Long Short Term Memory neural networks outperformed the
others in terms of the performance metrics. Long Short Term Memory model edges out the
Bidirectional Long Short Term Memory slightly in terms of the simplicity, computational time and
efficiency. The other architectures were comparatively less effective in capturing the complex
relationships on the given dataset.

Keywords: Deep Learning, Long Short Term Memory, Bidirectional Long Short term Memory,
Earthquake Magnitude Prediction, Seismological characterization.
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1. Introduction

Seismological prediction has become most complex scientific challenge due to the
unpredictable nature of its occurrence. It is very essential to perform seismological
characterization so as to safeguard the mankind and the ecosystem. It plays an essential role
in mitigating the consequences of the devastating earthquakes and ensuring the safety and
well-being of all forms of life. Nowadays, Artificial Intelligence (Al) is transforming every
industry sector and operationalizing various domains. Al has become the key solution for
complex applications such as pattern recognition, visual perception, signal processing,
biological imaging, speech recognition, non-linear modelling, classification, and many more.
Al enhanced Seismology emphasizes on developing immaculate machine learning and deep
learning model architectures that learn from and make predictions based on data and thus, have
shown significant potential to enhance earthquake prediction and modelling. Deep learning is
a sub discipline of Artificial Intelligence which works on a very large, complex and non-linear
datasets and are based on training neural networks to model high-level abstractions in data.
The emerging domain of geotechnical engineering is leveraging artificial intelligence (Al) to
identify patterns and make informed decisions.

Historically, the approach to forecasting these events has evolved from reliance on traditional
statistical methods to more sophisticated machine learning techniques, which offer the promise
of higher accuracy and earlier detection. The increasing application of machine learning (ML)
in scientific and technological fields has revolutionized the way complex data are analyzed
and interpreted. The size of an earthquake is measured using various attributes such as
earthquake magnitude, depth, p-wave and s-wave characteristics, signal-to-noise ratio etc.
Earthquake magnitude is most significant amongst all attributes to deduce the nature and size
of an earthquake and its related dire consequences. There are multiple scales on which an
earthquake’s magnitude is measured such as Local Magnitude (M.), Moment Magnitude
(Mw), Surface-Wave Magnitude (Ms), Body-Wave Magnitude (My), Duration Magnitude
(Mq), Energy Magnitude (Me) and Coda Magnitude (Mc). The most common scale is Local
Magnitude (M_) developed by Charles F Richter in 1935 and is represented as M =logio
(A)—logio(Ao) [1] measured on a Wood-Anderson instrument, where A is the amplitude of the
seismic waves and Ay is a standard amplitude.

With the evolution in the seismological data collection strategies, billions of bytes of
continuous stream of non-linear and highly dynamic data are generated using sophisticated
seismometers. As a result, this poses a great challenge for the seismological experts to analyze
high voluminous data and derive the indicative attributes. Therefore, there is a critical need
for the optimized Al models to process and analyze large scale datasets. This research study
performs comprehensive analysis to predict the magnitude of the earthquake by considering
the real-world earthquake waveform dataset of Alaska region. The study trains the deep
learning model architectures for the real-world scenarios, so as to make it closely aligned with
actual conditions and are reflective of real-life challenges and complexities. Various neural
network model architectures are trained and optimized using waveforms of Standard
Earthquake Dataset (STEAD).
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2. Literature Review

In the early era, simple earthquake forecasting methods were adapted in analysing simple
observations. Earlier people used to predict earthquakes by observing the atypical behaviour
shown by the animals. The period followed when seismograms were predominantly analysed
based on the intuition and logical reasoning of seismological experts. Later, there were several
methods adopted by experts for earthquake analysis for long and short-term predictions such
as mathematical and statistical models to analyze small earthquake data. Nowadays, the
enormous collection of data from all over the world and the astonishing evolution of artificial
intelligence and computing resources has made it possible to unfold its capability in the field
of seismology. Al integrated with traditional seismological approaches, may lead to more
accurate, timely, and reliable predictions, ultimately enhancing disaster preparedness and
mitigation strategies. The use of artificial intelligence in seismological characterization
performs much better and have many advantages over the traditional statistical methods for
earthquake detection.

There are several precursors that represent changes within the earth that may lead to the
occurrences of earthquakes. The deviations of the physical parameters from their normal value
are indicative of some unusual activities in the internal structure of earth. Therefore, the
detailed study of the earth is critical in order to lessen the impact of natural disasters such as
earthquakes, cyclones, Tsunamis etc. Nowadays, due to the availability of high-resolution data
from the global remote sensing devices, it has now become possible to detect the presence of
anomalies in real time and to explore their complementary behaviour during the earthquake
formative period. Therefore, the early detection of such anomalies may deduce the warning
information about the impending natural tremors.

A list of the various aspects to consider while studying the earth’s internal state include
basement rock condition, change in soil resistivity, electromagnetic waves emission, electric
potential change, variation in the radon gas emission, change in water level in wells and
temperature of thermal springs, change in animal behaviour etc. [2].

The internal structure of earth is affected by natural forces such as micro-tremors, microseisms,
wave, wind, tide, air pressure, precipitation and a variety of human induced sources such as
hydraulic fracturing, oil prospecting explosions, cavern collapsing, mining etc. [3].

The analysis of ten earthquakes in Delhi/NCR of magnitude in the range from 2.5 to 4.5,
revealed stress drop of 3-13 MPa using Fourier acceleration spectra [4]. GPS and DEMETER
detected ionospheric anomalies and ULF emissions before the December 12, 2009 earthquake,
suggesting potential for short-term predictions [5].

Conventional seismic prediction methods rely on data, but lacks accuracy and timeliness,
necessitating innovative, precise approaches. Also, it is arduous for a seismological expert to
analyse billions of bytes of continuous stream of highly dynamic data using his expertise and
logic. The remote sensors above the earth and below the seas generate terabytes of data and it
is very challenging to derive the indicative attributes from the continuous stream due to the
complex nature of seismic data. Therefore, there is a critical need for pre-trained Al models to
process and analyse large-scale seismic data efficiently, identify patterns, and predict potential
earthquakes with higher accuracy and timeliness than traditional methods.
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The applications of machine learning in seismology primarily focus in producing earthquake
early warning systems, ground motion predictions, seismic tomography and illuminating
geophysical structure, earthquake geodesy and non-inertial deformation [6]. The conventional
approaches may not be adequately sufficient in the scenario where a region is more susceptible
to large number of small seismic events [7].

In a deep learning neural network, trained using more than 131,000 mainshock-aftershock
pairs to predict aftershocks on a test dataset comprising of more than 30,000 mainshock-
aftershock produced results of 0.849 AUC (area under curve) as compared to 0.583 AUC using
classic Coulomb failure stress change [8].

A research study presented an early earthquake warning method called PreSeis (Pre-sesimic)
based on two-layer feed forward neural network that estimates the earthquake hypocentre
location, the moment magnitude, and the expansion of the evolving seismic rupture [9].

A deep Convolutional Neural Network (CNN) trained with 200, 3D synthetic seismic images,
adam optimiser with learning rate of 0.0001 and 25 epochs generated an accuracy of 95% and
loss converging to 0.01 in the 3D seismic fault segmentation [10].

[11] applied twenty machine learning models such as support vector machine, neural networks,
random forest, gradient boosting, logistic regression etc. for seismic facies analyses. The
efficiency achieved to predict seismic facies is upto 98.3% with error upto 0.004%.

A research work proposed a framework called PhaseLink to identify for the grid -free phase
association [12].To discriminate noise from the earthquake event, a Generative Adversarial
Network (GAN) with Random Forest classifier is used to learn the characteristics of the first
arrival of p-waves in 3,00,000 waveforms with 99.2% and 98.4% for earthquake p-wave
detection and noise detection respectively [13].

In order to handle the challenges of massively generated seismological dataset, a cloud-based
analytics system unveils the seismic attributes, selects features, and performs the seismic
interpretation process [14]. [15] reviewed some of the finest Al techniques in the application
area of pile foundations. ConvNet, a Convolutional Neural Network, is used to detect phases
of seismic body wave even when the seismograms are affected by noise [16].

Convolutional Neural Network (CNN), Long Short Term Memory (LSTM), Combine CNN
and LSTM, and Attention-based deep learning models were used to predict the number and
strength of aftershocks following a major earthquake [17].

A simple convolutional neural network with 67,939 parameters distinguished earthquakes
from noise with an accuracy of 96.7%, 95.3%, and 93.2% in training, validation and test
dataset. The dataset comprises of three component seismograms of 3,04,878 earthquakes
comprising of 6,29,095 earthquake waveforms and 6,15,847 noise waveforms from 1487
broad band receivers [18].

A random forest method for classifying large earthquake occurrences and Long Short-Term
Memory (LSTM) provided a rough estimation of earthquake magnitude on large earthquake
datasets [19].

A convolutional neural network method which is able to process complex-valued seismic data
in the time—frequency domain by using complex convolutional and complex activation
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functions trained the model and achieved a Mean Absolute Error (MAE) of 4.51 km for
epicentral distance, 6.15 km for depth, and 0.26 for magnitude estimation [20].

The study on Turkey’s earthquake catalogue dataset from January 2014 to August 2023
leveraged Artificial Neural Network (ANN) for the prediction of earthquake magnitude and
risk assessment. The trained ANN model achieved a Root Mean Square Error (RMSE) 0.18
and the value of R-Squared (R2) equal to 0.99 [21].

A novel research study to estimate the earthquakes magnitude based on the LSTM network
architecture using two decades of seismic events could perform the short-term earthquake
prediction accurately [22].

The relationship between Total Electron Content (TEC) in lonosphere and earthquake
occurrences has been identified using LSTM based prediction models [23]. The study
compares the performance metrics of LSTM based predictions with Support Vector Machine,
Linear Discriminant Analysis and Random Forest Classifier to evaluate the proposed models
for earthquake prediction.

A regressor named MagNet based on convolutional and recurrent neural network models and
trained on single station waveforms is capable of predicting the local magnitudes with an
average error of nearly zero and 0.2 standard deviation [24].

A temporal-convolutional neural network architecture is trained to learn epicentral distance
and P-wave travel time from a single station 1-minute seismograms. The trained neural
network achieved the evaluation of epicentral distance and P-wave travel time with mean
errors of 0.23 km and 0.03 seconds, and standard deviations of 5.42 km and 0.66 seconds,
respectively [25].

An approach comprising of two models, the first one used the LSTM model architecture
predicting the year, location, and magnitude of earthquakes and the second model followed
decomposition method of dividing the dataset based on magnitude ranges and applying LSTM
models to the segmented data. The decomposition model proves to be more efficient,
especially in predicting large magnitude earthquakes. The results of the research study of these
models are also compared with ANN models and found to result in better performance metrics
[26].

A research study pursued the implementation of recurrent neural network named LSTM on
the earthquake dataset and found the results to be far better than feed forward neural networks
[27].

Deep neural networks used on unlabeled data for performing the clustering of seismic data and
optimizing feature representations for specific tasks, achieved high precision supporting
earthquake early warning systems and various other applications [28].

A proposed research study introduced a novel prediction method that applies an attention
mechanism (AM), convolutional neural network (CNN), and bi-directional long short-term
memory (BiLSTM) models. It predicts the number and maximum magnitude of earthquakes
in mainland China using the regional earthquake catalog [29].

This study enhances earthquake forecasting by applying deep learning (DL) and machine
learning (ML) to lab-simulated earthquakes. It introduces autoregressive models and expands
Nanotechnology Perceptions Vol. 20 No. S9 (2024)
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on existing techniques to predict fault zone stress and labquake events, outperforming current
methods. These advancements suggest improved accuracy in earthquake prediction,
particularly in predicting the time to start and end of failure under various conditions, including
pre-seismic creep and aperiodic events, offering promising potential for real-world
applications [30].

3. Dataset

The development of advanced techniques has led to collection of large earthquake datasets and
more robust models to process and analyse the earthquake signals in real time. For supervised
machine learning, labelled dataset is a prerequisite to build a model. There are many labelled
datasets available, but the reliability of those datasets is always a matter of concern and thus,
imposes a big hurdle in the processing. Therefore, a high-quality, large-scale global data
recorded using highly sensitive seismometers are required to study the structural changes
within the earth. The dataset used in this research study is a large scale, global dataset named
STEAD (Standard Earthquake Dataset) [31] that comprises of 1.2 million samples of
waveform data recorded from January 1984 — August 2018, associated with 4.5 lakh
earthquakes. Each waveform is one minute long with sampling rate of 100 Hz i.e. 6000
samples / minute. The overall dataset contains 19K hours of earthquake recordings by 2613
seismometers located all over the world. Each earthquake is represented as Numpy arrays
containing 6000 samples associated with 60 seconds of ground motion recorded in three
components (3C) i.e. north-south(N), vertical(Z) and east-west(E) directions. There are 35
attributes in the metadata associated with each earthquake such as network code, location of
the receiver, origin time, epicentral location, depth, magnitude, magnitude type, focal
mechanism, arrival times, signal to noise ratio, coda end etc.

To process the above dataset, this research study has used one of the very powerful toolboxes
of python programming namely Seisbench [32]. Seisbench is an open-source toolbox that
provides support of functions to data analyses using machine learning and deep learning
models. The dataset API facilitates the downloading of seismic waveform datasets such as
ETHZ, GEOFON, INSTANCE, STEAD, etc. for machine learning and deep learning
algorithms. Seisbench datasets consist of two components i.e. the waveform traces and the
metadata. Each dataset has two files namely a .csv file for the metadata and a. hdf5 file for the
actual waveform traces.

The study creates the most optimised Deep Learning (DL) architecture models using Artificial
Neural Network, Convolutional Neural Network, Recurrent Neural Network, Long Short-
Term Memory network and Bi-directional Long Short-Term Memory network on the real-
world earthquake waveform dataset derived from Standard Earthquake Dataset (STEAD).

All the neural network architectures are designed to be used for a regression task of predicting
the earthquake magnitude. Deep Learning is a multi-layer network model that has the
capability to derive features from the raw data thereby enhancing the functionality of the neural
network to model complex earthquake data. The deeper the learning, the higher will be the
degree of abstraction in the model. The most emphasis in such models are provided to
hyperparameters optimization such as number of hidden layers, number of computing units in
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each layer, activation functions used, optimiser adopted, weight manipulation, no. of epochs,
no. of iterations and many more. The training phase, being most critical, requires weight
updation in such a way so as to minimize the loss function. Therefore, amongst several
optimizers namely Gradient Descent, Stochastic Gradient Descent, Adam stochastic
optimization, Adagrad, Adadelta etc., the most suitable to the given application is selected.
Deep learning applications generally require multi-processor graphics cards or GPUs for
developing the model. It is envisioned to be the future trend to be followed in order to uncover
the complex seismic prediction models.

This research study develops deep learning model architectures on Standard Earthquake
Dataset (STEAD) to predict the magnitude of earthquakes using three-Component (3C)
earthquake waveforms. The dataset comprises of 17,324 waveforms containing 3 Components
of 6000 samples each making it a total 31,18,32,000 data points for analyses. The dataset is
split into training, validation, and test and the models are trained on 10 epochs, batch size of
64 instances for training, validation and testing. The dataset considered under study is
primarily of the Alaska region that is located in the northwest extremity of North America.
Alaska is highly seismically active region and had many devastating magnitude earthquakes
in the past and also has the potential to generate large magnitude earthquakes in the future.
The details of the dataset used for the study are shown in Table 1.

Table 1 : Dataset selection for prediction
Description Data Samples
STEAD - Original Dataset Traces (earthquake waveforms

. 1.2 million
+ noise waveforms)
Earthquake Waveforms traces 10,30,231
(3 Component dataset)
Noise Waveforms traces 2,35,426
(3 Component dataset)
Total no. of samples per waveforms per component 6,000
Sampling Rate (in Hz) 100

141877

No. of earthquake waveform traces of Alaska (AK) region

No. of earthquake waveform traces of Alaska (AK) region | 17324
with magnitude greater than 3.0

Total Data points processed for study :1)1312; 3)(26000000 x3=
Output Earthquake Magnitude

4, Evaluation Metrics

In order to build and deploy a generalized model, the evaluation metrics have very high
significance in finding the performance of the deep neural networks. The following evaluation
metrics are used in this research study to compare the performance of the various deep neural
networks used for the earthquake magnitude prediction. N is the total data points, y; is the

actual output and §; is the predicted output:
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a) Mean Absolute Error (MAE): Mean Absolute Error is defined as the distance between
the Predicted and the Actual Values. MAE measures the average magnitude of errors without
considering the direction. The calculation of Mean Absolute Error is shown by equation no.

(1).

N
1
MAE :NZ ly; — 9l 1)
j=1
b) Mean Squared Error (MSE): In Mean Squared Error, the square of the average errors

between the predicted and the actual values are considered. The squared term is performed in
order to avoid the cancellation due to negative terms. Also, higher magnitude errors when
raised to their square, indicates more focus to be put on them. The calculation of Mean Squared
Error is shown by equation no. (2).

N
1 . (2)
MSE == > (v~ 5))°
=1

C) Root Mean Squared Error (RMSE): It is a metric that is derived from Mean Squared
Error by taking the square root of MSE. Root Mean Squared Error is calculated as shown by
equation no. (3).

RMSE = ®)

d) Mean Absolute Percentage Error (MAPE): It is defined as the average absolute
percentage error between the predicted value and the actual value. MAPE is calculated as per
the equation (4).

N

1 . — (.

MAPE = — Zu X 100 @)
N & Yj
j=1

e) Mean Squared Logarithmic Error (MSLE): It is used to evaluate the model when
the data has wide range of values. This metric is particularly useful in the application that may
see exponential growth such as population, stock etc.

MSLE is calculated as shown in equation (5):
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Z

-1

MSLE = (loge(1 +y;) — loge(1 + 9;))? (5)

Z| -
1l
o

j
f) R-Squared (Coefficient of Determination): It is used to compare the trained model
with the baseline model. Also, known as the Goodness of Fit, it is calculated as per the equation

no. (6) given below. SSr is the Squared Sum Error of Regression Line. SSm is Squared Sum
Error of Mean Line.

SSr

- o (6)

RZ=1

5. Methodology

This section provides the comprehensive details of the methodology adopted for the study. It
provides details of the various deep learning model architectures implemented on the
earthquake waveform dataset to derive the performance metrics of each of them for effective
comparison.

Fig 1. shows the methodology adopted for earthquake magnitude prediction using deep neural
networks.

Data Acquisition

NS

Waveform Data Preprocessing

SN2
Set the Model Architecture

Apply ANN/CNN/RNN/LSTM / Bi-LSTM
models as regressor

SN2
| Predict the magnitude of the earthquakes |

A V.4

Compare the Performance Metrics

A4

Visualize Results
SN2

Select the best model

Fig. 1: Methodology proposed for earthquake magnitude prediction using deep neural
networks

It includes the following steps:

i. Waveform data Acquisition: The dataset acquired for the study, STanford EArthquake
Dataset (STEAD) is the reliable global dataset comprising of over 1 million seismograms
associated with 4.5 lakh earthquakes. Each earthquake seismogram is captured across three
components i.e. Vertical (Z), North(N) and East(E) also known as 3Cs. The recorded
waveform is real world earthquake data consisting of one-minute long, raw waveform with
100Hz sampling rate, resulting in 6000 samples per component per event. Therefore, each

Nanotechnology Perceptions Vol. 20 No. S9 (2024)



Artificial Intelligence in Seismology- Deep... Manka Vasti et al. 908

earthquake is represented with a total of 18000 samples. The computing resources to process
such large dataset is always a big challenge. Therefore, the study is restricted to Alaska
earthquake data with earthquake magnitudes > 3.0. This leads to a total of 17,324 earthquakes
with 18000 samples per event, makes it total of 31,18,32,000 data samples to process for the
study using deep learning models.

ii. Data Pre-Processing: This step includes waveform data normalization, reshaping the
data and splitting the dataset into train, test and validation datasets.

o Set the Model Architecture: This requires deciding on the type of input, number of
hidden layers, weights initialization, neurons per layers, activation functions, optimizer, loss
function, batch size, no. of epochs etc.

o Apply the deep learning models: This research study is based on the implementation
of the following are the deep learning models. Each model is trained on the same dataset and
is specifically tasked as regressor for the earthquake magnitude prediction. By providing the
consistent training, validation and test dataset ensure the selection of the best model
architecture capable to capture the underlying patterns in the seismic dataset and provides the
most accurate earthquake magnitude predictions

. Artificial Neural Network: A basic feedforward neural network used as a baseline for
performance comparison.

. Recurrent Neural Network: This is used for handling sequential data, therefore, RNNs
are employed to capture temporal dependencies in the waveform data.

o Convolutional Neural Network: Convolutional Neural Networks are utilized to
automatically extract spatial features from the time-frequency representations of the seismic
signals.

o Long Short Term Memory: LSTM networks are implemented to model long-term
dependencies in the seismic data, which is crucial for capturing patterns in the waveform
sequences.

o Bidirectional Long Short Term Memory: The Bidirectional LSTM architecture is
tested to capture information from both past and future time steps in the sequence, providing
a more comprehensive understanding of the seismic events.

iii. Predict the earthquake magnitude values: After the successful training of the deep
learning neural network, the prepared model is used for the prediction on the test dataset.

iv. Compare performance metrics: This step allows for a comprehensive evaluation of
each model's effectiveness in the critical regression task by comparing their performance
metrics such as training loss, validation loss, test dataset’s Mean Absolute Error, Mean
Squared Error, Root Mean Squared Error, Mean Absolute Percentage Error, and R-Squared
values.

V. Visualize results: For effective comparison, the results are visualized in terms of
training vs validation loss, predicted vs actual values, model’s residual values, model’s error
distribution and heatmap to represent the prediction errors.
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Vi. Select the best Model: By comparing all the performance metrics, the best model
architecture for the given dataset is recommended for the most accurate earthquake magnitude
predictions.

6. Results

In this section, the performance metrics of various deep learning models are evaluated and
compared. The different deep learning models namely ANN, RNN, CNN, LSTM and Bi-
LSTM are tasked as regressors to predict earthquake magnitude using the STEAD waveform
dataset. Each model was trained, validated and tested on the same pre-processed dataset
ensuring same environment across all the models processing. The performance of deep
learning models was compared using the key evaluation metrics including Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean
Absolute Percentage Error (MAPE), R-Squared(R?), training loss and validation loss values.
The results were plotted to indicate the strengths and limitations of each model in predicting
earthquake magnitudes on the real-world seismic waveform dataset. The results in the study
are achieved by training deep learning algorithms on the STEAD dataset using the fourth-
generation Tensor Cores, NVIDIA L4 Tensor Core GPU, paired with the CV-CUDA library,
Hi-RAM environment of Google Colab Pro.

The training and validation loss curves for all five deep learning models are shown in Fig 2
(a) — (e). These loss curves show how well each model learnt from the training dataset and
how effectively it generalizes to unseen validation dataset on 10 epochs of training. The LSTM
and CNN models have more consistently stable loss curves, while Bi-LSTM stabilizes after a
few epochs. ANN and RNN models also indicate smooth decline in loss curves and are
effective as baseline models.

CNN Training Vs Validation Loss LSTM Training Vs Validation Loss

ANN Training Vs Validation Loss
6
4

Fig. 2 (a) — (e): Comparison of training vs validation losses over the epochs of training on
the earthquake waveform dataset using various deep learning models. (a) Convolutional
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Neural Network (b) Long Short Term Memory Neural Network (c) Bidirectional Long Short
Term Memory Neural Network (d) Recurrent Neural Network (e) Artificial Neural Network

Fig. 3 (a)-(e), represents the scatter plots between the predicted earthquake magnitude vs the
actual earthquake magnitudes for all the five deep learning models. The diagonal line shows
the ideal scenario where the predicted values are same as actual values. As seen in Fig. 3,
LSTM and Bi-LSTM show better spread around the diagonal, indicating strong predictive
accuracy. However, there are some magnitude overestimations by Bi-LSTM and
underestimation by LSTM models. LSTM and Bi-LSTM models have the capability to capture
temporal dependencies well and therefore, provide more consistent predictions as compared
to other models. Though, CNN model also performed well, but it shows some issues with
higher magnitude predictions.

CNN Predictions vs Actual .- LSTM Predictions vs Actual Bi-LSTM Predictions vs Actual

s so s 5
True Values Woevalas T muevees

@ (b) (c)

ANN Predictions Vs Actual

RNN Predictions vs Actus!

[rm—

S s«
e Values e Valaes.

(d) (e)

Fig. 3 (a) — (e): A comparison of Predictions Vs Actual values of the various deep learning
models.

RNN model has more outliers and ANN indicate many deviations from the actual values and
hence, these models are less suitable for accurately predicting earthquake magnitudes.

In Fig. 4 (a) — (e), the plots display the residuals, i.e. the difference between the actual values
and the predicted values, versus the predicted values. Residuals help in understanding the
accuracy and bias of the model. In the ideal scenario, the residuals are randomly scattered
around zero to show that the model’s predictions are unbiased and accurate.
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LSTM Resicuals BLSTM Residusts

ANN Residuals

o e ":"é'}m i
Fig. 4 (a) — (e): A comparison of residuals of the various deep learning models on
earthquake waveform dataset

These residual plots indicate that CNN, LSTM and Bi-LSTM models generally provide more
reliable and accurate predictions over other models.

The distribution of prediction errors for all five different models i.e. CNN, LSTM, Bi-LSTM,
RNN, and ANN are presented across the subplots in Fig.5 (a)- (€). As can be seen from the
Fig.5, LSTM model shows the narrowest spread with a peak near zero. This indicates that
LSTM model generalizes well and predicts the most accurate earthquake magnitude values.

NN Error Distribution LSTM Error Distribution B8i.5TM Error Distribution

,,,,,,,,,,,,,,,,,,,
- o - 5 2 s
TR0 TR PR TR T ONL SO A T BT T s 2 G e G e 08 S

ANN Error Distribution

RNN Error Distribution

,,,,,,,,,,,,
||||||||||||||

7 %6 5 4 3 2-1012 3 435 6

Fig. 5(a) — (e): A comparison of distribution of error of the various deep learning models
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InFig. 6 () — (), the distribution of prediction errors in heatmaps are shown for CNN, LSTM,
Bi-LSTM, RNN, and ANN models is shown. Heatmap shows the error magnitude difference
between actual and predicted values for the samples in test dataset. The colour intensity
representing the magnitude of the error. Lighter shades indicate larger errors, while darker
shades indicate smaller errors.

CNN Prediction Errors Heatmap

o

LSTM Prediction Errors Heatmap

B-LSTM Prediction Errors Heatmap

()

RNN Prediction Errors Heatmap

ANN Predictions Error Heatmap

Erroc Magnitude

Error Magnitude

° o
samples. Samples

(d) (e)

Fig. 6 (a) — (e): Heatmap shows the error magnitude difference between actual and predicted
values

The details of the hyperparameters such as the model architecture, optimizer, no. of parameters
trained, activation function, loss function etc. are mentioned in Table 2. The research study
includes the comparative analysis of the performance metrics of Artificial Neural Networks
(ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (LSTM). Table 2
summarizes the performance of various deep learning models based on the metrics namely
training loss, validation loss, mean absolute error, mean squared error, root mean squared error
and mean absolute percentage error on the training dataset. Bi-LSTM and LSTM models
exhibit the lowest error metrics and validation loss, indicating superior accuracy and
generalization.

Table 3 represents the comprehensive comparative analysis of evaluation metrics of various
deep learning models implemented on test dataset. Overall, LSTM and Bi-LSTM have better
values of performance metrics over other models.
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Table 2 : Comparative Analysis of Performance Metrics of Various Deep Learning
Algorithms for Earthquake Magnitude Prediction on Training dataset

Name of the | Model Trainin Validat
Neural Architectu | Optimiser Param # MAE MSE RMSE | MAPE ion
g Loss
Network re Loss
Conv1D(3
2~ 64 - Adam(learni
: 128 — 64 — N
Convolution ng Rate =
al Neural | 22~ &) 0.001), Loss
(Relu, T 2,51,15,393 | 1.6482 | 0.6163 0.7808 0.8833 | 16.1306 | 1.04
Network . = Mean
(CNN) Linear, Squared
Batch s
. Error
Normaliza
tion)
LSTM (64 Adam(learni
- 1) -
Long (Relu ng Rate =
ShortTerm | oar | 0:001), Loss |4 20 0.2790 | 04130 | 02714 | 05208 | 11.1092 | 0.2579
Memory = Mean
Batch
(LSTM™) - Squared
Normaliza »
. Error
tion)
Bi-LSTM .
Bidirectiona | (64 - 1 Adam(learn_l
ng Rate =
| _Long | (Relu, 0.001), Loss
ShortTerm Linear, _ ‘:Mean 35,457 0.2318 | 0.3786 0.2233 0.4725 | 10.2138 | 0.1628
Memory Batch Squared
(LSTM™) Normaliza | 29 »
. Error
tion)
LSTM (64 Adam(learni
_ 1 o
Recurrent (Relu ng Rate =
Neural Linear, 0.001), Loss | , o7s 0.3463 | 0.4587 | 0.3417 | 0.5846 | 12.2990 | 0.2663
Network(R = Mean
Batch
NN) . Squared
Normaliza s
. Error
tion)
256 - 128 Adam(learni
~64-32-1 o Rate =
Avtificial 1 (Rely, 09001) | oss
Neural Linear, o 11,71,905 0.1272 | 0.4878 0.1272 0.3566 | 7.7800 0.2766
= Mean
Network Batch
. Squared
Normaliza s
. Error
tion)
Table 3 : Comparative Analysis of Performance Metrics of Various Deep Learning
Algorithms for Earthquake Magnitude Prediction on Test dataset
Name of the Neural Network MAE MSE RMSE MAPE R2
Convolutional Neural Network (CNN) 0.419 0.261 0.511 0.116 0.932
Long Short Term Memory (LSTM) 0.404 0.2 0.44 0.1027 0.892
Bidirectional Long Short Term Memory
(LSTM) 0.412 0.2 0.44 0.1178 0.893
Recurrent Neural Network (RNN) 0.363 0.21 0.45 0.0987 0.819
Artificial Neural Network (ANN) 0.35 0.217 0.466 0.0958 0.887
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7. Conclusion

Earthquake characterization and prediction is very crucial for saving humanity, infrastructure
and the ecosystem. In the growing need for accurate and timely seismological characterization,
this research study leverages Al techniques to transition the processes from the obsoleted
traditional statistical methods to more advanced Al methodologies applied on the massive
datasets. The highly dynamic, non linear and complex datasets generated from the modern
seismological practices necessitates a drift from the traditional paradigms to more advanced
seismological practices and thereby indicating the significance of integrating Al into
seismological practices. As the volume and complexity of seismological data continue to grow,
traditional methods become more insufficient for timely and accurate earthquake prediction.
Al-enhanced seismology not only improves the ability to predict seismic events but also plays
a vital role in mitigating their consequences.

This research study has delved into the implementation of optimized neural network
architectures using STEAD for analysing complex, nonlinear datasets to predict seismic events
effectively. The research study emphasizes on designing, training and optimizing neural
network models to predict earthquakes magnitude. Using a comprehensive comparative
analysis of different model architectures namely Convolutional Neural Networks (CNN),
Long Short-Term Memory (LSTM) networks, Bidirectional LSTM (Bi-LSTM) networks,
Recurrent Neural Networks (RNN), and Artificial Neural Networks (ANN), the study
evaluates their performance basis various performance key indicators such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE), and the coefficient of determination (R2). The results revealed that
the LSTM and Bi-LSTM models outperformed other architectures, demonstrating superior
accuracy and generalization in predicting earthquake magnitudes. The LSTM model is also
slightly better over the Bi-LSTM model in terms of simplicity, computational efficiency, and
overall performance, making it the most effective architecture for this specific task. The CNN
model also performed well, especially in explaining the variance in the data, as indicated by
its high R2 value. However, it exhibited slightly higher error metrics compared to the LSTM
models. The RNN model, while effective, showed more variability in its predictions, making
it less reliable for capturing the complex relationships inherent in seismic data. The ANN
model, although demonstrating the lowest MAE and MAPE, had a slightly lower R? value,
and therefore, it may not capture the full complexity of the data as effectively as the LSTM-
based models.

In conclusion, the findings of this research underscore the potential of Al-driven models to
advance the field of seismology. The optimized deep learning architectures explored in this
study offer significant improvements in earthquake prediction, providing a more reliable and
efficient means of analysing complex seismic data. As seismological practices continue to
evolve, the integration of Al will be indispensable in addressing the challenges posed by the
dynamic and nonlinear nature of seismic phenomena, ultimately contributing to a safer and
more resilient world.

To further illustrate the comparison in various models, the plots of training vs validation loss,
predicted vs actual values, model’s residual values, model’s error distribution and heatmap to
represent the prediction errors were shown. The plots indicate that out of all the models, LSTM
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and Bi-LSTM models performed the best as compared to other models on the given dataset.
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