Generalised Γ- Semiideals in Ternary Γ-Semirings

K. Maha lakshmi^{1,2}, P. Siva Prasad³, D. Madhusudana Rao⁴

¹Research Scholar, Department of Mathematics, VFSTR Deemed to be University,
Vadlamudi, India, mhlakahmi@gmail.com.

Assistant Professor, Department of Mathematics, Vignan Nivella Engineering College

²Assistant Professor, Department of Mathematics, Vignan Nirulla Engineering College, India, mhlakahmi@gmail.com.

³Associate Professor, Department of Computer Science & Engineering, School of Computing & Informatics, VFSTR Deemed to University, India, pusapatisivaprasad@gmail.com

⁴Professor of Mathematics, Government College For Women(A), Samba Siva Peta Rd, Opp: AC College, India, dmrmaths@gmail.com

Here in this research article we introduce the concept of generalized semi-ideal in a ternary Γ -semirings. Here we gave several examples to maintain the relationship between the quasi-ideals, bi-ideals, ideals and generalized semi-ideals were introduced. Here a criterion of a commutative ternary Γ -semiring without any zero divisors to a ternary Γ -divison semiring was given.

Keywords: Ternary Γ – semiring, Γ -ideals, Quasi Γ -ideals, Generalized Γ -semiideal,

1. Introduction

In the year 1971 Lister investigated on ternary rings and their structures. Especially Lister [4] generalized those additive subgroups of rings these are closed under the triple product. Later T.K.Dutta and S.Kar [3] were introduced in the year 2003 the notion of ternary semi rings as a generalization of a ternaryring. In 2005 they were also introduced the notions of left,lateral and right ideals of a ternary semirings and also characterized the regular ternary semirings. After that S.Kar introduced the notions of bi-ideals and quasi-ideals in a ternary semirings. In the same year T.K.Dutta generalized the notion of semi-ideals in a ring has been introduced. Later in the year of 2015 D.Madhusudana rao and sajani lavanya introduced the notion of ternary Γ -semirings. The earlier works of D. Madhusudhana Rao and M. Sajani Lavanya on Ternary Γ -Semirings may be found in [5, 6, 7, 8]. In 2007, T. K. Dutta and M. L. Das [2] introduced and studied right strongly prime Semirings.

In this research article we developed the notion of generalized Γ -semi ideals in a ternary Γ -semiring and study the properties of them. We also introduce an affinity between the Γ -

ideals ,bi- Γ -ideals, Γ - semi ideals etc in a ternary Γ -semirings. In that similar way we also study some of the characteristics of a generalized Γ - semi ideals in a ternary Γ -semirings.

2. Preliminaries: For the preliminaries we will refer [1],[2] & [3]

Definition 2.1:Let S_G be a commutative semigroup along with a ternary multiplication denoted by $[\]$ is known as ternary Γ – semiring TS_R if

$$\begin{split} \text{i.} \left[[p\alpha q\beta r]\gamma s\delta t \right] &= [p\alpha [q\beta r\gamma s]\delta t] = [p\alpha q\beta [r\gamma s\delta t] \\ \text{ii.} \left[(p+q)\alpha r\beta s \right] &= [p\alpha r\beta s] + [qp\alpha r\beta s] \\ \text{iii.} \left[p\alpha (q+r)\beta s \right] &= [p\alpha q\beta s] + [p\alpha r\beta s] \\ \text{iv.} \left[p\alpha q\beta (r+s) \right] &= [p\alpha q\beta r] + [p\alpha q\beta s], \\ \forall p,q,r,s \in TS_R \text{ and } \alpha,\beta,\gamma,\delta \in \Gamma \end{split}$$

Throughout of this research article TS_R will denote a ternary Γ – semiring unless otherwise stated.

Definition 2.2: Let TS_R be a ternary Γ – semiring if there exist an element $0 \in TS_R$ such that 0 + p = p and $[0\alpha p\beta q] = [p\alpha q\beta 0] = [p\alpha 0\beta q] = 0$, $\forall p,q \in TS_R$. then 0 is said to be zero element of TS_G . Here in this case we said that TS_R is a ternary Γ – semiring with zero element.

Definition 2.3: Let TS_R be a ternary Γ – semiring is said to be a commutative ternary Γ – semiring if

$$[p\Gamma q\Gamma r] = [q\Gamma r\Gamma a] = [r\Gamma p\Gamma q] = [q\Gamma p\Gamma r] = [r\Gamma q\Gamma p] = [p\Gamma r\Gamma q], \forall p,q,r \in TS_R.$$

Definition 2.4:An additive subsemigroup T of TS_R . is called a ternary Γ – subsemiring TSS_R of TS_R . if $[t_1\alpha t_2\beta t_3] \in T$, $\forall t_1,t_2,t_3 \in T$ and $\alpha,\beta \in \Gamma$.

Definition 2.5: An element a in TS_R is said to be a regular element if there exist an element x in TS_G such that $[a\alpha x\beta a] = a$. TS_R is called regular if all of its elements are to be regular.

Definition 2.6:A ternary Γ – semiring TS_R . is said to be zero divisor free(ZDF) if for x, y, z \in TS_R , $[x\alpha y\beta z] = 0$ which implies that either x = 0 or y = 0 or z = 0.

Definition 2.7: A ternary Γ – semiring TS_R with $|TS_R| \ge 2$ is said to be a ternary division Γ – semiring if for each non zero element x in TS_G , there exist s non zero element y in TS_G such that $[x\alpha y\beta a] = [y\alpha x\beta a] = [a\alpha x\beta y] = [a\alpha y\beta x] = a$, $\forall a \in TS_R$.

Definition 2.8: A ternary Γ – semiring TS_R , A left(right/lateral) ideal I of TS_R is an additive subsemigroup of TS_R such that $[s_1\alpha s_2\beta i] \in I([i\alpha s_1\beta s_2] \in I/([s_1\alpha i\beta s_2] \in I))$ for all $i \in I$ and $\forall s_1, s_2 \in TS_R$ if I is a left, a right and a lateral Γ –ideal of TS_R , then I is said to be an Γ –ideal of TS_R .

Definition 2.9: A ternary Γ – semiring TS_R and Q be a additive subsemigroup of TS_R is said to be a quasi Γ -ideal of TS_G if $[Q\Gamma TS_R\Gamma TS_R] \cap [TS_R\Gamma TS_R] + [TS_R\Gamma TS_R\Gamma Q\Gamma TS_R\Gamma TS_R] \cap [TS_R\Gamma TS_R\Gamma Q] \subseteq Q$.

Definition 2.10: A ternary Γ – semiring TS_R , B is a ternary gamma subsemiring of TS_G is said to be bi- Γ –ideal of TS_R if $[B \Gamma TS_R \Gamma B \Gamma TS_R \Gamma B] \subseteq B$.

3. Generalised Γ -Semi ideals in ternary Γ – semirings

Basically T.K.Dutta was introduced the concept of generalized semi-ideals in semirings. In the year 2011, V.R.Daddvi & Y.S.Pawar defined the same concept in ternary semiring. Now as a generalization we define generalized semi gamma ideals in ternary Γ – semirings.

Definition 3.1: Let TS_R be a ternary Γ – semiring and a non empty subset A of TS_R satisfying the condition $x + y \in A$, $\forall x, y \in A$ is said to be

- i) Generalized left Γ- semi ideal of TS_R if $[[a\alpha a\beta a]a\gamma x] \in A$, $\forall x \in A$, $a \in TS_R$, α , β , $\gamma \in \Gamma$
- ii) Generalized right Γ- semi ideal of TS_R if $[[x\alpha a\beta a]a\gamma a] \in A$, $\forall x \in A$, $a \in TS_R$, α , β , $\gamma \in \Gamma$
- iii) Generalized lateral Γ semi ideal of TS_R if $[[a\alpha a\beta x]a\gamma a] \in A, \forall x \in A, a \in TS_R, \alpha, \beta, \gamma \in \Gamma$
- iv) Generalized Γ semi ideal of TS_R if it is a generalized left Γ -semi ideal, a generalized right Γ -semi ideal and a generalized lateral Γ -semi ideal of TS_R .

Example 3.2: Let $T = M_2(Z_0^-)$ and $\Gamma = M_2(z^+)$ then T is TS_R of the set of all 2X2 square matrices over Z_0^- . Let $G = \{ \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} / a \in Z_0^- \}$ and $\Gamma = \{ \begin{pmatrix} b & 0 \\ 0 & 0 \end{pmatrix} / b \in Z^+ \}$ then G is a TSS_R

Remark 3.3: The concepts of generalized Γ -semi ideal of a ternary Γ – subsemiring are independent in TS_R . This means that is every ternary Γ – subsemiring of TS_R need not be a generalized Γ – semi ideal of TS_R and every generalized Γ – semi ideal of TS_R need not be a ternary subsemiring of TS_R . For this consider the following examples.

Example 3.4: Let $TS_R = M_2(Z_0^-)$ be a ternary Γ – semiring of the set of all 2×2 square matrices over Z_0^- , the set of all non-positive integers.

And let $T = \{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} / x \in Z_0^- \}$. Tis a ternary Γ – subsemiring of TS_R . but it is not a generalized Γ -semi ideal of TS_R .

Example 3.5: Let $TS_R = \{..... - 2i, -i, 0, i, 2i....\}$ and $TS_R = \Gamma$, then TS_R be a ternary Γ - semiring with respect to addition and complex triple multiplication. Let $A = \{..... - 8i, -4i, 0, 4i, 8i...\}$, A is a generalized Γ -semi ideal of TS_R , but not a ternary subsemiring of TS_R .

Remark 3.6:Every Γ –ideal of TS_R is a generalized Γ -semi ideal of TS_R .but the converse need not be true.

of T, but not a generalized Γ -semi ideal of T.

Example 3.7:Every quasi Γ –ideal need not be a generalized Γ -semi ideal of TS_R and every generalized Γ -semi ideal need not be a quasi Γ –ideal TS_R .(in example 3.4) T is a quasi Γ –ideal of TS_R , but it is not a generalized Γ -semi ideal of TS_R . In Example 3.5 A is a generalized Γ -semi ideal of TS_R but it is not a quasi Γ –ideal of TS_R .

Remark 3.8:Every quasi Γ –ideal is a bi- Γ –ideal in $TS_R[6]$. Hence the bi- Γ –ideal and generalized Γ -semi ideal in TS_R are independent concepts. The flow-chart of the relation between Γ –ideals, bi- Γ –ideals, quasi Γ –ideals, ternary Γ – subsemiring and generalized Γ -semi ideal in a ternary Γ – semiring is given below

4. Properties of Generalized Γ-semi ideal

Let $\{G_{\alpha}\}_{\alpha\in\Delta}$ be the arbitrary collection of generalized Γ -semi ideals of a ternary Γ -semiring TS_R then the arbitrary intersection of these generalized Γ -semi ideals is again generalized Γ -semi ideal of TS_R . But the union of two generalized Γ -semi ideals of TS_R may not be a generalized Γ -semi ideal of TS_R . This we establish in following example.

Let $TS_R = \{\dots \dots -2i, -i, 0, i, 2i \dots \}$ be a ternary Γ – semiring with respect to the operations addition and complex triple multiplication. Then $P = \{\dots \dots -16i, -8i, 0, 8i, 16i, \dots \}$ and $Q = \{\dots -15i, -5i, 0, 5i, 15i, \dots \}$ are two generalized Γ –semi ideal of TS_R but the union $P \cup Q$ is not a generalized Γ –semi ideal of TS_R .

Theorem 4.1:Let TS_R be a ternary Γ –semiring and let A be a generalized Γ –semi ideal of TS_R and let T be a ternary Γ – subsemiring of TS_R . If $A \cap T \neq \emptyset$, then $A \cap T$ is a generalized Γ –semi ideal of TS_R .

Assume that TS_R be a ternary Γ –semiring and let $x, y \in A \cap T$.then $x + y \in A \cap T$.For any $a \in T$ and $x \in A \cap T$ we have $\left[[a\Gamma a\Gamma a]\Gamma a\Gamma x \right] \in A \cap T$, $\left[[x\Gamma a\Gamma a]\Gamma a\Gamma a \right] \in A \cap T$. Hence $A \cap T$ is a generalized Γ –semi ideal of TS_R .

Theorem 4.2: Let TS_R be a ternary Γ –semiring and if Pand Q are any two generalized Γ –semi ideals of TS_R then $P+Q=\{x+y/x\in P,y\in Q\}$ is a generalized Γ –semi ideal of TS_R .

Proof: Assume that TS_R be a ternary Γ –semiring also let P and Q are any two generalized Γ –semi ideals of TS_R , then define $P+Q=\{x+y,x\in P,y\in Q\}$. Let $p,q\in P+Q$, hence p=a+b,q=c+d for any $a,c\in P$ and $b,d\in Q$. Then $p+q=(a+b)+(c+d)=(a+c)+(b+d)\in P+Q$ and let $s\in TS_R$ and $p\in P+Q$, hence p=a+b

for some $a \in P$ and $b \in Q$. Now $S \in TS_{R}, a \in P$ and P is a generalized Γ -semi ideal

$$\Rightarrow$$
 $[[s\Gamma s\Gamma s]\Gamma s\Gamma a] \in P$, $[s\Gamma [[s\Gamma s\Gamma s]\Gamma s] \in P$, $[a\Gamma s\Gamma [s\Gamma s\Gamma s] \in P]$

therefore $\left[[s\Gamma s\Gamma s]\Gamma s\Gamma p \right] = \left[[s\Gamma s\Gamma s]\Gamma s\Gamma (a+b) \right] = \left[[s\Gamma s\Gamma s]\Gamma s\Gamma a \right] + \left[[s\Gamma s\Gamma s]\Gamma s\Gamma b \right] \in P+Q.$

In this similar way we will prove that

 $[[s\Gamma s\Gamma p]\Gamma s\Gamma s] = [[s\Gamma s\Gamma (a+b)]\Gamma s\Gamma s] = [s\Gamma s\Gamma a]\Gamma s\Gamma s] + [s\Gamma s\Gamma b]\Gamma s\Gamma s] \in P + Q. \text{ and }$ $[[p\Gamma s\Gamma s]\Gamma s\Gamma s] = [[(a+b)\Gamma s\Gamma s]\Gamma s\Gamma s] = [[a\Gamma s\Gamma s]\Gamma s\Gamma s] + [[b\Gamma s\Gamma s]\Gamma s\Gamma s] \in P + Q.$

Therefore P + Q is a generalized Γ -semi ideal of TS_R .

Theorem 4.3:Let TS_R be a ternary Γ -semiring with zero. And let P and Q are any two generalized Γ -semi ideals of TS_R containing zero. Then P+Q is the smallest generalized Γ -semi ideal of TS_R containing both P and Q.

Proof: By the above Theorem 4.2 P+Q is a generalized Γ —semi ideal of TS_R . Since $0 \in P$, $0 \in Q$ we will get $0 \in P+Q$ and for any $p \in P$, $p=p+0 \in P+Q$. Hence $P \subseteq P+Q$, similarly $Q \subseteq P+Q$. Assume that I be any other generalized Γ —semi ideal containing both P and Q. Let $P \in P+Q$ then P=q+Q is the smallest generalized Γ —semi ideal containing both P and Q.

Note: If P, Q and R are the three subsets of TS_R then by $[P \Gamma Q \Gamma R]$ it means the set of all finite sums of the form $\sum [p_i \Gamma q_i \Gamma r_i]$, where $p_i \in P$, $q_i \in Q$, $r_i \in R$.

Theorem 4.4: Let TS_R be a ternary Γ -semiring and P be a generalized left Γ -semi ideal of TS_R . Then $[P\Gamma Q\Gamma R]$ is a generalized left Γ -semi ideal for any non empty subsets Q and R of TS_R .

Proof: Let TS_R be a ternary Γ –semiring. And for $x, y \in [P\Gamma Q\Gamma R]$, let $x = \sum_{i=1}^n [p_i \Gamma q_i \Gamma r_i]$ and $y = \sum_{j=1}^m [p_j \Gamma q_j \Gamma r_j]$. Unanimously x + y is a finite sum of the form $\sum [p_i \Gamma q_i \Gamma r_i]$. So that $x + y \in [P\Gamma Q\Gamma R]$. For any $s \in TS_R$ then $[[s\Gamma s\Gamma s] \Gamma s\Gamma x] = [[s\Gamma s\Gamma s] \Gamma s\Gamma \sum_{i=1}^n [p_i \Gamma q_i \Gamma r_i]]$

$$=\sum_{i=1}^{n} [[s\Gamma s\Gamma s]\Gamma s\Gamma [p_{i}\Gamma q_{i}\Gamma r_{i}]]$$

 $= \sum_{i=1}^{n} \left[\left[[s\Gamma s\Gamma s]\Gamma s\Gamma p_{j} \right] \Gamma q_{i}\Gamma r_{i} \right] \in [P\Gamma Q\Gamma R]. \text{ Since } P \text{ is generalized left}$ of TS_{n} $[P\Gamma Q\Gamma R]$ is a generalized left Γ -semi ideal of TS_{n}

 Γ -semi ideal of TS_R . $[P\Gamma Q\Gamma R]$ is a generalized left Γ -semi ideal of TS_R .

Corollary 4.5: Let TS_R be a ternary Γ –semiring and P be a generalized right Γ –semi ideal of TS_R . Then $[P\Gamma Q\Gamma R]$ is a generalized right Γ –semi ideal for any non empty subsets Q and R of TS_R .

Proof: Similar to the proof of theorem 4.4

Corollary 4.6: Let TS_R be a ternary Γ -semiring and P be a generalized lateral Γ -semi ideal of TS_R . Then $[P\Gamma Q\Gamma R]$ is a generalized lateral Γ -semi ideal for any non empty subsets Q and R of TS_R .

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

Proof: Proof: Similar to the proof of theorem 4.4

Corollary 4.7: Let TS_R be a ternary Γ –semiring and P be a generalized Γ –semi ideal, then $[P\Gamma Q\Gamma R]$ is a generalized Γ –semi ideal.

Proof: By the theorem 4.4 $[P\Gamma Q\Gamma R]$ is a generalized left Γ —semi ideal, By theorem 4.5 $[P\Gamma Q\Gamma R]$ is a generalized right Γ —semi ideal, By theorem 4.6 $[P\Gamma Q\Gamma R]$ is a generalized lateral Γ —semi ideal. Hence $[P\Gamma Q\Gamma R]$ is a generalized Γ —semi ideal.

Definition 4.8: Let TS_R be a ternary Γ -semiring and P is a subset of TS_R then P is said to be duo generalized Γ -semi ideal if P is a left generalized Γ -semi ideal then P is also a right generalized Γ -semi ideal.

Theorem 4.9: Let TS_R be a ternary Γ -semiring and P be a generalized Γ -semi ideal of TS_R . Then $[P\Gamma Q\Gamma R]$ is a duo generalized Γ -semi ideal for any non empty subsets Q and R of TS_R .

Proof: By the theorem 4.4 $[P\Gamma Q\Gamma R]$ is a generalized left Γ -semi ideal, By theorem 4.5 $[P\Gamma Q\Gamma R]$ is a generalized right Γ -semi ideal. Therefore $[P\Gamma Q\Gamma R]$ is a duo generalized Γ -semi ideal

Theorem 4.10: Let TS_R be a ternary Γ —semiring. And let P be a generalized left(right) Γ —semi ideal and Q be a bi Γ —ideal of TS_R . Then $[P\Gamma Q\Gamma Q]([Q\Gamma Q\Gamma P])$ is a generalized left(right) Γ —semi ideal as well as bi Γ —ideal of TS_R .

Proof: Let
$$TS_R$$
 be a ternary Γ -semiring. $x,y,z \in [P\Gamma Q\Gamma Q]$, and let
$$x = \sum_{i=1}^n [p_i \Gamma q_i \Gamma r_i],$$

$$y = \sum_{i=n+1}^m [p_i \Gamma q_i \Gamma r_i],$$

$$z = \sum_{i=m+1}^p [p_j \Gamma q_j \Gamma r_j] \text{ for all } p_i \in P, q_i, r_i \in Q.$$

Thus x + y is a finite sum of the form $\sum [p_i \Gamma q_i \Gamma r_i]$.

Hence $x + y \in [P\Gamma Q\Gamma Q]$. And let $s \in TS_R$, $x = \sum_{i=1}^n [p_i\Gamma q_i\Gamma r_i] \in [P\Gamma Q\Gamma Q]$, then $[[s\Gamma s\Gamma s] \Gamma s\Gamma x] = [[s\Gamma s\Gamma s]\Gamma s\Gamma \sum_{i=1}^n [p_i\Gamma q_i\Gamma r_i]]$ $= \sum_{i=1}^n [[s\Gamma s\Gamma s]\Gamma s\Gamma p_j]\Gamma q_i\Gamma r_i] \in [P\Gamma Q\Gamma R]$. Hence $[P\Gamma Q\Gamma R]$ is a generalized left Γ —semi ideal of TS_R . Now $[P\Gamma Q\Gamma Q][P\Gamma Q\Gamma Q][P\Gamma Q\Gamma Q]$ $= [P\Gamma [[Q\Gamma [Q\Gamma P\Gamma Q]\Gamma Q]\Gamma P\Gamma Q]\Gamma Q]$

```
\subseteq [P\Gamma[Q\Gamma TS_R\Gamma Q\Gamma TS_R\Gamma Q]\Gamma Q]
```

 $\subseteq [P\Gamma Q\Gamma Q].$ (Since $[Q\Gamma P\Gamma Q]\subseteq$

 TS_R and Q is a bi Γ – ideal). This shows that $[P\Gamma Q\Gamma Q]$ is ternary subsemiring of TS_R . Again

```
[P\Gamma Q\Gamma Q]\Gamma TS_G\Gamma [P\Gamma Q\Gamma Q]\Gamma TS_G\Gamma [P\Gamma Q\Gamma Q]
= [P\Gamma [Q\Gamma [Q\Gamma TS_R\Gamma P]\Gamma Q\Gamma [Q\Gamma TS_R\Gamma P]\Gamma Q]\Gamma Q]
\subseteq [P\Gamma [Q\Gamma TS_R\Gamma Q\Gamma TS_R\Gamma Q]\Gamma Q]
\subseteq [P\Gamma Q\Gamma Q]
```

Since Q is a bi Γ – ideal. Hence $[P\Gamma Q\Gamma Q]$ is a bi Γ – ideal of TS_R .

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

Theorem 4.11: Let TS_R be a ternary Γ —semiring. And let A and B be two ternary Γ —subsemirings of TS_R such that $A^3 = A$ and A is a left Γ —ideal of B and B is a generalized left Γ —semi ideal of TS_R . Then A is generalized left Γ —semi ideal of TS_R . Proof: Let TS_R be a ternary Γ —semiring and let P0 and let P1 and let P3 where P4, P5 and P5 where P6 and P8 then

$$\begin{aligned} & \left[[s\Gamma s\Gamma s]\Gamma s\Gamma p \right] = \left[[s\Gamma s\Gamma s]\Gamma s\Gamma [p_1\Gamma p_2\Gamma p_3] \right] \\ & = \left[\left[[s\Gamma s\Gamma s]\Gamma s\Gamma p_1 \right]\Gamma p_2\Gamma p_3 \in \left[B\Gamma p_2\Gamma p_3 \right] \subseteq A \end{aligned}$$

(Since A is a left Γ -ideal of B, $p_1 \in A \subset B$, B is generalized left Γ -semi ideal of TS_R) so that A is generalized left Γ -semi ideal of TS_R .

Theorem 4.12: Let TS_R be a ternary Γ –semiring. If H is a is a generalized left Γ –semi ideal of TS_R and P_1, P_2 be any two ternary Γ – subsemirings of TS_R then $[H \Gamma P_1 \Gamma P_2]$ is a generalized left Γ –semi ideal of TS_R .

$$=\textstyle\sum_{i=1}^n[[\,[s\Gamma s\Gamma s]\Gamma sh_i]\Gamma p_{1_i}\Gamma p_{2_i}]\in[H\Gamma P_1\Gamma P_2]$$

Hence $[H\Gamma P_1\Gamma P_2]$ is generalized left Γ -semi ideal of TS_R .

Theorem 4.13: Let TS_R be a ternary Γ —semiring. If H is a is a generalized right Γ —semi ideal of TS_R and P_1, P_2 be any two ternary Γ —subsemirings of TS_R then $[H \Gamma P_1 \Gamma P_2]$ is a generalized right Γ —semi ideal of TS_R .

Proof: Let TS_R be a ternary Γ -semiring. For any $x,y\in [H\Gamma P_1\Gamma P_2]$, $x=\sum_{i=1}^n [h_i\Gamma p_{1_i}\Gamma p_{2_i}]$, $y=\sum_{i=n+1}^m [h_i\Gamma p_{1_i}\Gamma p_{2_i}]$ for any $h_i\in H$, $p_1\in P_1$, $p_2\in P_2$ Therefore x+y is a finite sum of the form $\sum [h_i\Gamma p_{1_i}\Gamma p_{2_i}]$, will imply $x+y\in [H\Gamma P_1\Gamma P_2]$, and let $x=\sum_{i=1}^n [h_i\Gamma p_{1_i}\Gamma p_{2_i}]\in [H\Gamma P_1\Gamma P_2]$ and let $s\in TS_R$ then $[s\Gamma s\Gamma s\Gamma s\Gamma rS]\Gamma s\Gamma rS\Gamma \sum_{i=1}^n [h_i\Gamma p_{1_i}\Gamma p_{2_i}]$

$$= \textstyle \sum_{i=1}^n [[\, [s \Gamma s \Gamma s] \Gamma s h_i] \Gamma s \Gamma p_{1_i} \Gamma p_{2_i}] \in [H \Gamma P_1 \Gamma P_2]$$

Hence $[H\Gamma P_1\Gamma P_2]$ is generalized right Γ -semi ideal of TS_R.

Note: A necessary and sufficient condition for a commutative ternary Γ -semiring TS_R without any divisors of zero to be a ternary division Γ -semiring which is given the below theorems

Theorem 4.14: Let TS_R be a commutative ternary Γ –semiring without any divisors of zero which is a ternary division Γ –semiring if and only if for any generalized Γ –semi ideal of A, $a \in TS_R \setminus A$ (the complement of A in TS_R) and $0 \neq x \in TS_R$ which gives

$[[x\Gamma x\Gamma x]\Gamma x\Gamma a] \in TS_R \setminus A.$

Proof: Assume that TS_R be a commutative ternary Γ –semiring without any divisors of zero which is a ternary division Γ -semiring. And let A be a generalized Γ -semi ideal of TS_R. Select an element $a \in TS_R \setminus A$ and $0 \neq x \in TS_R$. Hence $\exists 0 \neq y \in TS_R$ such that $[x\Gamma y\Gamma z] =$ $[y\Gamma x\Gamma z] = [z\Gamma x\Gamma y] = [z\Gamma y\Gamma x] = z$, for $z \in TS_R$ Therefore $[x\Gamma y\Gamma a] = [y\Gamma x\Gamma a] =$ all that $[[x\Gamma x\Gamma x]\Gamma x\Gamma a] \in TS_R \setminus A.Assume$ $[a\Gamma x\Gamma y] = [a\Gamma y\Gamma x] = a$, This proves $[x\Gamma x\Gamma x]\Gamma x\Gamma a] = x^4 a \in A$. Therefore $a = [[y\Gamma x\Gamma y]^4 \Gamma a\Gamma x^4] \in A$. (Since TS_R is a commutative ternary Γ -semiring, A is a generalized Γ -semi ideal of TS_R) Which is a contradiction Therefore $[[x\Gamma x\Gamma x]\Gamma x\Gamma a] \in TS_R \setminus A$. Conversely suppose that for any generalized Γ –semi ideal A, $a \in TS_R \setminus A$ and $0 \neq x \in TS_R$ implies that $[[x\Gamma x\Gamma x]\Gamma x\Gamma a] \in TS_R \setminus A$. Now we prove that TS_R is a ternary division Γ -semiring. It is enough we show that for any $0 \neq x \in TS_R$, $\exists 0 \neq y \in TS_R$ such that $[x\Gamma y\Gamma TS_R] = TS_R$. If possible suppose that $[x\Gamma y\Gamma TS_R] \neq TS_R$ and $b \in TS_R \setminus A$, then $[x\Gamma x\Gamma x]\Gamma x\Gamma b] = [x^3\Gamma x\Gamma b] =$ $[x\Gamma x^3 \Gamma b] = [x\Gamma y\Gamma b] \in [x\Gamma y\Gamma TS_R]$, where $y = x^3 (\neq 0) \in TS_R$. Which is a contradiction $[x^3\Gamma x\Gamma b] \in TS_R \setminus A$. Hence $[x\Gamma y\Gamma TS_R] = TS_R$. Therefore TS_R is a ternary division since Γ –semiring. Note: Let TS_R be a commutative ternary Γ -semiring and A is generalized Γ -semi ideal of TS_R. Let $\beta(A)$ denote the set of all those elements afor which there exist a non zero element $s \in TS_R$ such that $[[s\Gamma s\Gamma s]\Gamma a] \in A$. It is then clear that $A \subseteq \beta(A)$.

Theorem 4.15: A Commutative ternary Γ –semiring TS_R without any divisors of zero. And if A is generalized Γ –semi ideal of TS_R , then $\beta(A)$ is also a generalized Γ –semi ideal of TS_R .

Proof: Let TS_R be Commutative ternary Γ –semiring and A is generalized Γ –semi ideal TS_R . Let $\beta(A)$ denote the set of all those elements a. Let $x,y \in \beta(A)$ so there exist a non zero element $a,b \in TS_R$ such that $c = \lceil [a\Gamma a\Gamma a]\Gamma a\Gamma x \rceil \in A$, $d = \lceil [b\Gamma b\Gamma b]\Gamma b\Gamma y \rceil \in A$ Now

```
\pi = [[a\Gamma a\Gamma a]\Gamma a\Gamma [b\Gamma b\Gamma b]\Gamma b\Gamma (x+y)]
```

- = $[[a\Gamma a\Gamma a]\Gamma a\Gamma [b\Gamma b\Gamma b]\Gamma b\Gamma x] + [[a\Gamma a\Gamma a]\Gamma a\Gamma [b\Gamma b\Gamma b]\Gamma b\Gamma y]$
- $= \big[[b \Gamma b \Gamma b] \Gamma b \Gamma c \big] + \big[[a \Gamma a \Gamma a] \Gamma x \Gamma d \in A, \text{ For any } 0 \neq z \in TS_R, \big[[z \Gamma z \Gamma z] \Gamma z \Gamma \pi \big] \in A(\text{since } A \text{ is generalized } \Gamma \text{semi ideal of } TS_G) \text{ therefore } \big[\big[[a \Gamma b \Gamma z] [a \Gamma b \Gamma z] \big] \big[[a \Gamma b \Gamma z] \big] \big[[a \Gamma b \Gamma z] (x + y) \in A. \text{Hence } (x + y) \in \beta(A) \text{ . For any } r \in \beta(A) \text{ ,} \big[[a \Gamma a \Gamma a] \Gamma a \Gamma x \big] \in A \text{ and let } 0 \neq z \in TS_R \big]$

 $[[b\Gamma b\Gamma b] \Gamma b\Gamma [[a\Gamma a\Gamma a]\Gamma a\Gamma x]] + [[a\Gamma a\Gamma a]\Gamma a\Gamma [b\Gamma b\Gamma b]\Gamma b\Gamma y]$

Hence $(x + y) \in \beta(A)$. For any $r \in \beta(A)$, $[[arara]rarx] \in A$ and let $0 \neq z \in R$. Hence $[[a\Gamma a\Gamma a]\Gamma a\Gamma r][z\Gamma z\Gamma z]\Gamma z\Gamma x]] = [[z\Gamma z\Gamma z]\Gamma z\Gamma [[a\Gamma a\Gamma a]\Gamma a\Gamma r]] \in A$. Therefore $[[z\Gamma z\Gamma z]\Gamma z\Gamma a] \in \beta(A)$ for all $z \in TS_R$. Hence $\beta(A)$ generalized Γ —semi ideal of TS_R .

References

- Dutta. T. K. and Kar. S., On Regular Ternary Semiring, Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics, World Scientific (2003), 343-355.
- 2. Dutta. T. K and Das. M. L., On Strongly Prime Semiring, Bull. Malays. Math. Sci. Soc. (2) 30 (2) (2007), 135-141.
- 3. Handelman. D. and Lawrence. J., Strongly Prime Rings, Trans. Amer. Mat. Soc. 211 (1975),

- 209-223.
- 4. Lister, W. G., Ternary Rings, Trans. Amer. Math. Soc. 154 (1971), 37-55. 5.
- 5. Sajani Lavanya. M, Madhusudhana Rao. D. and Syam Julius Rajendra. V., On Lateral Ternary Γ-Ideals of Ternary Γ-Semirings, American International Journal of Research in Science, Technology, Engineering & Mathematics, 12(1), September-November, 2015, 11-14.
- 6. Sajani Lavanya. M, Madhusudhana Rao. D. and Syam Julius Rajendra. V., On Quasi-Ternary -Ideals and BiTernary -Ideals In Ternary -Semirings, International Journal of Mathematics and Statistics Invention (IJMSI), Volume 3 Issue 6, (September.2015), PP-05-14.
- 7. Sajani Lavanya. M, Madhusudhana Rao. D. and Syam Julius Rajendra. V., Prime Bi-Ternary -Ideals in Ternary Semirings, British Journal of Research, (2), (6), (2015) 156-166.
- 8. Sajani Lavanya. M, Madhusudhana Rao. D. and Syam Julius Rajendra. V., A Study on The Jacobson Radical of A Ternary -Semiring, International Journal of Mathematics and Computer Applications Research (IJMCAR), Vol. 6, Issue1,(Feb 2016), 17-30.
- 9. G.Srinivasara Rao. Madhusudhana Rao. D,P.Siva Prasad., IDEALS IN QUOTIENT TERNARY SEMIRING, International Journal of Advanced in Management, Technology and Engineering Sciences Volume 7, Issue 12, 2017 ISSN NO: 2249-7455,PP 126-134.
- 10. G. Srinivasa Rao P.Siva Prasad, M. Vasantha, Dr. D. Madhusudhana Rao "On Strongly Duo and Duo Left Γ-TS-Acts over ternary-semigroups", International Journal of Pure and Applied Mathematics Volume 113 No. 6 2017, 65 73, ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) PP 67-73.
- 11. Ch. ManikyaRao P.Siva Prasad, D. Madhusudhana Rao, G. SrinivasaRao,"Maximal ideal of compact connected topological ternary semigroups" International conference on mathematics 2015,At: kerela,Volume: Volume 4 Issue 2
- 12. P. Sivaprasad , Dr. D. Madhusudhana Rao , G. Srinivasa Rao," A STUDY ON STRUCTURE OF PO-TERNARY SEMIRINGS", JOURNAL OF ADVANCES IN MATHEMATICS, Vol .10, No.8,PP:3717-3724.
- 13. P. Sivaprasad , Dr. D. Madhusudhana Rao , Mamidipalli. Vasantha, , B. Srinivasa Kumar," On Γ -TS-Acts Over Ternary Γ -Semigroups" International Journal of Engineering & Technology, 7 (4.10) (2018)PP:812-815.
- 14. Siva Prasad.P, Revathi.K, 2, Sundarayya.P, Madhusudhana Rao.D, "Compositions of Fuzzy T-Ideals in Ternary -Semi ring", International Journal of Advanced in Management, Technology and Engineering Sciences Volume 7, Issue 12, 2017 ISSN NO: 2249-7455.PP:135-145.
- 15. P. Sivaprasad, C. Sreemannarayana, D. Madhusudhana Rao, T. Nageswara Rao, K. Anuradha," On Le- Ternary Semi groups-I" International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-ICETESM, March 2019, PP:165-167.
- P. Sivaprasad, C. Sreemannarayana, D. Madhusudhana Rao, T. Nageswara Rao, Sajani Lavanya. M," On Le-Ternary Semi groups-I" International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-ICETESM, March 2019,PP:168-170.