Integrated Phytochemical Characterization and Biological Activity Assessment of Rhizophoraapiculata Leaf Extract: Anti-inflammatory, Antioxidant, and Antibacterial Potentials

Soorya Ganesh¹, Pavithra Thiraviyam², Ragul G², K. Kamala^{3,4}, Dhanraj Ganapathy^{1*}, Pitchiah Sivaperumal^{2,4}

¹Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India

²Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India

³Marine Microbial Research Lab, Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India

⁴Centre for Marine and Aquatic Research (CMAR), Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
Email:dhanraj@saveetha.com

The study investigates the bioactive properties of the mangrove Rhizophoraapiculata, focusing on its antimicrobial, anti-inflammatory, and antioxidant activities. Mangroves, including Rhizophoraapiculata, are crucial for their ecological and medicinal significance. Qualitative phytochemical analysis revealed bioactive compounds such as flavonoids, tannins, glycosides, phenolic compounds, and saponins are present. The anti-inflammatory potential was evaluated through protein denaturation with a maximum inhibition of 96.05% at 100 μ g/ml. Antioxidant activities were measured using DPPH, H202, and TAA. The extract demonstrated notable antioxidant activity, with a DPPH scavenging activity of 83.45% and H202 activity of 93.47% at 100 μ g/ml. The TAA results confirmed significant antioxidant potential with increasing concentrations. Antimicrobial activity, assessed by the disc diffusion method against Escherichia coli and Streptococcus mutans, showed a concentration-dependent inhibition, with the maximum inhibition of zones at 100 μ g/ml. (FTIR) identified functional groups, including alcohols, esters,

alkanes, amines, and halo compounds, corroborating the presence of bioactive constituents. This research emphasizes Rhizophoraapiculataas a biosource of antimicrobial, anti-inflammatory, and antioxidant agents, validating its traditional medicinal use and its promise for developing new therapeutic agents.

Keywords: Mangrove, Rhizophoraapiculata, Leaf Extract, Phytochemical, Biological Activity.

1. Introduction

The intertidal zone in tropical and subtropical regions is occupied by a diverse community of halophytic plants and animals, collectively forming the intricate mangrove ecosystem. Mangroves, characterized by their salt-tolerant nature, are shrubs or trees growing in coastal saline or brackish water.Rhizophoraapiculata, widely known as the red mangrove, is a mangrove tree species native to tropical and subtropical areas (Kalasuba et al., 2023). It is an important component of coastal and estuarine ecosystems due to its ecological and economic significance. Mangrove plants have a diverse array of bioactive compounds such as steroids, tannins, alkaloids, and polyphenols, saponins, which collectively contribute to the medicinal properties inherent in mangrove vegetation (Habib et al., 2018). Rhizophoraapiculatais typically found in intertidal zones of estuaries, river mouths, and coastal areas. It is native to Southeast Asia, the western Pacific, and northern Australia (Yun et al., 2022). Rhizophoraapiculata acts as a carbon sink, sequestering substantial amounts of Co₂ and aiding in the mitigation of climate change. (Short et al., 2024). Rhizophoraapiculata extract, derived from Rhizophoraapiculata, has various applications due to its rich bioactive compounds. Tannins, resins, saponins, terpenoids are some common bioactive compounds present in the extract (Kumar et al., 2023). An extract is a concentrated substance obtained by removing or separating the active ingredients from a source material, such as a plant, using a specific solvent or method. The resulting product contains the essential compounds that provide the desired properties, such as flavor, fragrance, therapeutic benefits, or other characteristics (Aswathi et al., 2023; Selvaraj et al., 2024; Sivakumar et al.). A crude extract is an unrefined mixture containing a wide range of compounds that are obtained directly from a biological material, such as plants, fungi, bacteria, or animals, without any further purification or fractionation (Abubakar et al., 2020). Rhizophoraapiculatacrude extract has proven antibacterial activity against several pathogens. This makes it a potential candidate for developing natural antimicrobial agents. It also has anti-inflammatory properties, which can be beneficial in treating conditions characterized by inflammation. The extract is traditionally used to promote wound healing. Its antimicrobial and anti-inflammatory properties aid in faster recovery and prevention of infections (Acharya et al., 2023). Plants are a vital source of potentially beneficial phytochemicals for the creation of new therapeutic agents. (Mahmud et al., 2019). The compounds hold potential in various fields like antibiotics, enzymes, vitamins, drugs, and biosurfactants (Sulaiman et al., 2022). These activities include antiferedant effects, antiviral, gastroprotective, antioxidant, antifungal, cytotoxic and inhibition, and antiinflammatory to find its therapeutic uses (Dahibhate et al., 2019).

2. Materials and methods

2.1. Collection and extraction of mangrove Rhizophoraapiculata

The leaves of mangroveRhizophoraapiculata were gathered from the Kovalam coast coastline, Tamil Nadu, India. The samples were dried, and coarse powdered the extraction was made with ethanol. A 20 gram sample was mixed with 200 ml of 70 % ethanol in a conical flask. The sample containing the flask was kept in an orbital shaker for 3 days. Following three days the samples underwent filtration No.1 filter paper. The filtered extract was placed in a water bath at 60°C and maintained until it reached a crude state (Fig.1).

Figure 1: Extraction of marine bioactive compounds from MangroveRhizophoraapiculata: a) Rhizophoraapiculata leaf b) Powdered sample, c) Extraction d) Filtration e)Crude Extract

2.2. Qualitative phytochemical analysis

In this study, qualitative phytochemical analysis was conducted on ethanol extracts from mangrove samples revealing bioactive compounds. The preliminary phytochemical screening of the extracts was performed following standard methods (Akbar et al., 2019).

2.3. Anti-inflammatory activity

The anti-inflammatory activity of the mangrove plant was performed in vitro with the modified protocol of (Yesmin et al. 2020) by inhibition of albumin denaturation assay. This mixture comprises the test samples (20 to 100 μ g/ml) and an aqueous solution containing 1% bovine albumin. The mixture pH was adjusted using a minimal amount of 1 N HCl. Subsequently, samples were incubated at 37°C for 20 minutes, followed by heating at 51°C for an additional 20 minutes. Turbidity in the cooling sample was measured by a UV spectrometer at 660 nm. As a standard, diclofenac sodium was active at the con. range from (20 to 100 μ g/ml). The triplicate manner experiment was performed. The inhibition of protein denaturation percentage was calculated as follows:

2.4 Antioxidant activities

2.4.1 DPPH Free Radical Scavenging Activity

The radical scavenger assay was conducted by testing various concentrations of extracts (20, 40, 60, 80, and 100 μ g/mL). These samples were placed in a 96-well plate with a final concentration of 0.1 mM DPPH in mix with methanol, allowing the mixture to react for 30 minutes without light conditions. The methanol solution was used as the negative control. After the incubation period, absorbance was measured at 517 nm using a microplate reader.

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

The assay was performed in triplicate, and the results were expressed as a percentage of DPPH reduction compared to the methanol-negative control (Biswas et al. 2018).

% Inhibition = Absorbance of control – Absorbance of sample
$$Absorbance of control \times 100$$

2.4.2 Hydrogen Peroxide Activity

To evaluate the extract hydrogen peroxide scavenging ability, a 40 mM H2O2 solution was prepared in a phosphate buffer. A $100\,\mu\text{g/mL}$ concentration of the Mangrove extract in distilled water was added to a $0.6\,\text{mL}$ aliquot of the 40 mM H2O2 solution. Following a 10-minute incubation, the absorbance was measured at $230\,\text{nm}$ compared to a blank solution containing only a phosphate buffer. The hydrogen peroxide scavenging activity of the plant extracts and standard compounds was then calculated (Keser et al. 2012).

2.4.3 TAA

The plant crude extract from the mangrove was analyzed using a method adapted from (Ramasamy et al. 2014) with minor modifications. A sample volume of 0.3 mL was prepared with concentrations ranging from 25 to 100 μ l. The samples were mixed with a reagent solution consisting of 4 mM ammonium molybdate, 0.6 M sulfuric acid, and 28 mM sodium phosphate (Na3PO4) in a 3 mL container. The reaction mixtures were incubated in a water bath at 95 °C for ninety minutes. The absorbance of each sample was measured at a wavelength of 695 nm. The TAA was determined by quantifying the ascorbic acid content.

2.5Antimicrobial activity

Antibacterial activity was conducted with the disc diffusion method. Nutrient media was poured into a Petri plate and inoculated selected pathogens were swapped in the Petri dish. The Samples containing discs were placed on plates inoculated with pathogens. The plates were then incubated at room temperature for 12-24 hours. Observations included evaluating the formation and quantification of clear zones during the specified incubation period, following a slight modification of the method described by (Pushparaj 2014).

2.5 Characterization

2.5.1 FTIR

The Fourier Transform Infrared Spectrophotometer is a very useful instrument for determining the sorts of functional groups found in compounds. Each chemical bond absorbs light of a certain wavelength, which is reflected in the interpreted spectrum. Chemical bonding inside a molecule can be analyzed by its infrared absorption spectra. For the FTIR study, dried powder samples from various solvent extracts of each plant material were employed.

3. Result

3.1 Qualitative phytochemical analysis

Mangrove plants contain biologically active composites that are of medical importance. However, the dispersal of phytochemicals varies, especially in plant parts such as leaves, stems, and roots. In this study, phytochemical screening was accomplished using an Ethanol extract of Rhizophoraapiculata. The results indicated the presence of various bioactive compounds, specifically phytochemicals, in mangrove leaf extracts. These included flavonoids, tannins, glycosides, Phenolic compounds, and Saponins (Table.1). Notably, alkaloids, Cardiac glycosides, and Terpenoids were found to be absent in the sample. In (Debnath et al., 2020) phytochemical screening it was noted that the ethanol extract from Avicenniacorniculatum leaves contains a diverse array of Bio-compounds such as saponins, tannins, alkaloids, flavonoids, glycosides, steroids, terpenoids, and others. (Raffat et al., 2017) demonstrated that the seeds of Avicennia marina contain coumarins, glycosides, flavonoids, saponins, tannins, and carbohydrates, with minimal levels of sugars. Previous studies have also indicated that DMF, acetone, and ethyl acetate are highly efficient solvents for extracting diverse phytochemicals and antioxidants (Shaheena et al., 2019). According to (Roy et al. 2021), both the leaf and RS samples of Suedamonoicaexhibited the presence of phenolics, flavonoids, tannins, steroids, alkaloids, glycosides, terpenoids, and reducing sugars. (Julyasih et al. 2022) found that the ethanol extract of G. salicornia contained phenolics, flavonoids, and terpenoids, but in absence contain steroids, alkaloids, and saponins.

3.2 DPPH

The ethanol extracts from mangrove Rhizophoraapiculata exhibited significantly distinct DPPH scavenging activities (p<0.05) at a 100 µg/mL concentration. As shown in Figure. The findings revealed a concentration-dependent increase in the scavenging capability of the Mangrove, with a maximum value of $83.45 \pm 1.17\%$ at 100 µg/ml, compared to the standard value of $89.71 \pm 0.83\%$. At a minimum of 20 µg/ml, the mangrove extract displayed a value of $72.67 \pm 0.31\%$, while the standard Ascorbic acid exhibited a value of $76.25 \pm 1.22\%$ (Fig.2). Antioxidants are rich in free radicals and reduce the risk of disease, in addition, natural antioxidants are non-toxic and powerful for biological activity (Mahendran et al. 2021). According to (Divya et al. 2020) The extract of A. marina has notable dose-dependent inhibition of DPPH activity with IC50 concentrations of 31.25-50 µl compared to the standard ascorbic acid (49.98±0.39). The methanol extracts from B. gymnorrhiza showed concentration-dependent DPPH scavenging activity with IC50 values of 113.79 ± 0.168 µg/mL (Karimet al.2020). Similar studies reported by (Eswaraiah et al. 2020) indicate that the leaf extract of Suaedanudiflora showed minimum scavenging activity of 37.78% at a con. of 50 μg/mL, whileLumnitzeraracemosa exhibited scavenging activity at a con. of 200 μg/mL, reaching 95.62%. In (Chelliah et al. 2023), the plant extract exhibited 86% antioxidant activity and 75% DPPH activity at concentrations of 350 µg/mL compared to ascorbic acid.

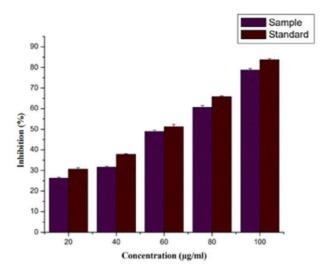


Figure 2: DPPH assay in different concentrations of MangroveRhizophoraapiculata

3.3 Hydrogen Peroxide Activity

The assessment of the scavenging potential of the crude extract of Rhizophoraapiculata mangrove against the standard in the hydroxyl scavenging assay revealed an upward trend in scavenging percentage with an increase in the extract concentration shown in the (Fig.3). At the lowest concentration (20 μ g/ml), the scavenging percentage was only 88.58 \pm 0.78%, whereas the standard, ascorbic acid, exhibited a scavenging percentage of 90.54 \pm 0.91%. However, scavenging activity increased with concentration at 100 μ g/ml of con., the scavenging percentage was 93.47 \pm 1%, whereas the standard was 74.5 \pm 2.4%. As a result, the extract scavenging potential was significantly lower than the standard. The hydrogen peroxide radical scavenging activity in Rhizophoraapiculata, demonstrated a scavenging activity of 96.15 \pm 1.11%. (Karim et al. 2020) found that B. gymnorrhizaleaf extract demonstrated a con. dependent ability to scavenge H₂O₂, with an IC50 value of 112.91 \pm 0.164 μ g/mL. In (Roy et al.2021) reported that at a con. of 100 μ g/mL, the H₂O₂ radical scavenging abilities of Suedamonoicaextract and ascorbic acid were 88 \pm 2.2% and 100 \pm 2.1%, respectively. In the H₂O₂ scavenging assay, both the extract of Sonneratiacaseolaris and ascorbic acid scavenged the formed radicals, with calculated IC50 values of 66 μ g/ml and 11 μ g/ml (Kundu et.al.2022).

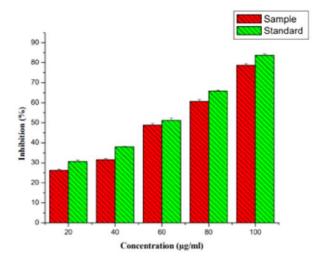


Figure 3: Hydrogen peroxide assay in different concentrations of Mangrove Rhizophoraapiculata

3.4 TAA

The antioxidant activity of Rhizophoraapiculata mangrove plant extract was assessed at different con. (20 to 100 µg/ml) and compared to a standard. (Fig.4) At 20 µg/ml, the extract exhibited an antioxidant activity of 26.19 ± 0.57 compared to the standard 26.6 ± 0.74 . In the highest 100 µg/ml, the extract's activity reached 78.73 ± 0.79 , compared to 79.29 ± 0.62 with a standard. These results indicate that the R. apiculataextract exhibits significant antioxidant activity with increasing activity observed as the concentration increases. (Mansoori 2020) found that flowers had a significantly higher relationship between, total flavonoid content, total polyphenols and antioxidant activity capacity compared to Leaves. (Abdelhamid et.al 2018) found that the total antioxidant activity of C. sedoides was the maximum for three species of brown macroalgae, with a value of 71.30 mg followed by C. spongeosis at 26.13 mg.

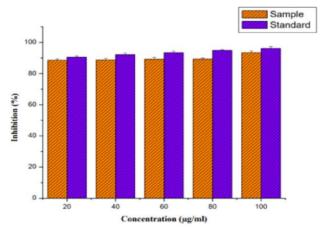


Figure 4: TAA assay in different concentrations of Mangrove Rhizophoraapiculata

3.5 Anti-inflammatory activity

The Mangrove Rhizophoraapiculataanti-inflammatory activity was evaluated. This result shows the ability to extract protein denaturation and the anti-inflammation activity was minimum inhibition ($64.23 \pm 1.23\%$) at the con. level of 20 µg/ml and the maximum ($96.05 \pm 1.29\%$) con. a level of 100 µg/ml was observed from leaf crude extract (Fig.5). Increase the concentration of the leaf extract, and observe a stronger inhibition of protein denaturation, which is often associated with a higher anti-inflammatory effect. This finding indicates that the Mangrove Rhizophoraapiculata leaf extract has anti-inflammatory properties, and the degree of inhibition of protein denaturation is related to the various concentrations of the extract used. Higher concentrations of the extract appear to be more effective. In an investigation into the mechanism of anti-inflammatory activity, (Kaur et al. 2018) that the root extract exhibited the highest inhibition of protein denaturation (296.26%), bark (259.48%), and leaf (237.62%) extracts. Fucoidans sourced from seaweeds like Fucusvesiculosus have shown the ability to reduce pro-inflammatory cytokines and enzymes in various experimental models (Xie et al., 2023).

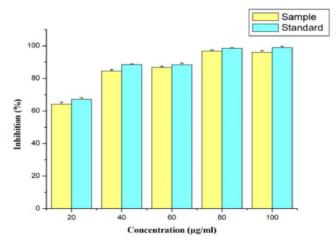


Figure 5: Anti-inflammatory assay in different concentrations of Mangrove Rhizophoraapiculata

3.6 Antibacterial test

The antimicrobial activity of Rhizophoraapiculata mangrove plant extract was assessed against Escherichia coli and Streptococcus mutans at concentration (25t o100 µg/ml). The study revealed a concentration-dependent inhibition effect. For E. coli the zones of inhibition were 12 mm for the control, 0 mm for 25 µg/ml, 14 mm for 50 µg/ml, 16 mm for 75 µg/ml, and 16.5 mm for 100 µg/ml. For S. mutans the zones of inhibition were 19 mm for the control, 0 mm for 25 µg/ml, 16 mm for 50 µg/ml, 18 mm for 75 µg/ml, and 19 mm for 100 µg/ml (Fig.6). These results indicate that R. apiculata extract is more effective against S. mutans at higher concentrations, with maximum inhibition observed at 100 µg/ml the zone of inhibition control, respectively, using the agar disc diffusion method. Ampicillin is used as a positive control and it confirmed that the bacteria were susceptible to Ampicillin. R. apiculata could be a potent natural antimicrobial agent, particularly useful in oral health for managing S. mutans

infections (Karim et.al.,2020) Bruguieragymnorrhiza exhibited the highest activity against MIC E. cloacae with a minimum inhibitory concentration of 20.1 mg/mL and E..coilof 1.8 mg/mL and In Heritieralittoralis showed strong lethality against S. enterica with an MIC of 17.6 mg/mL. (Zhou et al., 2022) reported R. mucronatahas higher levels of phenols, flavonoids, and bioactive compounds, all of which efficiently bind to the negatively charged surfaces of K. pneumoniae. (Alsaadiet. Al.2023)In mangrovesAvicennia marina, saponins showed modest antibacterial activity against both Gram-negative K. pneumoniae and Grampositive S. aureusbacteria. According to (Saraswatiet.al., 2021) the extract of G. salicornia can inhibit the growth of both S. aureus and E. coli. (Audah et al. 2022) extract of A. marina leaves inhibited growth of S. aureus an inhibition zone of approximately 10.7 mm.

Figure 6:Antimicrobial potential using Mangrove crude extract against different pathogens a)
Escherichia coli b) Streptococcus mutans

3.7 FTIR

The FTIR spectrum exhibits characteristic absorption bands corresponding to various functional groups. A medium, sharp peak at 3650 cm⁻¹ indicates O-H stretching vibrations typical of alcohols. A strong, broad peak at 2950 cm⁻¹ also corresponds to O-H stretching in alcohols. Strong absorption at 1750 cm⁻¹ is attributed to C=O stretching in esters and δ-lactones. The medium peak at 1450 cm⁻¹ is due to C-H bending vibrations in alkanes. C-N stretching in amines is identified by a medium peak at 1250 cm⁻¹. Primary alcohols show a strong C-O stretching peak at 1050 cm⁻¹. A medium peak at 840 cm⁻¹ is indicative of C=C bending in alkenes, while a strong peak at 650 cm⁻¹ corresponds to C-Br stretching in halo compounds. In (Roy et.al 2021) FTIR spectra in various solvent systems showed absorption bands in the 1,600–1,670 cm⁻¹ range, indicating the presence of C=C stretching vibrations in alkene groups. The FTIR spectroscopy of the antibacterial compound in crude methanol extracts of Mangrove species indicated the presence of amide and alkane groups, while the crude methanol extract of mangrove revealed phenol, amide, nitro, and alkane groups (Duraipandianet.al 2022).

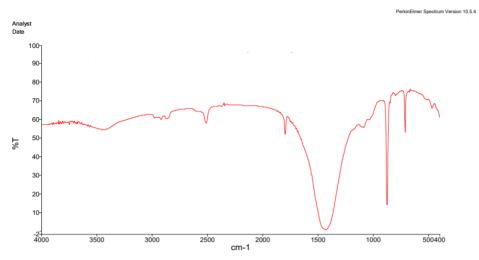


Figure 7: Characterization FTIR MangroveRhizophoraapiculata

4. Conclusion

In current investigation, Rhizophoraapiculata crude extract out as a promising natural resource rich in bioactive compounds, including flavonoids, tannins, glycosides, phenolic compounds, and saponins, which highlight its medicinal potential. The extract has notable anti-inflammatory properties by inhibiting protein denaturation, along with impressive antioxidant capabilities in scavenging free radicals. Additionally, its concentration-dependent antimicrobial activity against Escherichia coli and Streptococcus mutans potential as a therapeutic agent. FTIR analysis confirmed the presence of diverse functional groups, further validating its bioactive profile. These findings collectively position Rhizophoraapiculata as a valuable for developing new pharmaceuticals, affirming its traditional uses and ecological importance within mangrove ecosystems. Continued research into its mechanisms and clinical applications promises to yield further medical advancements.

References

- 1. A. Pushparaj, 2014 "Antibacterial activity of Kappaphycusalvarezii and Ulvalactuca extracts against human pathogenic bacteria," Int. J. Curr. Microbiol. Appl. Sci.,
- 2. Abdelhamid A, Jouini M, Bel Haj Amor H, Mzoughi Z, Dridi M, Ben Said R, Bouraoui A. Phytochemical analysis and evaluation of the antioxidant, anti-inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds. Marine biotechnology. 2018 Feb;20:60-74. https://doi.org/10.1007/s10126-017-9787-z
- 3. Abubakar AR, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences. 2020 Jan 1;12(1):1-0. DOI: 10.4103/jpbs.JPBS 175 19
- 4. Acharya S, Jali P, Pradhan M, Pradhan C, Mohapatra PK. Antimicrobial and Antioxidant Property of a True Mangrove Rhizophoraapiculata Bl. Chemistry & Biodiversity. 2023

- Sep;20(9):e202201144. https://doi.org/10.1002/cbdv.202201144
- 5. Akbar, A., Ali, I., Samiullah, Ullah, N., Khan, S., Rehman, Z., & Seed-Ur-Rehman. 2019. Functional, antioxidant, antimicrobial potential and food safety applications of Curcuma longa and Cuminumcyminum. Pakistan Journal of Botany, 51(3). https://doi.org/10.30848/pjb2019-3(30
- 6. Alsaadi, W.A.D., 2023. Effect of Mangrove Extracts Avicennia marina (Forssk.) Vierh. on Some Human Pathogenic and Antibiotic-Resistant Bacteria (Doctoral dissertation, KING ABDULAZIZ UNIVERSITY JEDDAH).
- 7. Aswathi VP, Meera S, Maria CA, Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: a critical review. Nanotechnology for Environmental Engineering. 2023 Jun;8(2):377-97. https://doi.org/10.1007/s41204-022-00276-8
- 8. Audah KA, Ettin J, Darmadi J, Azizah NN, Anisa AS, Hermawan TD, Tjampakasari CR, Heryanto R, Ismail IS, Batubara I. Indonesian mangrove Sonneratiacaseolaris leaves ethanol extract is a potential super antioxidant and anti methicillin-resistant Staphylococcus aureus drug. Molecules. 2022 Nov 30;27(23):8369.https://doi.org/10.3390/molecules27238369
- 9. Biswas B, Golder M, Islam T, Sadhu SK. Comparative antioxidative and antihyperglycemic profiles of pneumatophoresof two mangrove species Avicennia alba and Sonneratiaapetala. Dhaka Univ J Pharm Sci. 2018; 17(2):205-211.
- 10. Chelliah CK, Murugan M, Rajivgandhi G, Gnanasekaran C, Govindan R, Maruthupandy M, Quero F, Arulraj A, Viswanathan MR, Alharbi NS, Alshammary NH. Phytochemical derivatives and secondary metabolites rich Rhizophoramucronata as an active anti-oxidant and anti-bacterial agent against multi drug resistant bacteria. Journal of King Saud University-Science. 2023 Nov 1;35(8):102912. https://doi.org/10.1016/j.jksus.2023.102912
- Dahibhate, N.L., Saddhe, A.A., Kumar, K., 2019. Mangrove plants as a source of bioactive compounds: A review. Nat. Prod. J. 9, 86–97.
- 12. Debnath SL, Kundu P, Golder M, Biswas B, Sadhu SK. Phytochemical Characterization and Evaluation of Pharmacological Activities of Leaves of a Mangrove Plant Species Aegicerascorniculatum (L.). Trop J Nat Prod Res. 2020; 4(9):516-522. doi.org/10.26538/tjnpr/v4i9.4
- 13. Divya D, Beulah G, Rao KG, Kumar NS, Simhachalam G. Phytochemical Screening of Extracts and its Avicennia marina Evaluation for Antioxidant and Antimicrobial Activities.
- 14. Duraipandian, M., Abirami, H., Musthafa, K.S. and Karuthapandian, S., 2022. Evaluation of Antibacterial Activity and Characterization of Phytochemical Compounds from Selected Mangrove Plants. Int J Biomed, 12(4), pp.640-643.
- 15. Eswaraiah G, Abraham Peele K, Krupanidhi S, Bharath Kumar R and Venkateswarulu TC 2020. Studies on phytochemical, antioxidant, antimicrobial analysis and separation of bioactive leads of leaf extracts from the selected mangroves. Journal of King Saud university-Science (1): 842-847.
- 16. Habib, M. D. A., Khatun, F., Ruma, M. K., Chowdhury, A. S. M. H. K., Silve, A. R., Rahman, A., &Hossain, M. I. (2018). A Review on phytochemical constituents of pharmaceutically important mangrove plants, their medicinal uses and pharmacological activities. Vedic Research International Phytomedicine, 6(1), 1–9. https://doi.org/10.14259/pm. v6i1.220
- 17. J. Zhou, Z. Feng, W. Zhang Evaluation of the antimicrobial and cytotoxic potential of endophytic fungi extracts from mangrove plants Rhizophorastylosa and R. mucronata Sci. Rep., 12 (2022), p. 2733
- 18. Julyasih K. S. M., 2022 [Bioactive compounds of several types of seaweed and inhibitory activities to the fungi Aspergillusflavus in corn (Zea mays L.)]. Journal Perikanan 12(3):450-456. [In Indonesian].
- 19. Kalasuba K, Miranti M, Rahayuningsih SR, Safriansyah W, Syamsuri RR, Farabi K, Oktavia

- D, Alhasnawi AN, Doni F. Red mangrove (RhizophorastylosaGriff.)—A review of its botany, phytochemistry, pharmacological activities, and prospects. Plants. 2023 Jun 1;12(11):2196.
- 20. JONNERBY, JAKOB, A. BREZGER, and H. WANG. "Machine learning based novel architecture implementation for image processing mechanism." International Journal of communication and computer Technologies 11.1 (2023): 1-9.
- 21. Karim MA, Islam MM, Rahman MS, Sultana S, Biswas S, Hosen MJ, Mazumder K, Rahman MM, Hasan MN. Evaluation of antioxidant, anti-hemolytic, cytotoxic effects and anti-bacterial activity of selected mangrove plants (Bruguieragymnorrhiza and Heritieralittoralis) in Bangladesh. Clinical Phytoscience. 2020 Dec;6:1-2.https://doi.org/10.1186/s40816-020-0152-9
- 22. Kaur S, Syed Ali M, Anuradha V, Suganya V, Ashashalini A, Bhuvana P. In vitro anti-inflammatory activity of mangrove plant Rhizophoramucronata Lam.(Malpighiales: Rhizophoraceae). Brazilian Journal of Biological Sciences. 2018 Aug 31;5(10):417-26. https://doi.org/10.21472/bjbs.051018
- 23. Keser S, Celik S, Turkoglu S, Yilmaz O, Turkoglu I. Hydrogen peroxide radical scavenging and total antioxidant activity of hawthorn. Chem J. 2012; 2(1):9-12
- 24. Kumar HS, AbiramiArthanari DS. BIOACTIVE COMPOUNDS FROM RHIZOPHORA APICULATA AND THEIR ANTI-DIABETIC AND ANTI-COAGULANT PROPERTIES. Chelonian Research Foundation. 2023 Dec 30;18(2):2089-99. doi.org/10.18011/2023.12(2).2089.2099
- 25. Kundu P, Debnath SL, Devnath HS, Saha L, Sadhu SK. Analgesic, Anti-inflammatory, Antipyretic, and In Silico Measurements of Sonneratiacaseolaris (L.) Fruits from Sundarbans, Bangladesh. BioMed Research International. 2022;2022(1):1405821.https://doi.org/10.1155/2022/1405821
- 26. Mahmud SM, Mik J. Evaluation of antibacterial activity of indigenous medicinal plants in Bangladesh against some selected pathogenic strains. Pharmacologyonline. 2019;30(1):10–9.
- 27. Cide, Felip, José Urebe, and Andrés Revera."Exploring Monopulse Feed Antennas for Low Earth Orbit Satellite Communication: Design, Advantages, and Applications." National Journal of Antennas and Propagation 4.2 (2022): 20-27.
- 28. Mansoori A, Singh N, Dubey SK, Thakur TK, Alkan N, Das SN, Kumar A. Phytochemical characterization and assessment of crude extracts from Lantana camara L. for antioxidant and antimicrobial activity. Frontiers in Agronomy. 2020 Nov 12;2:582268. https://doi.org/10.3389/fagro.2020.582268
- 29. Rafat, Khattab A, Tarek A and Temraz 2017. Mangrove Avicennia marina of Yanbu, Saudi Arabia: GC-MS Constituents and Mosquito Repellent Activities. Egyptian Journal of Aquatic Biology & Fisheries (3) 45-54.
- 30. Ramasamy, N. Subhapradha, V. Shanmugam, and A. Shanmugam, "Extraction, characterization and antioxidant property of chitosan from cuttlebone Sepia kobiensis (Hoyle 1885)," International Journal of Biological Macromolecules, (2014) 202–212. https://doi.org/10.1016/j.ijbiomac.2013.12.008
- 31. Roy M, Dutta TK. Evaluation of phytochemicals and bioactive properties in mangrove associate SuaedamonoicaForssk. ex JF Gmel. of Indian Sundarbans. Frontiers in pharmacology. 2021 Mar 10;12:584019. https://doi.org/10.3389/fphar.2021.584019
- 32. S. Mahendran, P. U. Maheswari, V. Sasikala, J. J. Rubika, and J. Pandiarajan, "In vitro antioxidant study of polyphenol from red seaweeds dichotomously branched gracilariaGracilariaedulis and robust sea moss Hypneavalentiae," Toxicology Reports, (2021) 1404–1411. https://doi.org/10.1016/j.toxrep.2021.07.006
- 33. Saraswati, Giriwono PE, Iskandriati D, Andarwulan N. Screening of in-vitro antiinflammatory and antioxidant activity of Sargassumilicifolium crude lipid extracts from different coastal areas in Indonesia. Marine Drugs. 2021 Apr 28;19(5):252.

- 34. Selvaraj B, Ganapathy D. Exploration of Sargassumwightii: Extraction, Phytochemical Analysis, and Antioxidant Potential of Polyphenol. Cureus. 2024 Jul;16(7).
- 35. ShaheenaShaik, Anjani Devi Chintagunta, VijayaRamuDirisala, and NS Sampath Kumar, 2019. Extraction of bioactive compounds from and their application in Psidiumguajavadentistry. (1): 1-9.
- 36. Short AW, Sebastian JS, Huang J, Wang G, Dassanayake M, Finnegan PM, Parker JD, Cao KF, Wee AK. Comparative transcriptomics of the chilling stress response in two Asian mangrove species, Bruguieragymnorhiza and Rhizophoraapiculata. Tree Physiology. 2024 Feb;44(3):tpae019. https://doi.org/10.1093/treephys/tpae019
- Sivakumar N, Geetha RV, Priya V. Gayathri R, DhanrajGanapathy. Targeted PhytotherapyFor Reactive Oxygen Species Linked Oral Cancer. Int J Dentistry Oral Sci. 2021 Jan 28;8(1):1425-9.
- 38. Sulaiman, M., Nissapatorn, V., Rahmatullah, M., Paul, A.K., Rajagopal, M., Rusdi, N.A., Seelan, J.S.S., Suleiman, M., Zakaria, Z.A., Wiart, C., 2022. Antimicrobial Secondary Metabolites from the Mangrove Plants of Asia and the Pacific. Mar. Drugs 20. https://doi.org/10.3390/md20100643
- 39. Xie, C., Lee, Z.J., Ye, S., Barrow, C.J., Dunshea, F.R. and Suleria, H.A., 2023. A review on seaweeds and seaweed-derived polysaccharides: Nutrition, chemistry, bioactivities, and applications. Food Reviews International, pp.1-36.
- 40. Yesmin, S., Paul, A., Naz, T., Rahman, A., Akhter, S. F., Wahed, M. I. I., Emran, T. B., &Siddiqui, S. A. 2020. Membrane stabilization as a mechanism of the anti-inflammatory activity of ethanolic root extract of Choi (Piper chaba). Clinical Phytoscience, 6(1). https://doi.org/10.1186/s40816-020-00207-7
- 41. Yun WY, Yeok FS, Youshao W, Lu D, Limi M, Lai GT. Spatiotemporal dispersal study of mangrove Avicennia marina and Rhizophoraapiculatapropagules. SainsMalaysiana. 2022 Aug 1;51(8):2351-64. http://doi.org/10.17576/jsm-2022-5108-02