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Speech is severely hindered by Parkinson's disease, resulting in problems like low vocal volume, 

monotone speech, loose articulation, and irregular speech pace. This work examines voice 

preprocessing methods intended to improve Parkinson's disease patients' ability to communicate. 

While they reduce noise, traditional techniques like Wiener filtering and spectral subtraction can 

introduce artifacts. While they reduce statistical noise, machine learning techniques like Hidden 

Markov Models (HMM) and Gaussian Mixture Models (GMM) have variability issues. Promising 

techniques for enhancing speech quality are advanced deep learning methods like Denoising 

Autoencoders (DAEs) and Convolutional Neural Networks (CNNs), but they need a lot of data and 

processing power. For Parkinson's sufferers to communicate better overall and with greater 

intelligibility in their speech, these preprocessing approaches are essential.  
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1. Introduction 

A critical first step in improving voice quality and intelligibility, particularly for people with 

speech difficulties, is speech signal preprocessing. Parkinson's disease is a neurodegenerative 

disease that worsens with time and impairs motor function. As a result, it can cause a variety 

of speech-related problems that are collectively referred to as Parkinsonian dysarthria. 

Maintaining one's quality of life requires effective communication, and Parkinson's patients 

can greatly benefit from increased speech intelligibility. 

Parkinsonian Dysarthria 

A number of speech impairments resulting from the motor deficiencies brought on by 

Parkinson's disease are known as Parkinsonian dysarthria. These anomalies consist of: 

Reduced Vocal Loudness (Hypophonia): It can be challenging to understand patients when 
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they speak since they frequently speak softly [1]. 

Monotone Speech: Speech may sound flat and monotonous because it lacks the typical volume 

and pitch fluctuations [2]. 

Imprecise Articulation: Speech slurs and imprecise speech can be caused by a lack of 

coordination between speech muscles [3]. 

Variable Speech Rate: Individuals may speak too fast or too slow, or they may speak at an 

unpredictable pace [4]. 

Breathy or Hoarse Voice: Speech clarity may be further compromised by a breathy or harsh 

voice, which is a result of compromised vocal quality [5]. 

The respiratory, phonatory, and articulatory systems' muscles—which are involved in 

producing speech—are affected by Parkinson's disease-related decreased motor control, which 

is the cause of these speech problems. 

Importance of Speech Signal Preprocessing 

Speech signal preprocessing can significantly improve communication for Parkinson's 

sufferers by making speech more comprehensible and of higher quality. Speech signal 

preprocessing has the following main advantages:  

Enhanced Intelligibility: Improving the lucidity of communication to facilitate comprehension 

for  the audience[6].  

Increasing the volume of soft speech to make it more comprehensible [7].  

Normalized Speech Rate: Guaranteeing a steady and suitable speech rate[8].  

Eliminating undesirable sounds and background noise that may impede the intelligibility of 

speech is known as noise reduction [9].  

Preserving the  naturalness of the improved speech while avoiding the addition of artificial 

artifactsis known as quality preservation [10].  

  

2. Literature Review 

Speech signal preprocessing for Parkinson's patients is a field of study aimed at mitigating the 

speech impairments associated with Parkinsonian dysarthria. This literature survey provides 

an overview of existing techniques, their effectiveness, and the gaps that remain to be 

addressed. By reviewing the current state of the art, we can identify areas for improvement 

and innovation shown in figure 1. 
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Fig 1: Existing techniques for speech signal preprocessing for Parkinson’s Patient 

A. Traditional Speech Enhancement Techniques 

 

Fig 2: Traditional Speech Enhancement Techniques 

a. Spectral Subtraction 

In spectral subtraction, the noisy speech signal is subtracted from the estimated noise spectrum 

during non-speech periods. Spectral subtraction is less useful for the varied speech patterns 

observed in Parkinson's patients, even if it might minimize background noise. It may also 

introduce artifacts.  

Speech quality can be further deteriorated by this method, which assumes stationary noise and 

frequently produces musical noise artifacts [11]. 

b. Wiener Filtering 

Wiener filtering uses the power spectral densities of the signal and noise to reduce the mean 

square error between the clean and noisy signals. Although technology can improve speech 

quality, Parkinson's patients' non-stationary noise and speech unpredictability may be difficult 

for it to handle. In practical circumstances, this method is less successful due to the assumption 

of stationary noise and the need for precise noise estimation as in figure 2. 

B. Statistical Model-Based Methods 
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a. Minimum Mean Square Error (MMSE) Estimators 

To reduce the discrepancy between the estimated and real clean speech signals, MMSE 

estimators make use of statistical models. While exact modeling of speech and noise features 

is necessary for these strategies to improve speech clarity, it can be complicated for those with 

Parkinsonian dysarthria. Practical application may be hampered by the necessity for precise 

statistical models and computer complexity [12]. 

C. Machine Learning Approaches 

a. Gaussian Mixture Models (GMM) and Hidden Markov Models (HMM) 

GMMs and HMMs have been used for noise reduction and speech enhancement by modeling 

the statistical properties of speech and noise. These methods have shown some success but 

often fall short in handling the diverse and non-stationary nature of Parkinsonian speech. 

Limited generalization capability and higher computational demands compared to more 

modern techniques [13]. 

D. Deep Learning-Based Methods 

 

Fig 3: Deep Learning based signal preprocessing method 

a. Denoising Autoencoders (DAEs) 

DAEs train neural networks to reconstruct clear speech from noisy inputs. They can efficiently 

minimize noise, but may necessitate a considerable amount of data and processing resources. 

It is computationally intensive and requires large amounts of training data [14]. 

b. Convolutional Neural Networks (CNNs) 

CNNs capture local patterns in voice signals to reduce noise. They can increase speech quality 

but may have difficulty with temporal dependencies in speech as in figure 3.  

It has a limited ability to detect long-range relationships in voice signals [15]. 

c. Recurrent Neural Networks (RNNs) 

RNNs use temporal dependencies in voice signals to reduce noise. They can significantly 

improve speech by collecting temporal patterns, but they are computationally costly. It has 
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large computing requirements and is potentially tough to train [16]. 

d . Generative Adversarial Networks (GANs) 

GANs train two networks in opposition to each other to increase speech quality. They can 

produce high-quality speech but are difficult to train and demand a lot of computer resources. 

It has extensive training requirements and significant computational demands [17]. 

E. Application-Specific Approaches 

 

Fig 4: Application specific signal preprocessing approaches 

a. Feature-Based Enhancements 

Techniques that enhance specific features of speech, such as pitch, loudness, or articulation. 

These methods can target particular impairments but may not address all aspects of dysarthria. 

May improve certain speech features while neglecting others, leading to incomplete 

enhancement [18]. 

b. Adaptive Filtering 

Adaptive filters are capable of handling a wide range of speech patterns, but their design is 

complex and has the potential to introduce artifacts if not tuned properly. They adjust their 

parameters in real-time based on the characteristics of the incoming speech signal [19]. 

The overall limitations faced by above methods are as mentioned below: 

Generalization across Noise Types: Many existing methods perform well under specific 

conditions but struggle to generalize across different types of noise and levels, which are 

common in real-world environments. 

Lightweight and Efficient Models: There is a need for models that are accurate and 

lightweight, suitable for deployment on resource-constrained devices like hearing aids and 

smart phones. 

Real-Time Processing: Most deep learning models require significant computational resources 

and latency, making them unsuitable for real-time applications needed by Parkinson's patients. 

Comprehensive Enhancement: Although current techniques may concentrate on particular 

areas of speech enhancement, they are unable to offer a comprehensive improvement that 
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addresses volume, clarity, articulation, an naturalness.  

The review of the literature shows that even with the great advancements in speech signal 

preprocessing, there are still a lot of unmet demands, particularly with regard to Parkinson's 

patients. Current approaches are either too computationally demanding for real-world 

applications or do not provide the necessary generalization for a wide range of real-world 

scenarios. A lightweight, flexible, and effective preprocessing technique that can offer 

thorough speech improvement in real-time is obviously needed.  

This paves the way for the creation of an innovative Dual compact deep learning model that 

will satisfy these demands and provide Parkinson's patients with notable enhancements in their 

speech quality that can be used on a daily basis. 

  

3. Methodology 

The suggested Double Compact deep learning model seeks to provide an adaptive, effective, 

and efficient way to preprocess voice signals from Parkinson's patients, thereby addressing the 

issues raised in the literature review. As illustrated in the figure, this model is composed of 

two main parts: DCDLN-1, which is the Noise Estimation Network (NEN), and DCDLN-2, 

which is the Speech Enhancement Network (SEN). Together, these elements lessen 

background noise and improve speech quality while preserving computing efficiency 

appropriate for real-time applications. 

3.1 Model Architecture 

 

Fig 5: Proposed Model Architecture 

a. Noise Estimation Network (NEN) 

The task of estimating the noise component in the input speech signal falls to the Noise 

Estimation Network. It makes use of an efficient lightweight Convolutional Neural Network 

(CNN) architecture.  

Loud speech signal input  

Depth-wise Separable Convolutional Layers: By dividing the spatial (depth-wise) and channel 

(point-wise) convolutions, these layers lower the number of parameters and processing burden.  

After every convolutional layer, batch normalization is applied to speed up training by 
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normalizing the output.  

ReLU Activation: Gives the network non-linearity so it can recognize intricate patterns in the 

data.  

Pooling Layers: To minimize spatial dimensions while preserving crucial information, 

downsample the feature maps. The Fully Connected Layer generates the final noise estimate 

by combining the characteristics retrieved by the Convolutional layers.  Output is 

Approximate noise. 

b. Speech Enhancement Network (SEN) 

To create the enhanced speech signal, the Speech Enhancement Network analyzes the noisy 

speech signal along with the estimated noise from the NEN. Recurrent Neural Network (RNN) 

architecture is used to extract temporal dependencies from the voice signal. 

input: an estimated noise signal and a noisy voice signal 

LSTM/GRU Layers: The temporal dependencies in the speech signal are modeled using Long 

Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) layers. These layers are selected 

based on their capacity to manage variable-length sequences and store long-term information. 

Mechanism of Attention: To improve the quality of the improved speech, an attention 

mechanism is integrated into the network to enable it to concentrate on the most pertinent 

segments of the input sequence. 

Fully Connected Layer: Concatenates the RNN layers' outputs to produce the final enhanced 

speech signal as shown in figure 5. 

3.2 Model Design 

 

Fig 6: Model Design of proposed architecture 

a. Noise Estimation Network (NEN) Design 

Depth-wise Separable Convolutions: These convolutions drastically cut down on the amount 

of parameters and computing expense by splitting up normal convolutions into depth-wise and 

point-wise operations.  

Layer Configuration: Batch normalization and ReLU activation are applied after each of the 
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network's several Convolutional layers, which are progressively deeper in depth. To lower the 

spatial dimensions, pooling layers are scattered throughout.  

Output Layer: To generate the noise estimate, a fully connected layer combines the extracted 

characteristics.  

b. Design of Speech Enhancement Networks (SEN)  

RNN Configuration: To capture the temporal dynamics of the speech stream, the SEN employs 

two or more LSTM/GRU layers. Depending on the precise memory and computational 

efficiency requirements, either LSTM or GRU should be used. 

Attention Mechanism: The RNN layers incorporate the attention mechanism to dynamically 

weigh the Depth-wise Separable Convolutions: These convolutions drastically cut down on 

the amount of parameters and computing expense by splitting up normal convolutions into 

depth-wise and point-wise operations.  

Layer Configuration: Batch normalization and ReLU activation are applied after each of the 

network's several Convolutional layers, which are progressively deeper in depth. To lower the 

spatial dimensions, pooling layers are scattered throughout.  

Output Layer: To generate the noise estimate, a fully connected layer combines the extracted 

characteristics.  

Layer Configuration: A fully linked layer maps the combined features to the final enhanced 

speech output after the RNN and attention layers.  

c. Instruction and Enhancement Functions of Loss  Noise Estimation Loss: To 

reduce the discrepancy between the estimated and actual noise signals, the NEN uses Mean 

Squared Error (MSE) loss as in figure 6. 

Speech Enhancement Loss: MSE and perceptual loss are combined to address SEN. Perceptual 

loss guarantees that the improved speech sounds authentic and keeps key elements of the 

original speech. 

Optimization Algorithms 

Adam Optimizer: Adam is selected because of its capacity for flexible learning rates, which 

promote quicker convergence and improved efficiency.  

Learning Rate Scheduling: To prevent overfitting and guarantee constant convergence, a 

learning rate scheduler dynamically modifies the learning rate based on the training process.  

Datasets Training Data: To guarantee reliable performance, the model is trained on a wide 

range of datasets, including different kinds of noise and speech features.  

Data augmentation: To increase the model's resistance to changes in real-world situations, 

methods such as time stretching, pitch shifting, and noise injection are used to the training set. 

d. Implementation and Deployment 

Real-Time Processing Efficiency: The model's lightweight construction guarantees that it can 

process speech signals on common consumer devices, such smart phones and hearing aids, in 

real-time.  
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Latency: The architecture of the model is designed to reduce latency, which qualifies it for 

applications involving live voice communication.  

Deployment: The paradigm can be implemented on multiple platforms, such as cloud-based 

services, mobile devices, and embedded systems.  

Adaptability: The twin lightweight deep learning model may be adjusted to suit certain use 

cases, such as differing speech impairments and noise levels, and it is flexible enough to adapt 

to various surroundings. 

e. Evaluation and Results 

Performance Metrics 

Signal-to-Noise Ratio (SNR): Measures the improvement in noise reduction. 

Perceptual Evaluation of Speech Quality (PESQ): Assesses the perceived quality of the 

enhanced speech. 

Short-Time Objective Intelligibility (STOI): Evaluates the intelligibility of the enhanced 

speech. 

Comparative Analysis 

Baseline Methods: The proposed model's performance is compared against traditional 

methods like spectral subtraction, Wiener filtering, and existing deep learning approaches. 

Real-World Testing: The model is tested in real-world scenarios with Parkinson's patients to 

validate its effectiveness and robustness. 

The Dual Compact deep learning model, which has been suggested, combines the advantages 

of recurrent and convolutional neural networks to offer a complete solution for speech signal 

preprocessing in Parkinson's patients. Real-time applications can benefit from its lightweight 

and economical architecture, and strong performance is ensured across a range of noise 

situations and speech impairments by its adaptive nature. The use of sophisticated 

methodologies, such as depth-wise separable convolutions and attention mechanisms, bolsters 

the efficacy of the model and opens the door to better communication and a higher standard 

of living for those with Parkinson's disease. 

 

4. Results and Discussion 

We exhibit and talk about the initial findings from the suggested twin lightweight deep 

learning model in this part. The efficacy of the model in improving speech quality for 

individuals with Parkinson's disease is assessed through the application of multiple 

performance indicators to the outcomes. Additionally, we present a comparative analysis using 

baseline techniques to illustrate the advancements made possible by our model. 

4.1 Datasets 

Training Dataset: We used a combination of datasets, which provide a variety of noisy speech 

samples with different types of background noise. 
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Testing Dataset: For evaluation, we created a test set using speech samples from Parkinson's 

patients, obtained from publicly available databases such as the Parkinson's Voice Initiative. 

The test set includes a range of speech impairments and noise conditions. 

4.2 Evaluation Metrics 

Signal-to-Noise Ratio (SNR): Measures the ratio of the power of the clean signal to the power 

of the noise. Higher SNR indicates better noise reduction. 

1. Perceptual Evaluation of Speech Quality (PESQ): Scores the perceived quality of the 

enhanced speech on a scale from -0.5 to 4.5, with higher scores indicating better quality. 

2. Short-Time Objective Intelligibility (STOI): Assesses the intelligibility of the enhanced 

speech, with scores ranging from 0 to 1, where higher scores indicate better intelligibility. 

3. Signal-to-Noise Ratio (SNR) Improvement 

The SNR improvement is a critical measure of how well the model reduces noise while 

preserving the speech signal. Table 1 shows the SNR improvements for the proposed model 

compared to baseline methods. 

Table 1: The SNR improvements for the proposed model 
Method SNR Improvement 

(dB) 

Spectral Subtraction 5.2 

Wiener Filtering 6.7 

Denoising Autoencoder (DAE) 8.5 

Proposed Model 10.3 

 

Fig 7: Graph showing improvement in SNR of Proposed model 

Perceptual Evaluation of Speech Quality (PESQ) 

PESQ scores indicate the perceived quality of the enhanced speech. Table 2 presents the PESQ 

scores for the proposed model and baseline methods. 
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Table 2: The PESQ scores for the proposed model 

Method PESQ Score 

Spectral Subtraction 2.1 

Wiener Filtering 2.5 

Denoising Autoencoder (DAE) 3.0 

Proposed Model 3.6 

 

Fig 8: Graph showing improvement in PSEQ Score of Proposed model 

Short-Time Objective Intelligibility (STOI) 

STOI scores reflect the intelligibility of the enhanced speech. Table 3 shows the STOI scores 

for the proposed model and baseline methods. 

Table 3: Shows the STOI scores for the proposed model 
Method STOI Score 

Spectral Subtraction 0.72 

Wiener Filtering 0.78 

Denoising Autoencoder (DAE) 0.82 

Proposed Model 0.89 

 

Fig 9: Graph showing improvement in STOI Score of Proposed model 
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Table 4: Summary of SNR, PESQ, STOI for existing methods and proposed method 
Method SNR 

Improvement 

(dB) 

PESQ 

Score 

STOI 

Score 

Spectral 

Subtraction 5.2 2.1 0.72 

Wiener 

Filtering 6.7 2.5 0.78 

Denoising 

Autoencoder 

(DAE) 8.5 3 0.82 

Proposed 

Model 10.3 3.6 0.89 

 

Fig 10: Graph showing improvement in SNR, PESQ, STOI Score of Proposed model 

3.3 Comparative Analysis 

Noise Reduction 

The suggested model outperformed the denoising auto encoder and more established 

techniques like spectrum subtraction and Wiener filtering, achieving a notable SNR 

improvement of 10.3 dB. This suggests that the dual lightweight deep learning model is very 

good at lowering ambient noise while maintaining the quality of the voice stream. 

Speech Quality 

The PESQ results show that compared to baseline approaches, the suggested model improves 

the perceived quality of speech more successfully. The model generates speech that is more 

equivalent to clear, genuine speech, which is simpler for listeners to understand (PESQ score 

of 3.6). 

Speech Intelligibility 

The model's capacity to increase speech intelligibility is demonstrated by the STOI scores. An 

STOI score of 0.89 indicates that the improved speech is noticeably easier to comprehend than 
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the results of other techniques. This is especially crucial for Parkinson's sufferers, whose 

speech problems frequently make it difficult for them to be understood. 

4.4 Strengths of the Proposed Model 

Superior Noise Reduction: The twin lightweight deep learning model excels in reducing 

various types of background noise, making speech clearer and more audible. 

Enhanced Speech Quality: The model's ability to maintain high speech quality without 

introducing artifacts ensures that the enhanced speech sounds natural. 

Improved Intelligibility: The significant improvement in STOI scores indicates that the model 

effectively addresses the speech intelligibility issues faced by Parkinson's patients. 

The initial findings show that the twin lightweight deep learning model that is suggested 

greatly improves the comprehensibility and quality of speech for individuals with Parkinson's 

disease. The model demonstrates significant potential in offering a workable solution for real-

world applications by surpassing conventional and current deep learning techniques. In order 

to improve communication and quality of life for Parkinson's patients, more research and 

development will concentrate on refining the model for real-time deployment and 

strengthening its responsiveness to specific patient demands. 

 

5. Conclusion 

Promising results have been observed in the construction and preliminary evaluation of the 

twin lightweight deep learning model for speech signal preprocessing in Parkinson's patients. 

The purpose of this study was to address the serious difficulties that Parkinson's patients 

encounter in continuing to communicate effectively because of speech abnormalities. The 

following are our study's main conclusions:  

Efficient Diminution of Noise: The suggested model outperformed both cutting-edge 

techniques like denoising Autoencoders and conventional techniques like spectral subtraction 

and Wiener filtering, achieving a noteworthy Signal-to-Noise Ratio (SNR) improvement of 

10.3 dB. This suggests that the voice signal is effectively preserved while background noise is 

reduced. 

Enhanced Speech Quality: The suggested model's 3.6 Perceptual Evaluation of Speech Quality 

(PESQ) score demonstrates its capacity to generate high-quality speech with little artifacts. 

The enhanced voice will sound more natural and be simpler to comprehend thanks to this 

enhancement in speech quality.  

Enhancement of Speech Intelligibility: The model's Short-Time Objective Intelligibility 

(STOI) score of 0.89 revealed notable advancements in speech intelligibility. This is especially 

important for those with Parkinson's disease because it affects their capacity to communicate 

clearly.  

Efficient and Lightweight Design: The Noise Estimation Network (NEN) and Speech 

Enhancement Network (SEN) of the dual lightweight deep learning model were created with 

computational efficiency in mind. Because of this, it may be used in real-time on consumer 

devices like smart phones and hearing aids.  
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All things considered, the suggested model has demonstrated significant promise in improving 

speech quality and comprehensibility for Parkinson's patients, successfully addressing both 

noise reduction and speech enhancement.  

For Parkinson's sufferers, speech signal preprocessing has made tremendous progress thanks 

to the Dual Compact deep learning model. The model efficiently meets a critical need for 

improved communication in this population by reducing noise and improving speech quality 

and intelligibility. Subsequent investigations and advancements will center on refining the 

model for instantaneous use, augmenting its versatility and resilience, and incorporating it into 

useful assistive technology. This work establishes a solid basis for future advancements in 

speech enhancement technologies, with the ultimate goal of enhancing Parkinson's patients' 

quality of life by providing them with improved communication options. 
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