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The simulation of the collapse of a white dwarf star is presented in spreadsheets in order to show 

the potentialities of Excel in the teaching of physics. A nonlinear model is deduced that describes 

the changes in the mass and density of a star along its radius, solved numerically using the fourth-

order Runge-Kutta method in Excel. The numerical calculation provides the size and mass of the 

star for a central density profile compared to units of radius and solar masses, observing that at high 

densities the star collapses at the Chandrasekhar Limit. Form controllers are integrated for 

parameter adjustment and dynamic graphics, making it easy to visualize stellar collapse. The 

simulation was implemented to a population of students of the Bachelor's Degree in Physics. The 

participants' level of perception and satisfaction with the resource was measured with a 12-question 

questionnaire on a Likert scale. The results indicate a high satisfaction and positive perception 

towards simulation, highlighting its effectiveness in teaching complex physics concepts. This 

proposal shows how Excel, a versatile and accessible tool, allows teachers and students to carry out 

simulations without the need for advanced programming, promoting confidence in the use of 

computer technologies.  
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1. Introduction 

Computer simulations are computer programs designed to reproduce an everyday or natural 

phenomenon in a virtual environment. Given the complexity of the phenomenon, these usually 

start from idealized situations that are approaching reality and are used as a bridge for 

understanding it. Thus, in the teaching of physics, the use of simulations is becoming more 

and more common, even being considered as experimental activities (Andrés, 2021). In 

addition, they are an alternative that allows breaking with the traditional teaching scheme in 

theoretical classes and makes it possible to recreate complex, abstract or risky physical systems 

for reproduction in a physical laboratory (Raviolo, 2012; Eso et al., 2018).  

http://www.nano-ntp.com/
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On the other hand, the use of simulators has experienced a significant increase with the birth 

of online education as a result of the COVID-19 pandemic (Razzak & Uddin, 2023). However, 

its use by teachers and students presents certain barriers. One of these limitations lies in the 

use of a programming language, which can be a complex task for many. On the other hand, 

the need for computer-intensive equipment and the financial requirements associated with the 

acquisition of software licences represent another significant obstacle. However, these 

limitations can be overcome through the use of spreadsheets (Sabarudiin et al., 2024). 

Spreadsheets are widely available tools on any computer and one of the most popular today is 

the Excel spreadsheet developed by Microsoft Inc. Unlike programming languages that are 

usually discontinued, Excel is constant over time, retaining its main characteristics throughout 

updates. In this way, both teachers and students are becoming increasingly familiar with this 

tool due to its accessibility and ease of carrying out simulations without the need to master a 

specific programming language (Raviolo, 2011; Uddin et al., 2023).  In this order of ideas, the 

Excel spreadsheet allows difficult equations to be simulated in a simple way compared to 

common programming languages such as Python and JavaScript (Purnama et al., 2023). In 

addition, it is possible to recreate simulations with an appearance similar to those available on 

the internet, which allows corroborating the veracity of the simulation online and knowing the 

mathematical models that make it up (Raviolo et al., 2011).  We can also affirm that it is an 

environment to carry out experimental data processing in a simple way that leads to verifying 

or comparing the theory with the experiment (Suárez & Tornaría, 2019). Similarly, it allows 

the design of user interface guides (GUIs) that are characterized by presenting hidden algebra 

step by step with content that goes hand in hand with mathematical operations and is not 

limited to presenting only the result of a calculation such as those available online (Gul & 

Tufail, 2024). 

The benefits offered by the Excel spreadsheet for teaching physics are evident, which leads us 

to the purpose of this work, which is to use the spreadsheet to simulate a complex phenomenon 

such as the collapse of a white dwarf star and the Chandrasekhar limit. This work begins with 

the deduction of a static model of a relativistic simple white dwarf. Next, the numerical 

solution of the model by the fourth-order Runge-Kutta method (RK4) in spreadsheets and the 

use of form controllers for the simulation of the collapse of the star and the visualization of 

the Chandrasekhar limit are shown. The implementation of the simulation to a population of 

students of the Bachelor's Degree in Physics is described and, to analyze the perception and 

satisfaction of the participants, the application of a Likert attitude questionnaire. Finally, the 

results of the instrument are analyzed and the main conclusions are presented 

 

2. THEORETICAL FRAMEWORK  

The famous physicist Stephen Hawking, in his literary work "History of Time", defines the 

white dwarf as a "stable cold star, maintained by the repulsion due to the principle of exclusion 

between electrons" (Hawking, 1988). This definition offers an overview of white dwarfs and 

is part of the theoretical model that is presented below under the following considerations: 

Ideal fluid at rest 

It is assumed that the fluid that makes up the white dwarf is ideal and is in a state of rest. Along 
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these lines, for a dynamic fluid, the Navier-Stokes equation: 

               
∂2v⃗ 

∂t2
+ (v⃗ ∙ ∇⃗⃗ )v⃗ = −

1

ρ
∇⃗⃗ P + μ∇⃗⃗ 2v⃗ + g⃗  (1) 

(De Jesús Rubio et al., 2013). For an ideal, non-viscous, μ = 0, resting fluid, the equation is 

simplified to:v⃗ = 0 

1

ρ
∇⃗⃗ P = g⃗  (2) 

being density, pressure and gravitational field. Now, applying the divergence operator in 

equation (2):ρPg⃗  

∇⃗⃗ ∙ (
1

ρ
∇⃗⃗ P) = ∇⃗⃗ ∙ g⃗  (3) 

or 

       ∇⃗⃗ ∙ (
1

ρ
∇⃗⃗ P) = −4πGρ  (4) 

where the gravitational field has been rewritten as  g⃗ = −∇⃗⃗ Φ, with the potential solution of 

the Poisson equation . Quantity is the universal gravitational constant. Equation (4) is known 

as the hydrostatic equilibrium equationΦ∆Φ = 4πGρG = 6.67 × 10−11 N ∙ m2 kg2⁄ . 

Perfect spherical geometry 

It is postulated that the white dwarf has a perfect spherical geometry. In this context, it is 

convenient to write the differential operators of equation (4) in spherical coordinates, but 

before proceeding, from the vector identity ∇⃗⃗ ∙ (uA⃗⃗ ) = u∇⃗⃗ ∙ A⃗⃗ + A⃗⃗ ∙ ∇⃗⃗ u the equilibrium 

equation is rewritten as: 

                  
1

ρ
∆P + ∇⃗⃗ P ∙ ∇⃗⃗ (

1

ρ
) = −4πGρ  (5) 

Figure 1 shows a spherical volume element of the fluid transversely. Under hydrostatic 

conditions, there is no variation in pressure and density along the tangential components; that 

is, each layer of the sphere constitutes a surface of constant pressure and density. In fact, the 

density and pressure depend only on the radial coordinate.  Therefore, the Laplacian and scalar 

product of the gradients  ∆p∇⃗⃗ P and are written as:  ∇⃗⃗ ρ−1 

           ∆P =
1

r2

∂

∂r
(r2

∂P

∂r
)      ;          ∇⃗⃗ P ∙ ∇⃗⃗ (

1

ρ
)  =  

∂P

∂r
 
∂

∂r
(
1

ρ
) 

Substituting these expressions in equation (5) and simplifying, we get: 

                  
1

r2

d

dr
(
r2

ρ

dP

dr
) = −4πGρ  (6) 
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Figure 1. Cross-section of the star. 

 

 

separating variables and given that for a spherical piece 𝒅𝒎 = 𝟒𝝅𝝆𝒓𝟐𝒅𝒓, it is detached:  

                     
𝒅𝝆

𝒅𝒓
= −𝑮(

𝒅𝑷

𝒅𝝆
)
−𝟏 𝒎(𝒓)𝝆(𝒓)

𝒓𝟐
  (𝟕) 

                    
𝒅𝒎

𝒅𝒓
= 𝟒𝝅𝝆𝒓𝟐                               

(𝟖) 

 

In which . Note that the partial derivative has been rewritten as ordinary due to the exclusive 

dependence of the variables on the radial coordinate. The system of ordinary differential 

equations (7) and (8) provides a model of the mass and density of the star as a function of 

radius (Pei, 2022). The next step is to determine the relationship between pressure and density, 

for which thermodynamic principles and the following assumption will be used.𝒅𝑷 𝒅𝒓⁄ =
(𝒅𝝆 𝒅𝒓⁄ )(𝒅𝑷 𝒅𝝆⁄ ) 

Electrons as degenerate Fermi gas 

The mass levels in a white dwarf are so high that gravity crushes the particles, confining the 

atomic nuclei inside, while the electrons, being the lightest particles, are overwhelmingly 

concentrated on the stellar surface. In this environment, the Pauli exclusion principle comes 

into play, manifesting itself as a 

repulsion between identical fermions. This repulsion forces electrons to move at high speeds, 

close to that of light, in very small spaces, generating pressure 

of electronic degeneracy that opposes the gravitational collapse of the star (Pinochet, 2019). 

As a result, the behavior of free electrons on the surface of the star is analogous to that of free 

electrons in a metal at absolute temperature, i.e., a relativistic degenerate Fermi gas𝑻 → 𝟎. 

To model this gas, we consider a large volume 𝑽 containing electrons with energy. At the 

temperature limit, all states are occupied and all states are empty. Here, quantity is Fermi's 
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impulse. For this gas the average number and mean energy of electrons with states, degenerate 

gas, is calculated by the following equations:  𝑵𝜺 = √𝒄𝟐𝒑𝟐 + (𝒎𝒆𝒄
𝟐)𝟐𝑻 → 𝟎𝒑 < 𝒑𝑭𝒑 >

𝒑𝑭𝒑𝑭𝑵̅𝑬̅𝒑 < 𝒑𝑭 

𝑵̅ = 𝟐𝑽∫
𝒅𝟑𝒑

(𝟐𝝅ℏ)𝟑

𝒑𝑭

𝟎

  (𝟗) 

                                 𝑬̅ = 𝟐𝑽∫
𝒅𝟑𝒑

(𝟐𝝅ℏ)𝟑
√𝒄𝟐𝒑𝟐 + (𝒎𝒆𝒄

𝟐)𝟐
𝑷𝑭

𝟎

  (𝟏𝟎) 

where the speed of light, 𝒄 = 𝟑 × 𝟏𝟎𝟖 𝒎 𝒔⁄ ℏ = 𝟏. 𝟎𝟓 × 𝟏𝟎−𝟑𝟒𝑱 ∙ 𝒔 Planck's constant is 

reduced and is the mass of the electron. By integrating equations (9) and (10) in the phase 

space in spherical coordinates, we obtain:  𝒎𝒆 = 𝟗. 𝟏 × 𝟏𝟎−𝟑𝟏𝒌𝒈𝒅𝟑𝒑 = 𝟒𝝅𝒑𝟐𝒅𝒑, 

                                 𝒑𝑭 = ℏ(𝟑𝝅𝟐𝒏)
𝟏 𝟑⁄

            (𝟏𝟏) 

                                 𝑬̅ = 𝒏𝟎𝒎𝒆𝒄
𝟐𝑽𝒙𝟑𝝐(𝒙)  (𝟏𝟐) 

where 𝒏 = 𝑵 𝑽⁄  the concentration of electrons and the parameters and defined as:𝒙𝝐(𝒙) 

           𝝐(𝒙) =
𝟑

𝟖𝒙𝟑 [𝒙(𝟐𝒙𝟐 + 𝟏)√𝒙𝟐 + 𝟏 − 𝒍𝒏 [𝒙 + √𝒙𝟐 + 𝟏]] (𝟏𝟑) 

          𝒙 ≡
𝒑𝑭

𝒎𝒆𝒄
= (

𝒏

𝒏𝟎
)
𝟏 𝟑⁄

= (
𝝆

𝝆𝟎
)
𝟏 𝟑⁄

= (
𝑵

𝝆𝟎𝑽
)
𝟏 𝟑⁄

      
(𝟏𝟒) 

The quantity 𝒏𝟎 = 𝒎𝟑𝒄𝟑 (𝟑𝝅𝟐ℏ𝟑) = 𝟓. 𝟖𝟓 × 𝟏𝟎𝟑𝟓𝒎−𝟑⁄  is the Fermi density and the 

parameter characterizes the relative electron density. It is notable that  𝒙𝒙 it also relates to the 

relative mass density, since, for a given amount of mass, the electron concentration is , being 

the number of free electrons per nucleon and is the mass of the proton.  In addition, it has to 

be the mass density of matter where the electron density is  𝒏 = 𝒀𝒆𝝆 𝑴𝒑⁄ 𝒀𝒆𝑴𝒑 =

𝟏. 𝟔𝟕 × 𝟏𝟎−𝟐𝟕𝒌𝒈𝝆𝟎 = 𝑴𝒑𝒏𝟎𝒀𝒆
−𝟏 = 𝟗. 𝟕𝟖 × 𝟏𝟎𝟖𝒀𝒆

−𝟏 𝒌𝒈 𝒎𝟑⁄ 𝒏𝟎(Koonin & Meredith, 

1990). 

The purpose of calculating the average energy of the electronic gas lies in the determination 

of the gas pressure, which is obtained from the derivative of the average energy with respect 

to volume (Pei, 2023), as indicated in equation (14) 

        𝑷 = −
𝝏𝑬̅

𝝏𝑽
  (𝟏𝟓) 

This expression is derived from the first law of thermodynamics, considering the temperature 

limit, where entropy is a constant according to the third principle of thermodynamics.  Thus, 

calculating in equation 12, equation 14 and using partial differential properties in equation 15, 

we obtain: 𝒅𝑬̅ = 𝑻𝒅𝑺 − 𝑷𝒅𝑽𝑻 → 𝟎𝑺𝝏𝝐𝑬̅ = 𝒏𝟎𝒎𝒆𝒄
𝟐𝑽𝒙𝟑𝝏𝑽𝒙 = −𝒙 𝟑𝑽⁄  
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𝑷 = −
𝝏𝑬̅

𝝏𝝐
∙
𝝏𝒙

𝝏𝑽
∙
𝝏𝝐

𝝏𝒙
                             

= −(𝒏𝟎𝒎𝒆𝒄
𝟐𝑽𝒙𝟑) (−

𝒙

𝟑𝑽
)
𝝏𝝐

𝝏𝒙

=
𝟏

𝟑
𝒏𝟎𝒎𝒆𝒄

𝟐𝑽𝒙𝟒𝝐′(𝒙)               

 (𝟏𝟔) 

Now, calculating 𝒅𝒙 𝒅𝝆⁄ = 𝟏 (𝟑𝒙𝟐𝝆𝟎)⁄  in equation 14, deriving equation 16 with respect to 

pressure and applying properties of ordinary derivatives, we have   

                                                

𝑷 = −
𝝏𝑷

𝝏𝒙
∙
𝝏𝒙

𝝏𝝆
                                                

= (
𝟏

𝟑𝒙𝟐𝝆𝟎
)

𝒅

𝒅𝒙
[
𝟏

𝟑
𝒏𝟎𝒎𝒆𝒄

𝟐𝑽𝒙𝟒𝝐′(𝒙)]

=
𝒏𝟎𝒎𝒆𝒄

𝟐

𝟑𝝆𝟎

𝟏

𝟗𝒙𝟐
 
𝒅

𝒅𝒙
[𝒙𝟒𝝐′(𝒙)]              

 (𝟏𝟕) 

Since: 

                              
𝟏

𝟗𝒙𝟐
 
𝒅

𝒅𝒙
[𝒙𝟒𝝐′(𝒙)] =

𝒙𝟐

𝟑√𝟏 + 𝒙𝟐
  

The result is simplified as:  

                           𝑷 =
𝒏𝟎𝒎𝒆𝒄

𝟐

𝟑𝝆𝟎

𝒙𝟐

√𝟏 + 𝒙𝟐
  (𝟏𝟖) 

Equation 18 provides the variation of pressure with density given that it is the relative mass 

density. Substituting equation 16 into equation 7 yields:𝒙 

                                            
𝒅𝝆

𝒅𝒓
= −

𝟑𝑮𝝆𝟎

𝒏𝟎𝒎𝒆𝒄
𝟐

√𝟏 + 𝒙𝟐

𝒙𝟐

𝒎(𝒓)𝝆(𝒓)

𝒓𝟐
  (𝟏𝟗) 

𝒅𝒎

𝒅𝒓
= 𝟒𝝅𝝆𝒓𝟐 

(𝟐𝟎) 

Note that the presence of the variables 𝒎(𝒓)  y in equation 17 makes the system of equations 

a nonlinear system, so its solution must be numerical. However, the stability of the numerical 

method may be affected because the value of the coefficient in equation 17 is of the order . 

For this reason, it is advisable to work as much as possible with quantities of an order of 

magnitude close to unity. For this reason, it is convenient to rewrite the radius, mass, and 

density as: 𝝆(𝒓) ~𝟏𝟎−𝟐𝟒 

                   𝒓 = 𝑹𝟎𝒓̅     ,   𝒎 = 𝑴𝟎𝒎̅    ,    𝝆 = 𝝆𝟎𝝆̅  (𝟏𝟗) 

where 𝒓̅, 𝒎̅ and dimensionless quantities and 𝝆̅𝑹𝟎, 𝑴𝟎 and scales of radius, mass, and density 

respectively. Replacing (19) in (17) and (18) gives you:𝝆𝟎 
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𝒅𝝆̅

𝒅𝒓̅
= −(

𝑮𝝆𝟎𝑴𝟎

𝒏𝟎𝒎𝒆𝒄
𝟐𝑹𝟎

)
𝟑√𝟏 + 𝝆̅𝟐 𝟑⁄

𝝆̅𝟐 𝟑⁄

𝒎̅𝝆̅

𝒓̅𝟐
   

𝒅𝒎

𝒅𝒓
= (

𝟒𝝅𝑹𝟎
𝟑𝝆𝟎

𝑴𝟎
) 𝝆̅𝒓̅𝟐  

 

Y scales 𝑹𝟎 are defined in such a way that the coefficients in parentheses are equal to unity:𝑴𝟎 

𝑹𝟎 ≡ √
𝒀𝒆𝒎𝒆𝒄

𝟐

𝟒𝝅𝑮𝝆𝟎𝒎𝒑
= 𝟕. 𝟕𝟔 × 𝟏𝟎𝟔𝒎𝒀𝒆   ,        𝑴𝟎 = 𝟒𝝅𝝆𝟎𝑹𝟎

𝟑

= 𝟓. 𝟔𝟕 × 𝟏𝟎𝟑𝟎𝒌𝒈 𝒀𝒆
𝟐  

(𝟐𝟎) 

Therefore, the following system of dimensionless differential equations is obtained:  

                             
𝒅𝝆̅

𝒅𝒓̅
= −

𝟑√𝟏 + 𝝆̅𝟐 𝟑⁄

𝝆̅𝟐 𝟑⁄

𝒎̅𝝆̅

𝒓̅𝟐
  (𝟐𝟏) 

𝒅𝒎̅

𝒅𝒓̅
= 𝝆̅𝒓̅𝟐  

(𝟐𝟐) 

The numerical solution of the previous system requires the fixing of the initial or boundary 

conditions. However, because the system is unique in 𝒓̅ = 𝟎, it is not possible to freely 

establish such conditions.  In this context, it is appropriate to discuss the properties that are 

expected for the system. First, the existence of two distinct regions is anticipated: a region of 

matter, corresponding to the star, and a region of vacuum on the outside. The place where it 

passes from one situation to another defines the dimensionless radius of the star 𝑹̅ (Aceña, 

2020). The dimensionless mass contained in the star is expressed as . In regions outside the 

star (, you have to and . On the other hand, in the interior of the star, it is positive and 

monotonically decreasing, while it is positive and monotonically increasing. The integration 

domain ranges from to . However, since the value of is initially unknown, the only viable 

option is to set initial conditions in the vicinity of . Therefore, the initial conditions for the 

system in terms of mass and density are:𝑴̅ = 𝒎̅(𝑹̅)𝒓̅ ≥ 𝑹̅)𝝆̅ = 𝟎𝒎̅ = 𝑴(𝒓 < 𝑹)𝝆̅𝒎̅𝒓̅ =
𝟎𝒓̅ = 𝑹̅𝑹̅𝒓̅ = 𝟎 

                       𝒎̅(𝟎) = 𝟎  , 𝝆̅(𝟎) = 𝝆𝒄  (𝟐𝟑) 

The choice of is based on the premise that the center of the star has no initially accumulated 

mass, and the accretion begins as we move away from the center.  Regarding density, it is 

emphasized that the presence of the radical in equation (21) implies that it must be positive 

and finite for the system to be regular. The value of is the central density.𝒎̅(𝟎) = 𝟎𝝆̅𝝆𝒄 

The numerical solution of the initial value problem (21), (22), and (23) together with the 

scalable quantities (20) and (20), provides a model that describes how the mass and density of 

the star change as we move away from the center. The solution is determined by the numeric 

value that is chosen. Since the vast majority of white dwarfs are composed primarily of 𝒀𝒆
12C, 

it is selected  𝒀𝒆 = 𝟎.𝟓 for this element. In addition, it is interesting to express the results with the 

solar units of mass and radius  
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                          𝑹ʘ = 𝟔. 𝟗𝟔 × 𝟏𝟎𝟖𝒎  , 𝑴ʘ = 𝟏. 𝟗𝟗 × 𝟏𝟎𝟑𝟎𝒌𝒈  (𝟐𝟒) 

 and with the density at the center of the sun, approximately .  When comparing the radio and 

mass scales at (20) with solar units (24), white dwarf stars are expected to have masses 

comparable to solar mass, but with considerably smaller radii and much higher densities. 

𝟏. 𝟓 × 𝟏𝟎𝟓 𝒌𝒈 𝒎𝟑⁄ Solutions for central density profiles 𝝆𝒄 in the range of 𝟏𝟎𝒏−𝟑 . For 

numerical integration, the RK4 method will be used due to its effectiveness, see Appendix. 

However, it is crucial to point out that the RK4 method will not work if we try to integrate 

exactly from 𝒏 = 𝟏. . 𝟏𝟐𝒓̅ = 𝟎 because it is a singular point in the equation (21). Instead, we'll 

move the initial conditions to a later point, conveniently chosen as . The details of 

implementing the RK4 method in a spreadsheet are described in the next section𝒓̅ = 𝟏𝟎−𝟐𝟎 

 

3. METHODOLOGY  

We proceed to describe the simulation of the mass-radius relationship of the model described 

in the previous section in spreadsheets. 

Numerical solver: RK4 method in spreadsheets 

To numerically solve PVI 21, 22 and 23, a numerical solver is developed in an Excel 

spreadsheet. Figure 2 provides a detailed visualization of this numerical solver, which requires 

the specification of the center density (cell P4) and radius (cell V4) as input data. As a result, 

a matrix with the numerical solution of the problem. The initial values for radius, density and 

mass are set in cells B7, K7 and L7 respectively. The formulas of the RK4 numerical method 

are then inserted into the B8:L8 cell range.   

Figure 2.  Numerical solver in spreadsheet 

 

Table 1 presents the formulas used, as well as the variables they represent. It should be noted 

that the values displayed from row 9 onwards are generated by replicating the formulas in row 

8 by dragging the fill handle to subsequent rows. Indeed, the data in columns B, K, and L 
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starting from row 7 represent the numerical solution to the problem.  
Table 1. Numerical solver formulas in worksheet 

Column/Cell Variable Description Worksheet Command 

E4 𝒉 Step =0.0001 

Q4 𝝆𝒄 Core density =100 

V4 𝑹 End radius =1 

B7 𝒓̅𝟎 Initial radius =10^(-19) 

K7 𝝆̅(𝟎) Core density =N4 

L7 𝒎̅(𝟎) Central 

mass 

=0 

B8 𝒓̅ Radio =B7+$E$4 

C8 𝒍𝟏 Coefficient 

𝒍𝟏 

=K7*B7^2 

D8 𝒍𝟐 Coefficient 

𝒍𝟐 

=(K7+0.5*G8*$E$4)*(B7+0.5*$E$4)^2 

E8 𝒍𝟑 Coefficient 

𝒍𝟑 

=(K7+0.5*H8*$E$4)*(B7+0.5*$E$4)^2 

F8 𝒍𝟒 Coefficient 

𝒍𝟒 

=(K7+I8*$E$4)*(B7+$E$4)^2 

G8 𝒍𝟏 Coefficient 

𝒌𝟏 

=-3*ROOT((K7^2)^(1/3)+1)*L7*K7^(1/3)/B7^2 

H8 𝒍𝟐  

Coefficient 

𝒌𝟐 

=-

3*ROOT((((K7+0.5*G8*$E$4)^2)^(1/3)+1)*(L7+0.5*C8*$E$4) 

*(K7+0.5*G8*$E$4)^(1/3)/(B7+0.5*$E$4)^2 

I8 𝒍𝟑 Coefficient 

𝒌𝟑 

=-

3*ROOT((((K7+0.5*H8*$E$4)^2)^(1/3)+1)*(L7+0.5*D8*$E$4) 

*(K7+0.5*H8*$E$4)^(1/3)/(B7+0.5*$E$4)^2 

P8 𝒍𝟒 Coefficient 

𝒌𝟒 

=-3*ROOT(((K7+I8*$E$4)^2)^(1/3)+1)*(L7+E8*$E$4) 

*(K7+I8*$E$4)^(1/3)/(B7+$E$4)^2 

K8 𝝆̅(𝒓̅) Density =K7+$E$4*(G8+2*H8+2*I8+J8)/6 

L8 𝒎̅(𝒓̅) Mass =L7+$E$4*(C8+2*D8+2*E8+F8)/6 

The graphical representation of these results (see Figure 2) is presented in a scatterplot of 

smoothed lines. This graph provides a clear visualization of the change in mass and density 

along the radius in response to the specified initial conditions. 

Estimation of the Radius and Mass of the Star: Chandrasekhar Limit 

The results provided by the numerical solver are consistent with what is expected: regardless 

of the value assigned to the central density (cell P4), as it is numerically integrated for values 

far from the center of the star, the density decreases with an asymptotic behavior to zero, and 

the mass increases with an asymptotic behavior towards the maximum value. The bounded 

value of the radius is entered in cell V4. Now, through solver we proceed to estimate the mass 

and size defined by the star for a specific value of the central density. As discussed above, 

these values are initially unknown. 𝑴̅𝑹̅𝝆̅𝒄 

To determine the total mass of the star and its size, solutions for a density profile of con , using 

a step size of . The maximum values of radius and mass are selected where the ratio 𝟏𝟎𝒏−𝟑𝒏 =
𝟏. . 𝟏𝟐𝟏𝟎−𝟑𝝆̅(𝑹)/𝝆̅𝒄~𝟏𝟎−𝟔.  That is, an edge is chosen where the density is significantly 

lower compared to the central density. Figure 3 shows the maximum mass and radius values 

(dimensionless) that the star reaches for the aforementioned density profile. Likewise, the 

equivalent of the mass and radius of the sun is shown, along with the percentage of reduction 
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of the radius with increasing central density (cell range AI10:AN21).  

Figure 3. Radius and mass of the star in solar units 

 

Table 2 shows the formulas used and the associated variables for the scales. It is important to 

note that, for high density values, the size of the star decreases considerably. Compared to the 

solar radius scale, the radius tends to zero, reaching the collapse situation, and the mass tends 

to 𝟏. 𝟒𝟒 𝑴ʘ. This value is known in the literature as the Chandrasekhar limit and corresponds 

to the maximum stable mass of a white dwarf star (Pinochet, 2020; Low, 2023). Figure 3 

additionally shows, for comparison purposes, that along the range of cells R4:AF4 the values 

of the constant𝒀𝒆, the scales of radius, mass and density, as well as the units of radius and 

solar mass are entered. 

Table 2. Spreadsheet formulas for mass and radius scales 
Column/Cell Variable Description Worksheet Command 

AL10 𝑹ʘ Solar Radio Scale Quantity =AK10*$W$4/$AC$4 

AM10 𝑴ʘ Quantity in solar mass scale =AJ10*$Y$4/$AE$4 

AN10 % Radius reduction =AL10/$AL$10 

Q4 𝒀𝒆 Number of electrons per nucleon =0.5 

W4 𝑹𝒐 Radio Scale =7.72*10^6*R4 

Y4 𝑴𝒐 Mass Scale =5.67*10^30*R4^2 

AA4 𝝆𝒐 Density Scale =9.78*10^8*R4^(-1) 

AC4 Radio Solar Sun Radio =6.95*10^8 

AE4 Solar Mass Mass of the Sun =1.98*10^30 

Note that in the AL22:AN33 cell range, solar mass values, solar radius and percentage of 

radius reduction are repeated. These data will be used for the simulation of the mass-radius 

relationship, as described in the next section.  

 

Programmer Elements: Star Collapse Simulation 
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Once the numerical solutions have been obtained, arrays and programmer elements of the 

spreadsheet are incorporated to visualize the behavior of the model when adjusting the 

parameters. As for arrays, in cell C4 the number of partitions used in the numerical solution is 

entered, which requires setting a finite number of points. This implies that the value of the step 

in cell E4 must be modified, as detailed in Table 3.  

Figure 4 illustrates the incorporation of programmer elements. First, a numerical controller 

linked to cell AL4 is assigned for density profile adjustment. The values it takes when you 

press the button correspond to those of the AI10:AI21 range matrix. A scroll bar linked to the 

AK4 cell is then assigned for the radius, taking values from zero to the maximum value of the 

radius associated with the set density profile. Table 3 shows how the incorporation of these 

programming elements leads to the modification of the formulas in cells P4 and V4. Likewise, 

Figure 4 shows that the values in the range of cells B7:B1007, K7; K1007 and L7:L1007 are 

initially used to produce a scatterplot of smoothed lines that simultaneously shows the change 

in mass and density along the radius. However, in order to have the freedom to display the 

change in mass or density individually, a checkbox control linked to cell AJ5 is assigned for 

mass values and another checkbox control linked to cell AL5 for density values. Because the 

checkbox controls work with logical statements, the density and mass values represented in 

the cell range K7:K1007 and L7:L1007 are no longer considered for the graph. Instead, the 

mass and density values are reprogrammed along the range of N7:N1007 and M7:M1007 cells 

respectively. Table III shows the formulas used for the reprogramming of the mass and density 

values in the new matrices.   

Table 3. Reprogramming Formulas by Using Scheduler Controls 
Column/Cell Variable Description Worksheet Command 

C4 𝒏 Number of partitions =1000 

E4 h step =V4/C4 

Q4 𝝆𝒄 Core density =INDEX(AI10:AK21; AI4; 1) 

V4 𝑹 End radius =AK4*AJ4*0.001 

M4 𝝆̅(𝒓̅) Density as a function of radius =IF($AI$5=TRUE; K7;-1) 

N4 𝒎̅(𝒓̅) Mass as a function of radius =IF($AJ$5=TRUE; L7;-1) 

P27 𝒓̅ Local Radio =INDEX(B7:N1007; AL4; 1) 

R27 𝝆̅ Local density =INDEX(B7:N1007; AL4; 12) 

S27 𝒎̅ Local dough =INDEX(B7:N1007; AL4; 13) 

Y27 𝝆 Central density of the star =INDEX(AI10:AN21; AM4; 

1)*AA4 

AA27 𝑴 Mass of the star in units  𝑴ʘ =INDEX(AI10:AN21; AM4; 5) 

AC27 𝑹 Star radius in units 𝑹ʘ =INDEX(AI10:AN21; AM4; 4) 

AE27 % Radius reduction percentage =INDEX(AI10:AN21; AM4; 6) 

On the other hand, at the bottom of the graph, along the P27:U27 cell range, the point values 

mass and density are programmed for a given radius. These three values are assigned two 

numerical controls linked to cell AL4. The difference between the two controls is that one has 

higher magnification. These point values are represented by a scatter plot, combined with the 

smoothed line scatter plot of the range matrices B7:B1007, N7; N1007 and M7:M1007, 

resulting in two points that can slide along curves.  
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Figure 4: Programmer Elements for Parameter Adjustment 

 

However, the values shown in the cell range AL10:AN33 are used to graph the mass-radius 

ratio and simulate the collapse of the star as it approaches the Chandrasekhar limit limit. To 

carry out the simulation, the combination of three bubble charts is used. The first graph is 

made with the values of the cell range AL22:AN33, with the aim that the bubbles have the 

same size and leave the trace of a dot plot. The second graph is made with the AL10:AN33 

cell range to visualize the decrease in the size of the star as its mass increases. The design of 

this graphic is such that it has an unfilled and outline-free background. The last graph is made 

with the combination of numerical values of the cell range Y27:AF27, which represent the 

point values of solar mass, solar radius and percentage reduction of the star for a specific 

density value in the already established range. As this graph generates a single bubble, a white 

dwarf image is inserted into it for a greater didactic illustration of the phenomenon.  The point 

values are assigned a numerical control linked to cell AM6 so that, when the button is pressed, 

it can be seen how the density increases, the size of the star decreases and its mass increases, 

reaching the situation of collapse at the Chandrasekhar limit.  

Figure 5 shows only the slice of the spreadsheet that contains the numeric controls and charts, 

where the user adjusts the input parameters and looks at the results on the chart with point 

values and the simulation. The definition of the work sector was made with the option to hide 

in the spreadsheet. The following section describes the methodology to know what attitude 

students have towards the implementation of this simulation of the structures of white dwarfs 

and stellar collapse in the Excel spreadsheet. 
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Figure 5.  Simulating the mass-radius ratio of a white dwarf in spreadsheet 

 

Level of perception and satisfaction of the simulation in Excel 

An online webinar was held for students of the Bachelor's Degree in Physics attached to the 

Dean of Science and Technology of the Universidad Centroccidental Lisandro Alvarado 

(UCLA-DCyT), Venezuela. The webinar, entitled "White Dwarfs and Collapse at the 

Chandrasekhar Limit", was addressed in an informative and sequential manner, presented in 

three blocks: theoretical model, numerical treatment of the model in spreadsheet, and the 

results presented directly from the simulation, as shown in Fig. 5. In addition to the physical 

findings provided by the model, much emphasis was placed on the ease and benefits of the 

Excel spreadsheet to address complex physics problems. 

To estimate the level of perception and satisfaction with the simulation in Excel, a 

questionnaire with 12 questions was implemented online using a 5-point Likert attitude scale. 

The global instrument was divided into 6 aspects that seek to inquire into the participants: 

• Introduction and context: Familiarization and pre-webinar experience with the topic 

of white dwarfs and the use of Excel in educational activities. 

• Experience during the talk: Qualification of the presentation through simulation and 

explanation of the theoretical model and methodology in the simulation. 

• Use and understanding of the simulation: Perception of the simulation of the collapse 

of the star in Excel and improvement in the understanding of white dwarfs and stellar collapse. 

• Interactivity and learning tools: Feedback on the effectiveness of the charts, 

visualization of the results, and ability to interact with the simulation using the form controls. 

• Practical application and learning: Consideration of the use of simulations to improve 

physics teaching and motivation to discuss the collapse of white stars after the webinar. 
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• Overall satisfaction: Rating of the talk and simulation, and recommendation of 

simulation for physics teaching. 

The statistical treatment of the survey results was carried out using the specialized software 

Statistical Product and Service Solutions (SPSS) and the Excel spreadsheet. To measure the 

reliability of participants' responses, Cronbach's alpha was used (Watson et al., 2023 ; Giday 

& Perumal, 2024). Table 4 shows the weighting of the index, which indicates the internal 

consistency and validity of the collection instrument. To analyze perception and satisfaction, 

a combined bar graph of percentages was used, distributed in the dimensions of very high, 

high, moderate, low and very low [18]. 

 

4. RESULTS  

The results of the statistical treatment of the surveys are presented. Table 4 shows that 

Cronbach's alpha coefficient was 0.82, indicating a "Good" level of reliability. This suggests 

that the instrument is reliable and that the survey questions are consistent with each other, with 

consistent responses from participants. 

Table 4. Reliability Statistics 
Cronbach's 

alpha 

N of 

elements 

Weighting (Cronbach's alpha 

coefficient ) 
Magnitude 

0.82 12 

0.91 to 1.00 Excellent 

0.81 to 0.90 Well 

0.71 to 0.80 Acceptable 

0.61 to 0.70 Questionable 

0.51 to 0.60 Poor 

< 0.5 Unacceptable 

Figure 6 shows that, of the P1 and P2 questions in the introduction and context category, it 

was observed that 11.5% of the participants rated their familiarity with the topic of white 

dwarfs as "Very High", while 53.8% rated it as "Moderate" and 34.6% as "Low". As for their 

previous experience with Excel in educational activities, 15.4% of participants rated it as 

"High," 46.2% as "Moderate," 34.6% as "Low," and 3.8% as "Very Low." 

Regarding questions P3 and P4, experience during the talk, the clarity of the presentation was 

considered "Very High" by 57.7% of the participants and "High" by 42.3%. The usefulness of 

the examples and explanations was rated as "Very High" by 46.2% and "High" by 53.8%. 

Regarding the use and understanding of the simulation, questions P5 and P6, 23.1% of the 

participants indicated that the ease of understanding and following the simulation with Excel 

is "Very High", 42.3% rated it as "High", 30.8% as "Moderate" and 3.8% as "Low". In 

addition, 53.8% of participants "Strongly Agree" that the simulation helped improve 

understanding of white dwarfs and stellar collapse, while 38.5% "Agree." 
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Figure 6.  Simulation Perception and Satisfaction Statistics . In original language Spanish 

 

For questions P7 and P8, which address interactivity and learning tools, the effectiveness of 

the graphs and visualizations was rated as "Very High" by 73.1% of participants and "High" 

by 23.1%. The ability to interact with the simulation using the form controls was rated as "Very 

High" by 42.3%, "High" by 50.0%, and "Moderate" by 3.8%. 

In terms of practical application and learning, reflected in questions P9 and P10, 69.2% of 

participants "Strongly Agree" that simulations are useful for improving physics teaching, 

while 30.8% "Agree". As for the motivation to discuss star collapse after the webinar, 3.8% 

rated it as "Very High," 42.3% as "High," and 50.0% as "Moderate." 

Finally, in the general satisfaction section, questions P11 and P12, 61.5% of participants rated 

their overall satisfaction with the talk and simulation as "Very High" and 34.6% as "High". In 

addition, 88.5% of participants "strongly agree" in recommending this simulation for physics 

teaching, while 7.7% "Agree." 

The favorable attitude on the part of the students towards the resource is notorious. A high 

percentage recognize the ease of Excel to understand and follow the simulation. They also 

agreed that the simulation helped improve understanding of white dwarfs and stellar collapse. 

Respondents' perceptions of Excel's effectiveness in visualizing and presenting graphs, as well 

as the ability to interact with the simulation using form controls, are highly positive. The vast 

majority consider that simulations improve the teaching and learning of complex physics 

concepts. The positive satisfaction of the resource is reflected in the high percentage of 

participants who would recommend the simulation addresses to other students or colleagues 

interested in teaching physics 
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5. CONCLUSIONS  

The study demonstrates how the Excel spreadsheet can be used for physics teaching, 

specifically in the simulation of phenomena modeled by differential equations, such as the 

structures and collapse of white dwarf stars. Thanks to the layout of cells in the spreadsheets, 

the ease of inserting formulas and the dragging option, it is possible to work with the RK4 

method in an orderly, friendly and illustrative way. This methodology facilitates the approach 

to the numerical solution of the model. The physical findings of the solution can be visualized 

in a didactic manner using smoothed line scatter charts, animated by form controls. In the 

model presented, the size of the star is determined from the asymptotic behavior of mass and 

density, regardless of the central density value set. It is observed that, by ordering the 

dimensions of the star in units of mass and solar radius, at high densities, the mass of the star 

is concentrated in a very small region, collapsing at the Chandrasekhar limit. The dynamic 

collapse simulation is executed by bubble graphs representing the mass-radius ratio, animated 

by a numerical control. Visualizing the phenomenon is crucial for understanding the physical 

processes that govern the death of stars. 

Presenting this type of simulations in the classroom allows the teacher to break with traditional 

teaching schemes, which are often based on the explanation of complex phenomena or the 

development of theories on the blackboard, which can be monotonous and exhausting for 

students. On the other hand, simulations provide students with the opportunity to visualize and 

understand the phenomenon interactively, broadening their horizon to appreciate the beauty 

of the mathematical formalism used to model the event. The simplicity of the proposal shows 

how the Excel spreadsheet, an accessible and versatile tool, is an environment in which 

teachers and students can carry out programming tasks in a friendly way, without the need to 

master a specific language, which enhances creativity and confidence in the use of computer 

technologies. This environment not only opens up a world of possibilities for problem solving 

in physics, but also encourages exploration, promotes active learning and discovery in the 

educational process. Finally, it is highlighted that the simulation developed in this work can 

be used in courses of astronomy, astrophysics, numerical methods of physics and differential 

equations in physics.  
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