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The demand for the development of lightweight embedded systems has been growing extensively
with the increase in the development of the 10T era. Past decades have seen the development of
ultra-low power (ULP) processors in the design of lightweight embedded systems. However, these
systems lacked the ability to perform multiple operations without affecting the performance speed
of the processors. The performance of the processor was deteriorated due to a large number of
memory access requests. In order to overcome this issue, this research proposes a robust architecture
which involves the embedding of MMUs in a Network-On-Chip (NoC). The proposed NoC
architecture supports the multiprocessing capacity of the embedded systems without changing the
design of the multi-core processors. The paper provides a detailed description of the processor
design along with router logic and network interface components. The design was synthesized with
FPGA platform and was simulated using a Vivado 2017.2 tool. Results show that the proposed
approach achieved a lower overhead and reduces the power consumption significantly in the FPGA
based MMU embedded NoC.

Keywords: Lightweight embedded systems, Memory Management Units, Network-On-Chip,
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1. Introduction

With the recent developments in the area of Internet-of-Things (loT), there has been a
significant transformation in the field of embedded systems and one of the important aspects
related to this is the increase in the demand for lightweight and small embedded systems. These
systems have seen a sharp rise in their demand because of their simple design, energy
efficiency, and reliability (Ojo et al., 2018) [1] (Musaddiq et al., 2018) [2]. The design of
lightweight embedded systems incorporates a low-power, simple and narrow processor known
as lightweight processors. These processors are most desirable for the development of small
embedded systems wherein multiple lightweight processors are integrated to increase the
energy efficiency

with minimized power utilization and reduced design cost (Raza & Azeemuddin, 2014) [3]. In
line with this trend, lightweight processors are being widely researched by various researchers
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and embedded system developers [4-7]. One of the prominent requirements of these processors
is to expand the functionality of the lightweight embedded systems to work effectively with
multiple processors. The objective is to make the lightweight embedded systems capable of
running multiple programs alternatively or simultaneously i.e, the embedded systems are
programmed to collect and evaluate different types of data from various sources. The
multiprocessing functionality of the embedded systems is gaining more prominence since it
enables the system to carry out multiple lightweight data processing for different data types
(Bai et al., 2009) [8] (Chang et al., 2014) [9]. However, lightweight embedded systems require
a potential support to perform multiprocessing. In this context, memory management units
(MMUSs) are deployed in the embedded system to support multiprocessing in a lightweight
embedded system. The MMUSs are mainly responsible for storing and directly accessing the
memory of the transactions carried out by the embedded systems. However, due to high power
consumption, increased area and cost of the design it is quite challenging to implement MMUs
directly into the embedded systems (Shalan & Mooney, 2002) [10]. In order to solve this
problem, this research explored an effective solution of detaching the MMUs from the
processors and implementing them on other platforms of the embedded systems such as
network-on-chip (NoC) (Monchiero et al., 2007) [11]. In this research, the MMUs are placed
on the NoC which is a common hardware intellectual property (IP) for the embedded systems
to connect with advanced embedded system platforms (Pu et al., 2018) [12] (Khan et al., 2017)
[13] (Al et al., 2018) [14]. The MMUs are embedded into NoCs for improving the
performance of the lightweight embedded systems with respect to low power consumption and
low design cost. The architecture of the MMU is illustrated in figure 1.1 (Behera & Jena, 2020)
[15]
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Figure 1.1 Fundamental architecture of the memory management unit

1.1 MMUs in NoC-based multiprocessors

Network on Chip (NoC) has become one of the prominent design requirements for
communication-based System-On-Chip (SOC) applications. The reliability of NoC has made
it a desirable contender in the development of future Chip Multiprocessor (CMP) (Abad et al.,
2007) [16]. The basic architecture of the NoC consists of a m x n mesh composed of multiple
design system components and switches wherein the system components communicate with
each other using data packets (Kumar et al., 2002) [17]. A system component can either be a
memory unit, processing element (PE) or any other custom-built on-chip hardware. The
architecture of NoC allows the integration of a large-scale heterogeneous devices on a single
chip microprocessor and the number of hardware components can vary up to tens or hundreds
of processing elements meshed through NoC for forming a robust central processing unit
(CPU). In general, the memory system in processors is central and bus-based. With the increase
in the number of processing elements on a single chip it becomes difficult for the memory
system to achieve desired performance. Every on-chip processing element requires a specific
memory reference and multiple PEs require a higher number of memory references. The
increased number of memory references affects the synchronization of the controller and
deteriorates the overall efficiency of the processor (Nesbit et al., 2007) [18]. The distributed
architecture of the NoC based multiprocessor demands a potential memory controller to cope
with larger numbers of PEs on a single chip. In this context, implementation of MMU on-chip
gains a major advantage. Since MMU is considered as one of the important components for
the memory references, implementation of a MMU in the distributed NoC architecture boosts
the performance of the embedded systems in terms of multiprocessing capability.

MMU can access the memory directly and hence it is common phenomenon that an optimized
MMU architecture can be used to overcome the memory reference problem. In this research, a
distributed architecture of MMUs for NoC-based multiprocessors is considered which
incorporates the advantages of efficient memory access, synchronization, efficient on-chip
memory organization and fair shared memory access. The distributed architecture requires a
greater number of MMUSs on the NoC platform for managing memory access requests. Unlike
a single on-chip memory unit, it prevents excess and redundant communication by limiting the
amount of memory access requests sent to each MMU on the NoC. With a suitable number of
MMUs placed appropriately on the chip, helps to reduce the memory bandwidth requirement
and communication traffic in the NoC platform.

The contributions of this research are as follows: First, this paper provides an efficient memory
management architecture for NoC-based multiprocessors for reducing power consumption and
design cost. Second, it is shown that the proposed design overcomes the problem of memory
reference problem and exhibits desired performance for memory access. Third, this paper
implemented a distributed memory organization for NoC-based processors for optimizing the
performance of application-specific memory access. Finally, it is shown that the proposed
architecture improves the memory handling capacity of the multiprocessors and decreases the
amount and distance of barrier communication.
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The rest of the paper is structured as follows: Section 2 provides a comprehensive analysis of
the existing literary works related to the design of MMUs. Section 3 discusses the details of
the proposed system architecture which includes the design of an embedded MMU, memory
subsystem, a network interface and design of NoC-based processors. Section 4 presents the
results of the experimental setups and results of the simulation analysis. Section 5 provides the
conclusion of this research work.

2. Related Works

This research mainly focussed on the network-on-chip (NoC) which is fundamental intellectual
property in embedded systems. Furthermore, the attention was given to existing literary works
carried out with respect to the placement of MMUs in network-on-chip (NoC) (Man et al.,
2010) [19] (Chen et al., 2010) [20] (Chen et al., 2015) [21] (Tatas et al., 2014) [22]. An
application-specific memory management unit for FPGA-SoCs was proposed by (Goebel et
al., 2018) [23]. In this work, the proposed MMU enabled effective memory utilization by the
FPGA. The proposed system architecture was integrated into a FPGA-SoC which simplified
the implementation of hardware and software-based code design on SoC. Performance
evaluation showed that the implementation of MMU to analyse the patterns of memory access
boosted the performance of memory management of the FPGA-SoC. Additionally, the system
configuration reduced the overhead without affecting the bandwidth requirements. (Siast et al.,
2019) [24] identified the fundamental requirements for NoCs and the basic functionalities of
FPGAs. This work proposed an FPGA-based NoC known as RingNet. The proposed RingNet
incorporates a unique property of communicating through a centralized memory unit which
aims to prevent network traffic and to reduce the network buffer. One of the preliminary
objectives of the proposed RingNet design is to make an effective use of FPGA resources.
Especially, network buffers are deployed in distributed RAM placed inside FPGA platforms
and the virtual cut-through technique was employed for performing effective switching in
FPGA. It can be inferred from the simulation results that the proposed RingNet achieved
improved throughput, fair network access and predictable latency. The adaptability of the
RingNet approach was validated using the results for different FPGAs from different platforms
namely Lattice, Intel and Xilinx. It was also shown that the NoC implementation using RingNet
required a lesser number of resources and it worked effectively for higher clock frequencies.
A unique approach for memory management unit was discussed by (Gordon-Ross et al., 2019)
[25]. This work presented a One-Cycle first in first out (FIFO) buffer for MMUs in manycore
systems. The study also discussed the inter-core data transfer in maycore systems. The
proposed work was designed to minimize the overhead due to various hardware components
and to prevent the latency delays. This objective was achieved by employing both the rising
and falling clock edges for reading and writing operation. This feature made this design
appropriate for handling increased processing element (PE) usage by expanding the memory
bandwidth in SoC networks. Results showed that the proposed design has the ability to work 5
times faster than existing techniques utilizing the same supply voltage and the operational
speed can be 44 times faster compared to other approaches with an increase in the supply
voltage by 2.5 times. The overall power utilized by the proposed design was 7.8 mW with a
total transistor count of 34,470. (Raparti & Pasricha, 2019) [26] discussed the implementation
of an approximate NoC and memory controller architectures for GPGPU (General Purpose
Graphics Processing Units) accelerators. Existing works showed that high interconnect
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bandwidth is important to achieve desired efficiency in various core GPGPU architectures
which are used to perform data parallel operations. The parallel threads that run on the shader
cores produce a huge volume of reading requests to the main memory unit because of the
restricted data size at the shader cores. This results in the increase of volume of the reply data
from the DRAM which introduces a bottleneck at memory controllers (MCs) which in turn
sends reply data to the controllers through the network-on-chip (NoC). In order to cope with
such a huge volume of data, it is essential to deploy an intelligent memory scheduling and
advanced NoC system architecture. In order to overcome the problem of memory bottleneck
in GPGPUs, this study implemented an advanced AMC which minimizes the latency of the
DRAM by statistically leveraging the buffer locality and memory request scheduling. This
significantly reduces the quantity of reply data packets that are sent through NoC thereby
preventing the network congestion. In addition to this, the study also aimed to achieve high
throughput and to reduce the energy consumption due to excessive communication in
GPGPUs, this study proposed a low power, approximate NoC architecture (Dapper) which
elevates the effective utilization of the available network bandwidth. Results from the
experimental analysis showed that the combined architecture of Dapper and AMC together
improves the throughput of NoCs up to 21% and decrease the latency of NoC by up to 45.5%
and the power utilized by the NoC and the memory controller was reduced by up to 38.3% with
a very minimum effect on the accuracy of the output compared to other existing approximate
NoC/MC architectures. (Kumar & Reddy, 2020) [27] proposed a novel approach with
advanced memory management unit architecture for optimizing the performance of NoC. The
research proposed a random-access memory (RAM) which connects the crossbar switch and
the input port. The proposed design was simulated using the Xilinx 14.7 ISE platform and was
implemented on a Vertex-6 FPGA device. The design utilized the benefit of empty/full flags
and the distributed MMU architecture was more compatible for handling large scale memory
access. The performance of the proposed work was compared with other works and it was
proven that this work was more effective and reliable compared to other existing approaches.
The experimental framework proved that the advanced distributed MMU based 3-D NoC
improved the delay and throughput of the processor compared to existing techniques. (Jang et
al., 2019) [28] proposed a novel architecture wherein the MMU was embedded into a network-
on-chip (NoC). The proposed architecture allows the NoC to optimize the performance of the
MMU in a multiprocessor without changing its design. This allows the embedded system
developers to exploit the advantages of existing ultra-light processors and design the embedded
systems which support multiprocessing. The proposed research provided a brief overview of
the design of MMU-embedded NoC (MMNoC) which includes a dual RISC-V processor along
with the MMNoC. The proposed system design was implemented on a FPGA platform for
verifying the functional accuracy, efficiency, power overhead and area of the proposed
MMNoC.

3. Proposed design methodology:

The research aims to achieve a low power and low-cost lightweight embedded systems by
embedding memory management units into Network-on-Chip (NoC). The design process is
divided into three stages namely: design of NoC-based processors, a memory management unit
and design of MMNOoC. The research mainly focuses on achieving efficient memory access
and synchronization like, efficient on-chip memory organization, fair shared memory access,
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and efficient many-core synchronization. The barrier synchronization is used for synchronizing
the execution of parallel processor cores. The proposed design implements a distributed
architecture for memory organization for NoC-based processors. Furthermore, a special-
purpose memory organization was designed in order to optimize the performance of
application-specific memory access. As a part of the target application, a Fast Fourier
Transform (FFT) and proposed multi-bank data memory specialized for FFT computation. The
detailed implementation process is discussed in further sections.

3.1 Memory Management system

Memory management system (MMS) is an important module which effectively manages the
primary memory (both static and dynamic RAM) by effectively monitoring the memory
allocation process. In general, the design of the operating system in the embedded systems
incorporates a memory management system which is responsible for managing the memory
access and requests (Musaddiq et al., 2018) [29] (Shi et al., 2018) [30]. However, lightweight
embedded systems operate without an operating system and the memory management is
usually performed by the developers themselves. The address space reserved for the program
or a process depends on the size and capacity of the embedded hardware platforms. For
executing a program, it is essential to provide a virtual address with a physical address during
execution. This is performed using demand paging technique. It is challenging to manage the
inconsistent and random size of data since it increases the complexity of the system design.
Hence the size of the data is fixed, and a fixed size is referred to as a page. The conversion of
virtual address into a physical address is shown in figure 3.1.
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Figure 3.1 Conversion of virtual address into physical address in a hardware module

For converting the virtual address, MMUs employ a page table as shown in figure 3.1. MMUs
are deployed in between the processor and the memory unit. The page table is always stored in
RAM and the MMU stores the recent transactions in the page table.

3.2 MMU Embedded NoC

Lightweight embedded systems are designed to perform various programs and are expected to
support multiprocessing. In other words, a lightweight embedded system must possess
multiprocessing abilities making MMUs an essential component for these systems. This can
be done by developing an ULP lightweight processor with a MMU. However, from a technical
point of view, it is impractical to develop a new processor since it takes a lot of resources with
an increase in the design effort and implementation cost. Hence, this research integrates the
functionalities of a MMU into an embedded system without affecting the design of the
processor. In order to perform this, the study implements a NoC and embeds a MMU into NoC.
NoC offers substantial support for carrying out multipurpose communication on embedded
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system platforms (Pu et al., 2018) [31]. NoCs are used widely in the design of lightweight
embedded systems because of its ability to overcome the drawbacks of traditional bus-based
systems (Chen et al., 2015) [32] (Han et al., 2017) [33] (Han et al., 2017) [34]. Based on the
analysis that a processor in the embedded system with NoC communicates with other IPs in
the network only through a reliable network interface, this work came up with an idea of
implementing a MMU in an NI as illustrated in figure 3.2. This approach allows to integrate
the functionalities of an MMU into an NoC irrespective of the processor types in the embedded
system platforms.
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Figure 3.2 Implementation of an MMU on an Network Interface based processor

In this research a module called router logic (bidirectional ring network-on-chip (NoC) router)
was used as the building block of a NoC for a multiprocessor. This router logic consists of two
virtual channels namely fifo_buffer 0 and fifo_buffer 1 for each physical channel for
preventing the deadlock related to routing in the ring. FIFO buffers are employed for storing
the incoming data packets from the input ports. The router module determines the structure and
interconnections of the router logic. In this research, 4 router logics are connected in the form
of a ring with their respective input nodes and output nodes.

The Network Interface Component (NIC) is implemented for creating a path between the
processor and the underlying ring network. When viewed from the sender’s point of view, the
data packets are sent through a single network output channel buffer in the NIC where the
sending packets are written. While on the receiver side, the data packets are received through
a single network input channel buffer in the NIC, from which the incoming packets are read.
It is essential to map the buffers for both input and output network channels along with their
status registers and the memory address. This mapping enables the processors to access the
memory using basic storing/loading instruction sets. The interface provided by the NIC is
similar to that of the memory interface and hence the NIC interface is not affected by other
network details such as signal polarity, handshaking etc. Running multiple programs using
embedded systems is considered to be crucial in modern communication systems and the
multiprocessing capability of the embedded systems are supported by MMUs. For
multiprocessing operations, every component in this system requires a specific memory space
for performing multiple operations in parallel and this is carried out using MMUSs. This study
uses a RISC-V processor and instead of connecting the processor directly into Network-on-
chip, the MMU s integrated on a Network Interface Component (NIC) and the module is
termed as NIC-MMU and a Wishbone Interface was implemented for establishing a
Nanotechnology Perceptions Vol. 20 No. S10 (2024)
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communication between the RISC-V processor and MMU for sending and receiving
instruction memory and data memory. Generally, most of the CPUs possess a structured level
for storing the cache with a unique instruction set and data-based caches. The Wishbone
interface used in this research is used to track the components of an integrated circuit and to
allow the interconnection between different components in the circuit. The objective is to
connect different cores inside a NoC. The communication based MMU module is the main
module whereas all the other modules are instantiated, and this design is validated through the
simulation analysis. Furthermore, a uniform and system-level modeling framework is required,
wherein performance, power, and area models are simultaneously integrated to enable design
space exploration and highly specific optimization of NoC architectures for throughput
efficiency, power consumption, and area consumption. A framework that would offer
insightful information that would facilitate design cross-examination and simplify NoC design
optimization. The schematic of the proposed system architecture is illustrated in figure 3.3.
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Figure 3.3 Schematic of the proposed system architecture with all modules

The schematic represents all modules considered in this research. The blocks represent the
blocks of 4 RISC-V processors which are interfaced with 4 blocks of MMU and are connected
to NIC (Network Interface Component). The MMU is embedded on NoC (ring router) and the
instruction memory and data memory are sent through one of the RISC-V processors which is
connected to one of the nodes (e.g. node 0) and this instruction memory and data memory are
transferred to other nodes in such a way that the obtained address and data from instruction
memory and data memory are stored in Memory Management Unit (MMU) and then it is
accessed through NIC (Network Interface Component) through routers and through other
nodes. These are used to link memory and 1/O devices to several processors. Multiple types of
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buses exist, including 1/0 buses for connecting many devices and local buses for establishing
fast links between processors and memory.

3.3 Design of RISC-V processor
The module p_CPU consists of a RISC-V processor which has a four staged pipeline for
executing different instruction sets and the schematic of the same is shown in figure 3.4.
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Figure 3.4 Schematic of the RISC-V processor

The processor consists of 12 input and output ports (1/0 ports) with 1463 nets and 1235 cells.
Since the load or store instructions make use of only immediate address specifiers, the memory
operations are carried out in the stage similar to that of the ALU (Arithmetic Logic Units)
functions and hence we use a 4-stage pipeline structure. The 4 stages of the pipeline are:
Pipeline Stage 1. Instruction Fetch (IF)

Pipeline Stage 2: Instruction Decode and Register Fetch (ID)

Pipeline Stage 3: Execution or Memory Access (EX/MEM)

Pipeline Stage 4: Write Back (WB)

The modules such as P_ALU, P_DIV, and P_MUL executes arithmetic and logical functions
inside the processor module. The system considers a synchronous active high RESET which is
used to clear the data stored in the stage registers. Inside the memory unit, a program counter
is implemented with 32 bits which increments the clock value by 4 every time and has a value
of 32°h0000_0000 at reset. The program counter must have a positive-edge triggered clock
with a synchronous reset. An asynchronous instruction memory consisting of 256 words i.e.,
32 bits/word is enough for carrying out sample simulation analysis and it can be considered
that the processor supports certain operations only at a particular time (l.e., either READ or
WRITE operations). An instruction decoding unit is provided for decoding the fetched
instruction and to produce suitable control signals for carrying out accurate and relevant
execution of the fetched instruction. The proposed MMU has 3 ports where 2 ports are reserved
for performing READ operations and one port is used for executing WRITE instructions. The
MMU consists of a fundamental register file which incorporates 32 numbers of 64-bit registers.
The MMU performs an asynchronous reading while the WRITE operation is synchronous.
Every port in the memory unit consists of a 5bit address and 64-bit data to read/write the
contents into a specific register. When the processor receives RESET instruction, the contents
present in the register are cleared completely. The register 0 must be hard-wired to
64°h0000_0000 0000 0000 and this register performs READ ONLY i.e., the register 0 cannot
be written into the processor memory. The WRITE port must also receive a write enable signal
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(wrEn) for controlling the write operation of the MMU. The ports considered for reading will
only read the contents from the register using the asynchronous 5-bit address specifier.

3.4 Router Design

The router logic used in this research is the bidirectional ring network-on-chip (NoC) router
which plays an important role in the router design and is considered as the building block for
the NoC based multiprocessor. The design of the router consists of 399 input and output ports
with 1709 nets and 114 cells. Every data packet in the network must be routed using a ring of
routers and has a fixed length of 64 bits. Therefore, the size of the data packet is maintained
equal with the flit size and the channel width. The router sends an entire packet from the output
buffer of one router channel to the input buffer of the next router channel within one complete
cycle. Considering the fact that there is no contention, an entire packet can be sent from an
input channel buffer to an output channel buffer within a router in one cycle. For routing
purposes, a header information is used which is composed of 32 bits of the packet. The
remaining bits are used for executing the polarity of the virtual channel and direction. The
router design is done so that the module can prioritize the controlling of the instruction
execution in the processor. A rotating arbitration technique is employed for performing
arbitration among multiple requesters for each set of the output virtual channels. Once the
request is granted, the output controller must validate the sender and the priority scheme must
be reversed in order to grant the priority to the other requestor.

The channel buffer is designed for providing the buffer to perform queue operations. In this
research, the module fifo_buffer is used as a channel buffer and it is implemented as a 64-bit
register with a synchronous write and read port. For input channel buffers, when the
corresponding signal is flagged, the corresponding data is latched directly into the respective
input channel buffer at the rising clk edge without requiring any computation. Decoding the
address registers and output channel buffer requesting will be performed in the next cycle.

3.5 Design of a Network Interfaced MMU

The module of a NIC-MMU acts as an interface between the MMU and the NoC-based
multiprocessor. The design consists of 297 input and output ports with 508 nets and 22 cells.
NIC is a synchronous module with two channels namely network input and network output
channel. The network output channel is used for sending the data packets from the processor
to the router. The 64-bit data packets from the MMU are sent to the router and are injected into
the d_in port and are delivered to the routers through the net_do port. Whereas the network
input channel sends the packet from the router to the MMU. The 64-bit packets from the router
are injected into the net_di port and are delivered to the MMU via the d_out port. The interface
between the NIC and the MMU is very similar to the Router Design. Each channel has two
control signals (s —sending, r — ready) for handshaking. The polarity signal from the connected
router enables the NIC to inject the packets into the correct virtual channel according to the
VC bit of the packet.

When the processing unit stores a data packet in its MMU for forwarding the packet to the
NIC_MMU, it must load the value of the network output channel status register into the MMU,
and the output channel receives the packet only when the value of the status register is 0. If the
network status register shows 1 then the processor does not store the packet which indicates
that the channel is occupied. Similarly, when the CPU wants to receive a packet, it must load

Nanotechnology Perceptions Vol. 20 No. S10 (2024)



An Enhanced Design Of Mmu In Network.... Debasis Behera et al. 762

the input network status register into the MMU, and the operation is similar as that of the output
channel. It can determine the optimal number of ports for the input/output of network interfaces
inan NoC .

4. Simulation Results

The performance of the proposed NoC-based multiprocessor was verified by simulating the
design using a Vivado 2017.2 simulation tool. The schematic of the Network Interface MMU
is illustrated in figure 4.1.

veady

Figure 4.1 Schematic of a Network Interface MMU
The resource utilization and power consumption of FPGA is shown in table 1

Table 1 Resource utilization and Power consumption of FPGA

NoC MMU (4 MMUs)
FPGA power utilization (mW) 1.9 0.07
LUT’s (Look up Tables) used 3705 136
Number of Flip Flops used 4940 150

The operating frequency considered for the simulation analysis was 100MHz and the FPGA
uses 36 Kb Block RAMs. Each 36Kb Block RAM contains two independently controlled 18
Kb RAMs. The 36 Kb blocks can be connected in a cascaded form to enable a deeper and wider
memory implementation, with a minimal timing penalty. Different test cases are written for
each module in the simulation part of the design and the verified results can be observed from
the waveform given in below figure 4.2.
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Figure 4.2 Waveforms for different test cases for different module

Table 2. comparison table of existing method
Reference NOC
[32] ConvOpt-PG 0.69
[14] MP3 0.971
[33] ULP NoCs, 0.36
[28] Gate count 22740

The comparison between our method, NOC ConvOpt-PG, and the current approaches, MP3
and ULP NoCs, is shown in Figure 4.3. The findings unequivocally demonstrate that NOC
ConvOpt-PG outperforms other optimizations like MP3 (0.971) and ULP NoCs with a
substantial difference (0.69). further demonstrates that NOC ConvOpt-PG consumes just
22.740 gates, which is a strong performance in terms of hardware implementation costs. This
comparison shows that the suggested approach is effective for NoC design and may be used to
achieve good performance with the least amount of hardware. In terms of NoC design
optimization, NOC proposed method shows promise because it works better than cutting-edge
methods.
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Figure 4.3 comparison of existing method

5. Conclusion

This paper presented an efficient approach for NoC based multiprocessors with reduced power
consumption and design cost. The preliminary objective of this research was to design a
lightweight embedded system by embedding memory management units (MMUS) into the
NoC. The NoC enabled the multiprocessing functionality in the proposed lightweight
embedded system. A brief description of the design considerations for the MMU has been
presented in the paper along with its integration into the NoC was discussed with detailed router
design. The proposed MMU embedded NoC does not affect the processor design and hence
this design can be employed for analysing different types of NoC. The MMU based NoC
enables the developers and engineers to transform the design of existing lightweight processors
which do not possess an MMU to perform multiprocessing. The proposed design was simulated
using A Vivado tool and was synthesized using a FPGA platform. The simulation results show
that the proposed design approach of the MMU consumes 1.9 mW of power while the power
consumption was reduced to 0.07mW after deployment of MMUSs into NoC. This validates the
effectiveness of the proposed approach with respect to its multiprocessing capability and its
ability to reduce the hardware overhead.

References

1. Qjo, M. O., Giordano, S., Procissi, G., & Seitanidis, I. N. (2018). A review of low-end, middle-
end, and high-end 10T devices. IEEE Access, 6, 70528-70554.

2. Musaddiq, A., Zikria, Y. B., Hahm, O., Yu, H., Bashir, A. K., & Kim, S. W. (2018). A survey on
resource management in 10T operating systems. IEEE Access, 6, 8459-8482.

3. Raza, M. A, & Azeemuddin, S. (2014, January). Multiprocessing on FPGA using light weight
processor. In 2014 IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT) (pp. 1-6). IEEE.

Nanotechnology Perceptions Vol. 20 No. S10 (2024)



765 Debasis Beheral et al. An Enhanced Design Of Mmu In Network....

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

STMicroelectronics. STM32L151C6: Ultra-Low-Power ARM Cortex-M3 MCU With 32 Kbytes
Flash, 32 MHz CPU, USB. Accessed: Jun. 17, 2019. [Online]. Available: https://www.st.com/en/
microcontrollers/stm321151c¢6.html

M. Integrated. MAX32626: Ultra-Low Power, High-Performance ARM Cortex-M4 with FPU-
Based Microcontroller for Wearables. Accessed: Jun. 17, 2019. [Online].
Available:https://www.maximintegrated.com/en/products/microcontrollers/MAX32626.html
NXP. K32W0x MCUs for Wireless 10T Applications. Accessed: Jun. 17, 2019. [Online].
Available: https://www.nxp.com/docs/en/factsheet/ K32WOXFS.pdf

Samsung. Bio-Processor. Accessed: Jun. 17, 2019. [Online]. Available:
https://www.samsung.com/semiconductor/products/bio-processor

Bai, L. S, Yang, L., & Dick, R. P. (2009). MEMMU: Memory expansion for MMU-less embedded
systems. ACM Transactions on Embedded Computing Systems (TECS), 8(3), 1-33.

Chang, H. P., Liu, Y. T., & Yang, S. S. (2014). Surviving sensor node failures by MMU-less
incremental checkpointing. Journal of Systems and Software, 87, 74-86.

Shalan, M., & Mooney I, V. J. (2002, May). Hardware support for real-time embedded
multiprocessor system-on-a-chip memory management. In Proceedings of the tenth international
symposium on Hardware/software codesign (pp. 79-84).

Monchiero, M., Palermo, G., Silvano, C., & Villa, O. (2007). Exploration of distributed shared
memory architectures for NoC-based multiprocessors. Journal of Systems Architecture, 53(10),
719-732.

Pu, Y., Shi, C., Samson, G., Park, D., Easton, K., Beraha, R., ... & Attar, R. (2018). A 9-mm 2
ultra-low-power highly integrated 28-nm CMOS SoC for Internet of Things. IEEE Journal of Solid-
State Circuits, 53(3), 936-948.

Khan, S., Anjum, S., Gulzari, U. A., Umer, T., & Kim, B. S. (2017). Bandwidth-constrained multi-
objective segmented brute-force algorithm for efficient mapping of embedded applications on NoC
architecture. IEEE Access, 6, 11242-11254.

Ali, H., Tariq, U. U., Zheng, Y., Zhai, X., & Liu, L. (2018). Contention & energy-aware real-time
task mapping on noc based heterogeneous mpsocs. IEEE Access, 6, 75110-75123.

Behera, D., & Jena, U. R. (2020, July). Detailed review on embedded MMU and their performance
analysis on test benches. In 2020 International Conference on Computational Intelligence for Smart
Power System and Sustainable Energy (CISPSSE) (pp. 1-6). IEEE.

Abad, P., Puente, V., Gregorio, J. A., & Prieto, P. (2007, June). Rotary router: an efficient
architecture for CMP interconnection networks. In Proceedings of the 34th annual international
symposium on Computer architecture (pp. 116-125).

Kumar, S., Jantsch, A., Soininen, J. P., Forsell, M., Millberg, M., Oberg, J., ... & Hemani, A. (2002,
April). A network on chip architecture and design methodology. In Proceedings IEEE Computer
Society Annual Symposium on VLSI. New Paradigms for VLSI

Nesbit, K. J., Aggarwal, N., Laudon, J., & Smith, J. E. (2006, December). Fair queuing memory
systems. In 2006 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICROQO'06) (pp. 208-222). IEEE.

Man, C., Bin, X., Fuming, Q., Qingsong, S., Tianzhou, C., & Like, Y. (2010, June). Distributed
memory management units architecture for NoC-based CMPs. In 2010 10th IEEE International
Conference on Computer and Information Technology (pp. 54-61). IEEE.

Chen, X., Lu, Z., Jantsch, A., & Chen, S. (2010, March). Supporting distributed shared memory on
multi-core network-on-chips using a dual microcoded controller. In 2010 Design, Automation &
Test in Europe Conference & Exhibition (DATE 2010) (pp. 39-44). IEEE.

Chen, X., Lu, Z., Jantsch, A., Chen, S., Guo, Y., Chen, S., ... & Liao, M. (2015). Command-
Triggered Microcode Execution for Distributed Shared Memory Based Multi-Core Network-on-
Chips. JSW, 10(2), 142-161.

Nanotechnology Perceptions Vol. 20 No. S10 (2024)



An Enhanced Design Of Mmu In Network.... Debasis Behera et al. 766

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Tatas, K., Siozios, K., Soudris, D., & Jantsch, A. (2014). Middleware Memory Management in
NoC. In Designing 2D and 3D Network-on-Chip Architectures (pp. 191-208). Springer, New York,
NY.

Goebel, M., Behnke, I., Elhossini, A., & Juurlink, B. (2018, May). An Application-Specific
Memory Management Unit for FPGA-SoCs. In 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW) (pp. 222-225). IEEE.

Siast, J., Luczak, A., & Domanski, M. (2019). Ringnet: A memory-oriented network-on-chip
designed for fpga. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 27(6),
1284-1297.

Gordon-Ross, A., Abdel-Hafeez, S., & Alsafrjalni, M. H. (2019, July). A One-Cycle FIFO Buffer
for Memory Management Units in Manycore Systems. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI) (pp. 265-270). IEEE.

Raparti, V. Y., & Pasricha, S. (2019). Approximate NoC and memory controller architectures for
GPGPU accelerators. IEEE Transactions on Parallel and Distributed Systems, 31(5), 25-39.
Kumar, A., & Reddy, V. K. (2020, July). Advanced Memory Management Unit for 3-D Network
on Chip. In 2020 International Conference on Electronics and Sustainable Communication Systems
(ICESC) (pp. 1062-1067). IEEE.

Jang, H., Han, K., Lee, S., Lee, J. J.,, & Lee, W. (2019). MMNoC: Embedding Memory
Management Units into Network-on-Chip for Lightweight Embedded Systems. IEEE Access, 7,
80011-80019.

Musaddiq, A., Zikria, Y. B., Hahm, O., Yu, H., Bashir, A. K., & Kim, S. W. (2018). A survey on
resource management in loT operating systems. IEEE Access, 6, 8459-8482.

Shi, B, Li, B., Cui, L., & Ouyang, L. (2018). Vanguard: A cache-level sensitive file integrity
monitoring system in virtual machine environment. IEEE Access, 6, 38567-38577.

Pu, Y., Shi, C., Samson, G., Park, D., Easton, K., Beraha, R., ... & Attar, R. (2018). A 9-mm 2
ultra-low-power highly integrated 28-nm CMOS SoC for Internet of Things. IEEE Journal of Solid-
State Circuits, 53(3), 936-948.

Chen, L., Zhu, D., Pedram, M., & Pinkston, T. M. (2015, February). Power punch: Towards non-
blocking power-gating of noc routers. In 2015 IEEE 21st International Symposium on High
Performance Computer Architecture (HPCA) (pp. 378-389). IEEE.

Han, K., Lee, J. J., Lee, J., Lee, W., & Pedram, M. (2017). TEI-NoC: Optimizing ultralow power
NoCs exploiting the temperature effect inversion. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 37(2), 458-471.

K. Han, J.-J. Lee, and W. Lee, (2017) ““Converting interfaces on applicationspeci _c network-on-
chips," J. Semicond. Technol. Sci., vol. 17, no. 4, pp. 505_513, Aug. 2017.

Nanotechnology Perceptions Vol. 20 No. S10 (2024)



