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The simulation of the collapse of a white dwarf star is presented in spreadsheets in order to show
the potentialities of Excel in the teaching of physics. A nonlinear model is deduced that describes
the changes in the mass and density of a star along its radius, solved numerically using the fourth-
order Runge-Kutta method in Excel. The numerical calculation provides the size and mass of the
star for a central density profile compared to units of radius and solar masses, observing that at high
densities the star collapses at the Chandrasekhar Limit. Form controllers are integrated for
parameter adjustment and dynamic graphics, making it easy to visualize stellar collapse. The
simulation was implemented to a population of students of the Bachelor's Degree in Physics. The
participants' level of perception and satisfaction with the resource was measured with a 12-question
questionnaire on a Likert scale. The results indicate a high satisfaction and positive perception
towards simulation, highlighting its effectiveness in teaching complex physics concepts. This
proposal shows how Excel, a versatile and accessible tool, allows teachers and students to carry out
simulations without the need for advanced programming, promoting confidence in the use of
computer technologies.
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1. Introduction

Computer simulations are computer programs designed to reproduce an everyday or natural
phenomenon in a virtual environment. Given the complexity of the phenomenon, these usually
start from idealized situations that are approaching reality and are used as a bridge for
understanding it. Thus, in the teaching of physics, the use of simulations is becoming more
and more common, even being considered as experimental activities (Andrés, 2021). In
addition, they are an alternative that allows breaking with the traditional teaching scheme in
theoretical classes and makes it possible to recreate complex, abstract or risky physical systems
for reproduction in a physical laboratory (Raviolo, 2012; Eso et al., 2018).
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On the other hand, the use of simulators has experienced a significant increase with the birth
of online education as a result of the COVID-19 pandemic (Razzak & Uddin, 2023). However,
its use by teachers and students presents certain barriers. One of these limitations lies in the
use of a programming language, which can be a complex task for many. On the other hand,
the need for computer-intensive equipment and the financial requirements associated with the
acquisition of software licences represent another significant obstacle. However, these
limitations can be overcome through the use of spreadsheets (Sabarudiin et al., 2024).

Spreadsheets are widely available tools on any computer and one of the most popular today is
the Excel spreadsheet developed by Microsoft Inc. Unlike programming languages that are
usually discontinued, Excel is constant over time, retaining its main characteristics throughout
updates. In this way, both teachers and students are becoming increasingly familiar with this
tool due to its accessibility and ease of carrying out simulations without the need to master a
specific programming language (Raviolo, 2011; Uddin et al., 2023). In this order of ideas, the
Excel spreadsheet allows difficult equations to be simulated in a simple way compared to
common programming languages such as Python and JavaScript (Purnama et al., 2023). In
addition, it is possible to recreate simulations with an appearance similar to those available on
the internet, which allows corroborating the veracity of the simulation online and knowing the
mathematical models that make it up (Raviolo et al., 2011). We can also affirm that it is an
environment to carry out experimental data processing in a simple way that leads to verifying
or comparing the theory with the experiment (Suarez & Tornaria, 2019). Similarly, it allows
the design of user interface guides (GUISs) that are characterized by presenting hidden algebra
step by step with content that goes hand in hand with mathematical operations and is not
limited to presenting only the result of a calculation such as those available online (Gul &
Tufail, 2024).

The benefits offered by the Excel spreadsheet for teaching physics are evident, which leads us
to the purpose of this work, which is to use the spreadsheet to simulate a complex phenomenon
such as the collapse of a white dwarf star and the Chandrasekhar limit. This work begins with
the deduction of a static model of a relativistic simple white dwarf. Next, the numerical
solution of the model by the fourth-order Runge-Kutta method (RK4) in spreadsheets and the
use of form controllers for the simulation of the collapse of the star and the visualization of
the Chandrasekhar limit are shown. The implementation of the simulation to a population of
students of the Bachelor's Degree in Physics is described and, to analyze the perception and
satisfaction of the participants, the application of a Likert attitude questionnaire. Finally, the
results of the instrument are analyzed and the main conclusions are presented

2. THEORETICAL FRAMEWORK

The famous physicist Stephen Hawking, in his literary work "History of Time", defines the
white dwarf as a "stable cold star, maintained by the repulsion due to the principle of exclusion
between electrons” (Hawking, 1988). This definition offers an overview of white dwarfs and
is part of the theoretical model that is presented below under the following considerations:

Ideal fluid at rest
It is assumed that the fluid that makes up the white dwarf is ideal and is in a state of rest. Along
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these lines, for a dynamic fluid, the Navier-Stokes equation:

F+(v-V)V=—5VP+uV2v+g (1
(De Jesus Rubio et al., 2013). For an ideal, non-viscous, p = 0, resting fluid, the equation is
simplified to:v = 0

1—)
~VP=¢g 2
. g 2)

being density, pressure and gravitational field. Now, applying the divergence operator in
equation (2):pPg

oAl L
v-(—vp) ~V.3 3)
p
or
— 1—)
V- (EVP> — —4mGp (4)

where the gravitational field has been rewritten as g = —V®, with the potential solution of
the Poisson equation . Quantity is the universal gravitational constant. Equation (4) is known
as the hydrostatic equilibrium equation®A® = 4nGpG = 6.67 x 10711 N - m? /kg?.

Perfect spherical geometry

It is postulated that the white dwarf has a perfect spherical geometry. In this context, it is
convenient to write the differential operators of equation (4) in spherical coordinates, but
before proceeding, from the vector identity V- (uA) =uV-A+A-Vu the equilibrium
equation is rewritten as:

1 — — 1
4P+ TPV (5) = —47Gp (5)

Figure 1 shows a spherical volume element of the fluid transversely. Under hydrostatic
conditions, there is no variation in pressure and density along the tangential components; that
is, each layer of the sphere constitutes a surface of constant pressure and density. In fact, the
density and pressure depend only on the radial coordinate. Therefore, the Laplacian and scalar

product of the gradients ApVP and are written as: Vp~?

pzii(rza_P) . VP.V@) _ G_PE(E)

r2or\ or ' P dr dr\p

Substituting these expressions in equation (5) and simplifying, we get:
LE(2I0) -y ©
r2dr\ p dr
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Figure 1. Cross-section of the star.
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separating variables and given that for a spherical piece dm = 4mpr?dr, it is detached:

dp dP\ " 'm(r)p(r)

ar-C (E) r2 @)
dm (8)
I - 4mpr?

In which . Note that the partial derivative has been rewritten as ordinary due to the exclusive
dependence of the variables on the radial coordinate. The system of ordinary differential
equations (7) and (8) provides a model of the mass and density of the star as a function of
radius (Pei, 2022). The next step is to determine the relationship between pressure and density,
for which thermodynamic principles and the following assumption will be used.dP/dr =
(dp/dr)(dP/dp)

Electrons as degenerate Fermi gas

The mass levels in a white dwarf are so high that gravity crushes the particles, confining the
atomic nuclei inside, while the electrons, being the lightest particles, are overwhelmingly
concentrated on the stellar surface. In this environment, the Pauli exclusion principle comes
into play, manifesting itself as a

repulsion between identical fermions. This repulsion forces electrons to move at high speeds,
close to that of light, in very small spaces, generating pressure

of electronic degeneracy that opposes the gravitational collapse of the star (Pinochet, 2019).
As a result, the behavior of free electrons on the surface of the star is analogous to that of free
electrons in a metal at absolute temperature, i.e., a relativistic degenerate Fermi gasT — 0.

To model this gas, we consider a large volume V containing electrons with energy. At the
temperature limit, all states are occupied and all states are empty. Here, quantity is Fermi's
Nanotechnology Perceptions Vol. 20 No. S10 (2024)
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impulse. For this gas the average number and mean energy of electrons with states, degenerate
gas, is calculated by the following equations: Ne = /c2p? + (m,c2)2T - Op < ppp >
PrPrNEp < pr

_ Pr d3p
= - 9
N=2v Gy (9)
PF d3
F — 212 2)2 10
E=2v i (Znh)g\/c p? + (m.c?) (10)

where the speed of light, ¢ =3 x108m/sh =1.05x 10734J - s Planck's constant is
reduced and is the mass of the electron. By integrating equations (9) and (10) in the phase
space in spherical coordinates, we obtain: m, = 9.1 x 10 3'kgd®p = 4np?dp,

Pr = h(31t2n)1/3 (11)
E = ngm,c*Vx3e(x) (12)

where n = N /V the concentration of electrons and the parameters and defined as:xe(x)

e(x) = Bi [x(sz +1)/x2+1—-1In [x +xZ + 1” (13)

3
() - - G) "
X = =|— = | — = | ——
mec \ng Po PoV

The quantity ng = m3¢3/(3n%h3) = 5.85 x 103°>m™3 is the Fermi density and the
parameter characterizes the relative electron density. It is notable that xx it also relates to the
relative mass density, since, for a given amount of mass, the electron concentration is , being
the number of free electrons per nucleon and is the mass of the proton. In addition, it has to
be the mass density of matter where the electron density is n=Y.p/M,Y M, =
1.67 x 10727kgpy = M,ngY;' = 9.78 x 108Y ;1 kg/m> no(Koonin &  Meredith,
1990).

The purpose of calculating the average energy of the electronic gas lies in the determination
of the gas pressure, which is obtained from the derivative of the average energy with respect
to volume (Pei, 2023), as indicated in equation (14)

oE

P=—— 15

v (15)
This expression is derived from the first law of thermodynamics, considering the temperature
limit, where entropy is a constant according to the third principle of thermodynamics. Thus,
calculating in equation 12, equation 14 and using partial differential properties in equation 15,
we obtain: dE = TdS — PdVT — 0Sd.E = ngm,c*Vx3d,x = —x/3V
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_ OE 0x 0e
~ de AV ox
X\ 0€
= —(nymc?Vx3) (— ﬁ)ﬁ (16)
= —nom.c*Vx*e (x)

Now, calculating dx/dp = 1/(3x2p0) in equation 14, deriving equation 16 with respect to
pressure and applying properties of ordinary derivatives, we have

0P ox
dx dp
(g aromeec)]
=\3x2p,) dx 3n0mec x*e'(x) a7
2
_ngmec” 1 d
~ 3pp 9x% dx [x"e' ()]
Since:
d x?
— 1% -
9x2 dx [x € (x)] 3 /1+x2

The result is simplified as:

ngm,c? x?

pP=
3P0 /1 +x2

Equation 18 provides the variation of pressure with density given that it is the relative mass
density. Substituting equation 16 into equation 7 yields:x

(18)

dp _ 3Gpy V1+ x2m(r)p(r) (19)
dr nomyc* x2 r2

dm (20)
am _ 2

ar 4mpr

Note that the presence of the variables m(7) vy in equation 17 makes the system of equations
a nonlinear system, so its solution must be numerical. However, the stability of the numerical
method may be affected because the value of the coefficient in equation 17 is of the order .
For this reason, it is advisable to work as much as possible with quantities of an order of
magnitude close to unity. For this reason, it is convenient to rewrite the radius, mass, and
density as: p(r) ~107%4

r=Ror , m=Mym , p=pop (19)

where 7, im and dimensionless quantities and pR,, M and scales of radius, mass, and density
respectively. Replacing (19) in (17) and (18) gives you:p,
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dp ( GpoM, )3,/1+ﬁ2/3ﬁlﬁ

dr ~ \nym.c?R, p2/3 12
dm 411'Rgp0 —
dr MO

Y scales R are defined in such a way that the coefficients in parentheses are equal to unity:M,

R, = Yemec? =17.76 x 10°mY M, = 4mpyR3
0~ |4nGpom, M¥e 0 = *MPo%o (20)

=5.67 x 103%kg Y2
Therefore, the following system of dimensionless differential equations is obtained:

dp 31+ p%/3mp

—=_— - = 21

dr p%/3 72 @1

din (22)
= pr

dr pT

The numerical solution of the previous system requires the fixing of the initial or boundary
conditions. However, because the system is unique in ¥ = 0, it is not possible to freely
establish such conditions. In this context, it is appropriate to discuss the properties that are
expected for the system. First, the existence of two distinct regions is anticipated: a region of
matter, corresponding to the star, and a region of vacuum on the outside. The place where it
passes from one situation to another defines the dimensionless radius of the star R (Acefia,
2020). The dimensionless mass contained in the star is expressed as . In regions outside the
star (, you have to and . On the other hand, in the interior of the star, it is positive and
monotonically decreasing, while it is positive and monotonically increasing. The integration
domain ranges from to . However, since the value of is initially unknown, the only viable
option is to set initial conditions in the vicinity of . Therefore, the initial conditions for the
system in terms of mass and density are:M = m(R)T = R)p = 0im = M(r < R)pm7r =
07 = RRT =0

m0)=0, p(0)=p, (23)

The choice of is based on the premise that the center of the star has no initially accumulated
mass, and the accretion begins as we move away from the center. Regarding density, it is
emphasized that the presence of the radical in equation (21) implies that it must be positive
and finite for the system to be regular. The value of is the central density.m(0) = Opp,

The numerical solution of the initial value problem (21), (22), and (23) together with the
scalable quantities (20) and (20), provides a model that describes how the mass and density of
the star change as we move away from the center. The solution is determined by the numeric
value that is chosen. Since the vast majority of white dwarfs are composed primarily of ¥ 2
itisselected y = 0. 5 for this element. In addition, it is interesting to express the results with the
solar units of mass and radius
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R =6.96x108m, My=1.99x103kg (24)

and with the density at the center of the sun, approximately . When comparing the radio and
mass scales at (20) with solar units (24), white dwarf stars are expected to have masses
comparable to solar mass, but with considerably smaller radii and much higher densities.
1.5 x 10° kg /m3Solutions for central density profiles p. in the range of 103 . For
numerical integration, the RK4 method will be used due to its effectiveness, see Appendix.
However, it is crucial to point out that the RK4 method will not work if we try to integrate
exactly fromn = 1.. 127 = 0 because it is a singular point in the equation (21). Instead, we'll
move the initial conditions to a later point, conveniently chosen as . The details of
implementing the RK4 method in a spreadsheet are described in the next sectionr = 10~2°

3. METHODOLOGY

We proceed to describe the simulation of the mass-radius relationship of the model described
in the previous section in spreadsheets.

Numerical solver: RK4 method in spreadsheets

To numerically solve PVI 21, 22 and 23, a numerical solver is developed in an Excel
spreadsheet. Figure 2 provides a detailed visualization of this numerical solver, which requires
the specification of the center density (cell P4) and radius (cell V4) as input data. As a result,
a matrix with the numerical solution of the problem. The initial values for radius, density and
mass are set in cells B7, K7 and L7 respectively. The formulas of the RK4 numerical method
are then inserted into the B8:L8 cell range.

Figure 2. Numerical solver in spreadsheet

Archivo  Inicio Insertar  Disposicion de pagina  Férmul las  Datos  Revisar  Vista  Programador  Ayuda 4 Compart|

A 8 C D £ F G H | J K L M N [o) P Q R S T (V] v
1
2

ensidad
;
4 [l [ERT o.0001 |
5
6 r | Iy [ l2 ] Is | ls l ky I ka l ks [ ks I P [ m o 120.000 2,000 o
7 0 100.000  0.000 < 1.800
8 0.000  0.000 0.000 0.000 0.000 0.000 0000 -0331 0165 100.000  0.000 100.000 1.600
9 0.000  0.000 0.000 0.000 0.000 0.220 0.245 0.429 0.427  100.000  0.000
10 0,000  0.000 0.000 0,000 0,000 0.441 0494 -0613  -0.655 100.000  0.000 o 80000 1.400 &
1 0000  0.000 0000 0000  0.000 0.661 0729  -0.816  -0.878  100.000  0.000 1.200
12 0001  0.000 0.000 0000  0.000 0.882  -0.958 -1.027  -1.100  100.000  0.000 60.000 1.000
13 0,001 0.000 0.000 0.000 0.000 1.102 1184  -1241 1321 100000  0.000 0.800
14 0001  0.000 0.000 0000 0000  -1.322 -1.408 -1.457 -1.542 99.999  0.000 40.000 000
15 0001  0.000 0.000 0.000 0000  -1543  -1.632 -1.674 -1.762 99.999  0.000 Sl
16 0.001  0.000 0.000 0.000 0.000 1.763 1.855 1.892 1.983  99.999 0.000 20.000
17 0.001  0.000 0.000 0.000 0000  -1.983  -2.077 -2.111 -2.203 99.999  0.000 9200
18 0.001  0.000 0.000 0.000 0.000 -2.204  -2.299  -2.330  -2424  99.999  0.000 0.000 R 0.000
19 0.001  0.000 0.000 0.000  0.000 2.424 2520 -2.549  -2.644  99.998  0.000 0 0 0 el 1 1 1 Ro
20 0001  0.000 0.000 0000  0.000 2,645 2742 2768 -2.865 99.998  0.000
21 0.001 0,000 0.000 0.000 0,000 2.865 2,963 2.987 3.085  99.998 0.000
22 0.002  0.000 0.000 0.000 0,000 3.085 3.184 3.207 3.305 99.998  0.000 plr) m(r)
23 0.002  0.000 0.000 0.000 0.000 3,306 3.405 3.426 3.526  99.997 0.000
24 0.002  0.000 0.000 0.000  0.000 3.526 3.626 -3.646  -3.746  99.997  0.000
25 0002  0.000 0.000 0000  0.000 3.746  -3.847 -3.866  -3.967 99.996  0.000
26 0om  noon nnon nnga 0000 -3967 __-ANGR___-AORA __-A1R7 _ 99.996 __0.000
SOLUCIONADOR NUMERICO | MASA-RADIC SIMULACION '
@ H @ = ]

Table 1 presents the formulas used, as well as the variables they represent. It should be noted
that the values displayed from row 9 onwards are generated by replicating the formulas in row
8 by dragging the fill handle to subsequent rows. Indeed, the data in columns B, K, and L
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starting from row 7 represent the numerical solution to the problem.
Table 1. Numerical solver formulas in worksheet

Column/Cell | Variable | Description | Worksheet Command
E4 h Step =0.0001
Q4 Pc Core density | =100
V4 R End radius =1
B7 To Initial radius | =107(-19)
K7 p(0) Core density | =N4
L7 m(0) | Central =0
mass
B8 T Radio =B7+$E$4
C8 L Coefficient | =K7*B772
L
D8 L, Coefficient | =(K7+0.5*G8*$E$4)*(B7+0.5*$E$4)"2
L,
E8 I Coefficient | =(K7+0.5*H8*$E$4)*(B7+0.5*$E$4)"2
I3
F8 L Coefficient | =(K7+I8*$E$4)*(B7+$ES4)"2
Ly
G8 I, Coefficient | =-3*ROOT((K7/2)*(1/3)+1)*L7*K7"(1/3)/B7"2
kq
H8 lz ==
Coefficient | 3*ROOT((((K7+0.5*G8*$E$4)"2)"(1/3)+1)*(L7+0.5*C8*$ES$4)
k, *(K7+0.5*G8*$E$4)(1/3)/(B7+0.5*$E$4)"2
18 13 Coefficient | =-
ks 3*ROOT((((K7+0.5*H8*$E$4)"2)"(1/3)+1)*(L7+0.5*D8*$ES4)
*(K7+0.5*H8*$E$4)N(1/3)/(B7+0.5*$E$4)"2
P8 I, Coefficient | =-3*ROOT(((K7+I8*$E$4) 2)N(1/3)+1)*(L7+ES*$ES4)
ky *(K7+I8*$E$HN(L/3)/(BT+SES4)2
K8 p( Density =K7+$E$4*(G8+2*HB8+2*18+J8)/6
L8 m(¥) | Mass =L7+$E$4*(C8+2*D8+2*E8+F8)/6

The graphical representation of these results (see Figure 2) is presented in a scatterplot of
smoothed lines. This graph provides a clear visualization of the change in mass and density
along the radius in response to the specified initial conditions.

Estimation of the Radius and Mass of the Star: Chandrasekhar Limit

The results provided by the numerical solver are consistent with what is expected: regardless
of the value assigned to the central density (cell P4), as it is numerically integrated for values
far from the center of the star, the density decreases with an asymptotic behavior to zero, and
the mass increases with an asymptotic behavior towards the maximum value. The bounded
value of the radius is entered in cell V4. Now, through solver we proceed to estimate the mass
and size defined by the star for a specific value of the central density. As discussed above,
these values are initially unknown. MRp,.

To determine the total mass of the star and its size, solutions for a density profile of con , using
a step size of . The maximum values of radius and mass are selected where the ratio 10" 3n =
1..121073p(R)/p.~107°. That is, an edge is chosen where the density is significantly
lower compared to the central density. Figure 3 shows the maximum mass and radius values
(dimensionless) that the star reaches for the aforementioned density profile. Likewise, the
equivalent of the mass and radius of the sun is shown, along with the percentage of reduction
Nanotechnology Perceptions Vol. 20 No. S10 (2024)
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of the radius with increasing central density (cell range Al110:AN21).

Figure 3. Radius and mass of the star in solar units

9~ s Masa-Radio - Excel £ Buscar
Archivo Inicio insertar Disposicién de pagina Férmulas Datos Revisar Vista Programador Ayuda Nitro PDF Pro ¥ Compart

0 2 Q R s T u v w X v z AA | AB | AC | AD| AE | AF [AGIAH| Al | A | AK | AL | AM | AN A0 ]

Densidad Namero de Electrones :
3 | central ] |— por Necleones Ry I My [ po l Radio Solar [ Masa Solar |
4 100 | | 05 [carbomo| [ R 0951 3.86E+06 | m | 1.42E+30] kg | 1.96E+09 [ke/m’| 6.95E+08] m | 2E+30 | kg |
3
6
7
u o 120.000 r 2000 o 1-0.0001
9 & = Pe Mo | oo | R M. %
10 r 1.800 1.0E-03 | 0.030 | 8.161 | 0.05 | 0.02 |1.000
n 100.000 1.0E-02 | 0.094 | 5.552 | 0.03 | 0.07 | 0.680
12 - 1.600 1.0E-01| 0.280 | 3.757 | 0.02 | 0.20 | 0.460
3 1.0E+00] 0.707 | 2496 0.01 | 0.51 | 0.306
" 80,000 [ 1.400 LOE+01] 1.208 | 1590 ] 0.01 | 0.93 [0.195
15 2200 1.0E-02 | 1.736 | 0.951 | 0.01 | 124 |0.117
16 [ 1.0E+03] 1.933 [ 0530 | 0.00 | 1.38 | 0.065
7 L0E+04] 1997 [0.275| 0.00 | 1.43 |0.03%
18 60.000 / 11000 1.0E-05 | 2.013 | 0.135] 0.00 | 1.4% |0.017
19 & L0800 ¢ 1.0E<06| 2.017 | 0.064 | 0.00 | 1.44 |0.008
20 6606 1.0E+07] 2.018 [ 0.030] 0.00 | 14+ |0.004
21 . , L 0.600 1.0E-08| 2.018 | 0.014] 0.00 | 1.4+ |0.002
2 - - - | 005 002 [0.002
3 I 0.400 003 | 0.07 |0.002
2% 20.000 ; 0.02 | 0.20 | 0.002
2 I 0.200 - - — |o01 ] 051 [0.002
% : . — | 001] 093 [0002
27 0.000 —- 0.000 001 1.2¢ |0.002
28 0.000 0.200 0.400 0.600 0.800 1.000 : - - | 0.00] 1.38 |0.002
29 - - — |000 143 [0002
0 r Ro - - - | 000 144 [0002
3 - - — [0.00 [ 14+ [0.002
2 —p(r) —m(n) - - — |0.00 14+ [0002
3 - - 000 | 144 [0.002
£
SOLUCIONADOR NUMERICO | MASA-RADIO | SIMULACION | SIMULACION_2 O

uo B B m D - +s

Table 2 shows the formulas used and the associated variables for the scales. It is important to
note that, for high density values, the size of the star decreases considerably. Compared to the
solar radius scale, the radius tends to zero, reaching the collapse situation, and the mass tends
to 1.44 M. This value is known in the literature as the Chandrasekhar limit and corresponds
to the maximum stable mass of a white dwarf star (Pinochet, 2020; Low, 2023). Figure 3
additionally shows, for comparison purposes, that along the range of cells R4:AF4 the values
of the constantY,, the scales of radius, mass and density, as well as the units of radius and
solar mass are entered.

Table 2. Spreadsheet formulas for mass and radius scales

Column/Cell Variable Description Worksheet Command
AL10 Ro Solar Radio Scale Quantity =AK10*$W$4/$ACS4
AM10 Mg Quantity in solar mass scale =AJ10*$Y$4/$SAES4A
AN10 % Radius reduction =AL10/$AL$10

Q4 Y, Number of electrons per nucleon =0.5
W4 R, Radio Scale =7.72*10"6*R4
Y4 M, Mass Scale =5.67*10"30*R4"2
AA4 Po Density Scale =9.78*10"8*R4\(-1)
AC4 Radio Solar Sun Radio =6.95*10"8
AE4 Solar Mass Mass of the Sun =1.98*10"30

Note that in the AL22:AN33 cell range, solar mass values, solar radius and percentage of
radius reduction are repeated. These data will be used for the simulation of the mass-radius
relationship, as described in the next section.

Programmer Elements: Star Collapse Simulation
Nanotechnology Perceptions Vol. 20 No. S10 (2024)
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Once the numerical solutions have been obtained, arrays and programmer elements of the
spreadsheet are incorporated to visualize the behavior of the model when adjusting the
parameters. As for arrays, in cell C4 the number of partitions used in the numerical solution is
entered, which requires setting a finite number of points. This implies that the value of the step
in cell E4 must be modified, as detailed in Table 3.

Figure 4 illustrates the incorporation of programmer elements. First, a numerical controller
linked to cell AL4 is assigned for density profile adjustment. The values it takes when you
press the button correspond to those of the Al10:Al21 range matrix. A scroll bar linked to the
AK4 cell is then assigned for the radius, taking values from zero to the maximum value of the
radius associated with the set density profile. Table 3 shows how the incorporation of these
programming elements leads to the modification of the formulas in cells P4 and V4. Likewise,
Figure 4 shows that the values in the range of cells B7:B1007, K7; K1007 and L7:L1007 are
initially used to produce a scatterplot of smoothed lines that simultaneously shows the change
in mass and density along the radius. However, in order to have the freedom to display the
change in mass or density individually, a checkbox control linked to cell AJ5 is assigned for
mass values and another checkbox control linked to cell ALS5 for density values. Because the
checkbox controls work with logical statements, the density and mass values represented in
the cell range K7:K1007 and L7:L1007 are no longer considered for the graph. Instead, the
mass and density values are reprogrammed along the range of N7:N1007 and M7:M1007 cells
respectively. Table 111 shows the formulas used for the reprogramming of the mass and density
values in the new matrices.

Table 3. Reprogramming Formulas by Using Scheduler Controls

Column/Cell | Variable Description Worksheet Command
C4 n Number of partitions =1000
E4 h step =V4/C4
Q4 Pc Core density =INDEX(AI10:AK21; Al4; 1)
V4 R End radius =AK4*AJ4*0.001
M4 p( Density as a function of radius =IF($AI$5=TRUE; K7;-1)
N4 m(r) Mass as a function of radius =IF($AI$5=TRUE; L7;-1)
P27 T Local Radio =INDEX(B7:N1007; AL4; 1)
R27 p Local density =INDEX(B7:N1007; AL4; 12)
S27 m Local dough =INDEX(B7:N1007; AL4; 13)
Y27 p Central density of the star =INDEX(AI10:AN21; AM4;
1D*AA4
AA27 M Mass of the star in units Mg =INDEX(AI10:AN21; AM4; 5)
AC27 R Star radius in units Ro =INDEX(AI10:AN21; AM4; 4)
AE27 % Radius reduction percentage =INDEX(AI10:AN21; AM4; 6)

On the other hand, at the bottom of the graph, along the P27:U27 cell range, the point values
mass and density are programmed for a given radius. These three values are assigned two
numerical controls linked to cell AL4. The difference between the two controls is that one has
higher magnification. These point values are represented by a scatter plot, combined with the
smoothed line scatter plot of the range matrices B7:B1007, N7; N1007 and M7:M1007,
resulting in two points that can slide along curves.
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Figure 4: Programmer Elements for Parameter Adjustment
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However, the values shown in the cell range AL10:AN33 are used to graph the mass-radius
ratio and simulate the collapse of the star as it approaches the Chandrasekhar limit limit. To
carry out the simulation, the combination of three bubble charts is used. The first graph is
made with the values of the cell range AL22:AN33, with the aim that the bubbles have the
same size and leave the trace of a dot plot. The second graph is made with the AL10:AN33
cell range to visualize the decrease in the size of the star as its mass increases. The design of
this graphic is such that it has an unfilled and outline-free background. The last graph is made
with the combination of numerical values of the cell range Y27:AF27, which represent the
point values of solar mass, solar radius and percentage reduction of the star for a specific
density value in the already established range. As this graph generates a single bubble, a white
dwarf image is inserted into it for a greater didactic illustration of the phenomenon. The point
values are assigned a numerical control linked to cell AM6 so that, when the button is pressed,
it can be seen how the density increases, the size of the star decreases and its mass increases,
reaching the situation of collapse at the Chandrasekhar limit.

Figure 5 shows only the slice of the spreadsheet that contains the numeric controls and charts,
where the user adjusts the input parameters and looks at the results on the chart with point
values and the simulation. The definition of the work sector was made with the option to hide
in the spreadsheet. The following section describes the methodology to know what attitude
students have towards the implementation of this simulation of the structures of white dwarfs
and stellar collapse in the Excel spreadsheet.
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Figure 5. Simulating the mass-radius ratio of a white dwarf in spreadsheet
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Level of perception and satisfaction of the simulation in Excel

An online webinar was held for students of the Bachelor's Degree in Physics attached to the
Dean of Science and Technology of the Universidad Centroccidental Lisandro Alvarado
(UCLA-DCyT), Venezuela. The webinar, entitled "White Dwarfs and Collapse at the
Chandrasekhar Limit", was addressed in an informative and sequential manner, presented in
three blocks: theoretical model, numerical treatment of the model in spreadsheet, and the
results presented directly from the simulation, as shown in Fig. 5. In addition to the physical
findings provided by the model, much emphasis was placed on the ease and benefits of the
Excel spreadsheet to address complex physics problems.

To estimate the level of perception and satisfaction with the simulation in Excel, a
guestionnaire with 12 questions was implemented online using a 5-point Likert attitude scale.
The global instrument was divided into 6 aspects that seek to inquire into the participants:

o Introduction and context: Familiarization and pre-webinar experience with the topic
of white dwarfs and the use of Excel in educational activities.

o Experience during the talk: Qualification of the presentation through simulation and
explanation of the theoretical model and methodology in the simulation.

o Use and understanding of the simulation: Perception of the simulation of the collapse
of the star in Excel and improvement in the understanding of white dwarfs and stellar collapse.

o Interactivity and learning tools: Feedback on the effectiveness of the charts,
visualization of the results, and ability to interact with the simulation using the form controls.

o Practical application and learning: Consideration of the use of simulations to improve
physics teaching and motivation to discuss the collapse of white stars after the webinar.
Nanotechnology Perceptions Vol. 20 No. S10 (2024)
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o Overall satisfaction: Rating of the talk and simulation, and recommendation of
simulation for physics teaching.

The statistical treatment of the survey results was carried out using the specialized software
Statistical Product and Service Solutions (SPSS) and the Excel spreadsheet. To measure the
reliability of participants' responses, Cronbach's alpha was used (Watson et al., 2023 ; Giday
& Perumal, 2024). Table 4 shows the weighting of the index, which indicates the internal
consistency and validity of the collection instrument. To analyze perception and satisfaction,
a combined bar graph of percentages was used, distributed in the dimensions of very high,
high, moderate, low and very low [18].

4. RESULTS

The results of the statistical treatment of the surveys are presented. Table 4 shows that
Cronbach's alpha coefficient was 0.82, indicating a "Good" level of reliability. This suggests
that the instrument is reliable and that the survey questions are consistent with each other, with
consistent responses from participants.

Table 4. Reliability Statistics

Cronbach's | N of Welg_ht_lng (Cronbach's alpha Magnitude
alpha elements coefficient )
0.91t0 1.00 Excellent
0.81 t0 0.90 Well
0.71 t0 0.80 Acceptable
0.82 12 0.611t00.70 Questionable
0.51 to 0.60 Poor
<05 Unacceptable

Figure 6 shows that, of the P1 and P2 questions in the introduction and context category, it
was observed that 11.5% of the participants rated their familiarity with the topic of white
dwarfs as "Very High", while 53.8% rated it as "Moderate™ and 34.6% as "Low". As for their
previous experience with Excel in educational activities, 15.4% of participants rated it as
"High," 46.2% as "Moderate," 34.6% as "Low," and 3.8% as "Very Low."

Regarding questions P3 and P4, experience during the talk, the clarity of the presentation was
considered "Very High" by 57.7% of the participants and "High" by 42.3%. The usefulness of
the examples and explanations was rated as "Very High" by 46.2% and "High" by 53.8%.

Regarding the use and understanding of the simulation, questions P5 and P6, 23.1% of the
participants indicated that the ease of understanding and following the simulation with Excel
is "Very High", 42.3% rated it as "High", 30.8% as "Moderate” and 3.8% as "Low". In
addition, 53.8% of participants "Strongly Agree" that the simulation helped improve
understanding of white dwarfs and stellar collapse, while 38.5% "Agree."
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Figure 6. Simulation Perception and Satisfaction Statistics . In original language Spanish

100.0%
90.0%
80.0%
70.0%
60.0%
50.0%
40.0%

30.0%
20.0%
10.0%
0.0% | | | | | [ | W | | |
P9 P10

P1 P2 P3 P4 P5 P6 P7 P8 P11 P12

®Muy alta ®mAlta = Moderada mBaja ®=Muy baja

For questions P7 and P8, which address interactivity and learning tools, the effectiveness of
the graphs and visualizations was rated as "Very High" by 73.1% of participants and "High"
by 23.1%. The ability to interact with the simulation using the form controls was rated as "Very
High" by 42.3%, "High" by 50.0%, and "Moderate" by 3.8%.

In terms of practical application and learning, reflected in questions P9 and P10, 69.2% of
participants "Strongly Agree" that simulations are useful for improving physics teaching,
while 30.8% "Agree". As for the motivation to discuss star collapse after the webinar, 3.8%
rated it as "Very High," 42.3% as "High," and 50.0% as "Moderate."

Finally, in the general satisfaction section, questions P11 and P12, 61.5% of participants rated
their overall satisfaction with the talk and simulation as "Very High™ and 34.6% as "High". In
addition, 88.5% of participants "strongly agree" in recommending this simulation for physics
teaching, while 7.7% "Agree."

The favorable attitude on the part of the students towards the resource is notorious. A high
percentage recognize the ease of Excel to understand and follow the simulation. They also
agreed that the simulation helped improve understanding of white dwarfs and stellar collapse.
Respondents' perceptions of Excel's effectiveness in visualizing and presenting graphs, as well
as the ability to interact with the simulation using form controls, are highly positive. The vast
majority consider that simulations improve the teaching and learning of complex physics
concepts. The positive satisfaction of the resource is reflected in the high percentage of
participants who would recommend the simulation addresses to other students or colleagues
interested in teaching physics
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5. CONCLUSIONS

The study demonstrates how the Excel spreadsheet can be used for physics teaching,
specifically in the simulation of phenomena modeled by differential equations, such as the
structures and collapse of white dwarf stars. Thanks to the layout of cells in the spreadsheets,
the ease of inserting formulas and the dragging option, it is possible to work with the RK4
method in an orderly, friendly and illustrative way. This methodology facilitates the approach
to the numerical solution of the model. The physical findings of the solution can be visualized
in a didactic manner using smoothed line scatter charts, animated by form controls. In the
model presented, the size of the star is determined from the asymptotic behavior of mass and
density, regardless of the central density value set. It is observed that, by ordering the
dimensions of the star in units of mass and solar radius, at high densities, the mass of the star
is concentrated in a very small region, collapsing at the Chandrasekhar limit. The dynamic
collapse simulation is executed by bubble graphs representing the mass-radius ratio, animated
by a numerical control. Visualizing the phenomenon is crucial for understanding the physical
processes that govern the death of stars.

Presenting this type of simulations in the classroom allows the teacher to break with traditional
teaching schemes, which are often based on the explanation of complex phenomena or the
development of theories on the blackboard, which can be monotonous and exhausting for
students. On the other hand, simulations provide students with the opportunity to visualize and
understand the phenomenon interactively, broadening their horizon to appreciate the beauty
of the mathematical formalism used to model the event. The simplicity of the proposal shows
how the Excel spreadsheet, an accessible and versatile tool, is an environment in which
teachers and students can carry out programming tasks in a friendly way, without the need to
master a specific language, which enhances creativity and confidence in the use of computer
technologies. This environment not only opens up a world of possibilities for problem solving
in physics, but also encourages exploration, promotes active learning and discovery in the
educational process. Finally, it is highlighted that the simulation developed in this work can
be used in courses of astronomy, astrophysics, numerical methods of physics and differential
equations in physics.
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