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Face recognition technology has gained significant popularity in a computer vision applications, 

such as surveillance, object tracking, human identification, and self-driving cars. Its non-intrusive 

nature makes it particularly desirable for security purposes. This paper emphasizes the development 

of a real-time video-based facial recognition system, employing Artificial Intelligence (AI) to 

facilitate swift authentication. The main aim is to enhance the processing time of face recognition 

while maintaining a high level of accuracy. To achieve this objective, two separate algorithms are 

utilized for face recognition: the Histogram of Oriented Gradients (HoG) with Support Vector 

Machine (SVM) on the CPU, and the Convolutional Neural Network (CNN) with CUDA on the 

GPU. Experimental findings demonstrate that the CNN algorithm achieves an accuracy rate of 

91.69%, while the HOG+SVM algorithm achieves 62.91% accuracy in real-time face recognition. 

These findings carry practical implications for the Nokia industry in real-time video-based 

employee authentication, thus promoting the adoption of secure and efficient face recognition 

technology in diverse domains.  
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1. Introduction 

Facial recognition systems are software applications designed to verify or identify individuals 

from digital images, finding applications in identity authentication, security, and access 

control. The technology has gained significant interest over the past decade due to its potential 

as a user-friendly and minimally invasive method of human identification [1]. While humans 

can easily recognize faces, automating this process presents challenges. Facial recognition 

algorithms must contend with variations in lighting, facial expressions, and perspectives, 

making it a complex task for modern computer systems. 

Deep learning techniques, such as convolutional neural networks (CNNs), have demonstrated 

remarkable success in various computer vision tasks, including image classification, 

segmentation, and object detection. These methods mitigate preprocessing challenges and 

enhance evaluation techniques. Real-world applications of facial recognition systems include 

automatic tagging on social media platforms and face unlock features in mobile applications. 

Other algorithms, like the histogram of oriented gradients (HOG), have also been employed 

http://www.nano-ntp.com/
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for facial recognition. This technique quantifies occurrences of gradient orientations in 

localized image regions, computed on a dense grid of uniformly spaced cells [6]. 

Ishita et al. [2] aimed to develop a cost-effective security surveillance system using Raspberry 

Pi kits, incorporating traditional face detection methods such as Haar detection and PCA. They 

suggested using RF I-cards instead of passwords for enhanced security in specific areas. The 

study utilized Haar cascade and Eigenface approaches for adaptive face detection. Jie Wang 

et al. [3] investigated Convolutional Neural Networks (CNNs), emphasizing the importance 

of convolutional and downsampling layers to reduce memory requirements. Ciresan et al. [4] 

achieved near-human performance using artificial neural network architectures with receptive 

fields in convolutional layers. Wazwaz et al. [5] implemented a network with a microcomputer 

and camera for human face analysis on a Raspberry Pi, utilizing algorithms for face detection 

and recognition. Savath Saypadith et al. [7] proposed a CNN-based framework for face 

detection, tracking, and recognition on the NVIDIA Jetson TX2 board, demonstrating real-

time recognition of multiple faces.Effective facial recognition systems today require 

substantial and diverse datasets to achieve accuracy. They must adeptly manage facial data 

variations, accurately identify features, and operate in real-time, necessitating significant 

RAM resources. Research indicates that integrating GPUs into these systems significantly 

enhances processing speed, enabling real-time analysis and backend processing. 

To achieve faster facial recognition while ensuring accuracy and efficiency, selecting 

algorithms that are both fast and accurate is crucial. GPUs play a pivotal role in accelerating 

the recognition process. This paper aims to compare the efficiency of the HOG + linear SVM 

and CNN algorithms for facial recognition, providing a comparative analysis to identify the 

most efficient technique. Our objective is to leverage available resources to optimize facial 

recognition systems for efficiency and accuracy. The study evaluates the performance of facial 

recognition systems using the HOG+SVM algorithm on the CPU and the Convolutional 

Neural Network (CNN) algorithm on the GPU with CUDA, analyzing real-time video data to 

assess accuracy and speed. 

 

2. Methodology: 

The proposed system consists of three main phases: capturing facial images, encoding facial 

datasets, and conducting real-time face recognition. 

Phase 1: Capturing Face Images 

The process begins by launching the program and initiating video capture. In this step, the 

system actively detects a single face within the frame and proceeds to capture images of the 

same face from various angles. It actively organizes these diverse pictures of the same 

individual systematically and stores them within a dedicated folder, with each folder 

corresponding to a specific person's name. This process repeats for all individuals who require 

recognition. Once completed, the system actively has a collection of facial data neatly labeled 

in folders according to each person's identity. Finally, consolidate all these labeled facial 

datasets into a central dataset folder, ready for use in face encoding purposes. This phase is 

responsible for capturing images of faces in real-time. It involves the following steps: 
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1. Importing Libraries: The code begins by importing libraries necessary for image 

processing, video capture, and argument parsing. These libraries include OpenCV (cv2), 

imutils, time, and argparse. 

2. Argument Parsing: It constructs an argument parser to accept command-line 

arguments. Specifically, it requires the path to the Haar Cascade classifier file for face 

detection  and the directory where captured face images will be saved.  

3. Loading the Cascade Classifier: It loads OpenCV's Haar Cascade Classifier for face 

detection using the provided cascade file path. 

4. Initializing the Video Stream: The code initializes a video stream using the video 

stream class from the imutils video module. This prepares the camera sensor for use and allows 

it to warm up for 2 seconds. 

5. Frame Capture and Processing: It enters a loop that continuously captures frames from 

the video stream. For each frame, the following actions are performed: 

a. A copy of the original frame is made for potential saving. 

b. The frame is resized to a width of 400 pixels to speed up face detection. 

c. Faces are detected in the grayscale version of the frame using the loaded Cascade 

Classifier. 

d. Bounding boxes are drawn around detected faces. 

e. The processed frame is displayed on the screen. 

Each image is named sequentially, starting from "00001.png" and incrementing with each 

capture. 

Phase 2: Encoding Face Datasets 

This phase is responsible for encoding the face datasets. It involves the following steps: 

1. Importing Libraries: The code imports necessary libraries, including imutils.paths for 

listing image files, face_recognition for face-related operations, and pickle for serialization. 

2. Argument Parsing: It constructs an argument parser to accept command-line 

arguments. The required arguments are the path to the directory containing the face images 

and the path to the file where the facial encodings will be serialized . 

3. Listing Image Paths: It collects the file paths of all images in the specified dataset 

directory . 

4. Initializing Lists: The code initializes two lists: known Encodings to store facial 

encodings and known Names to store the corresponding names of individuals. 

5. Looping Over Image Paths: For each image in the dataset directory, the following 

actions are performed: 

• The person's name is extracted from the image path. 

• The image is loaded, converted to RGB format, and stored in the image variable. 
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• Face locations (bounding boxes) in the image are detected. 

• Facial encodings for each detected face are computed.The encodings and corresponding 

names are added to the respective lists.The images are trained using HOG+SVM and CNN 

algorithm. 

6. Serialization: After processing all images, the code serializes the collected facial 

encodings and names into a binary file using the Pickle module. This serialized data can be 

later used for recognition. 

Phase 3: Real-Time Face Recognition 

The process commences by initiating the video capture process. It actively converts the live 

stream of image data into individual image frames, then actively detects faces in real-time 

within these frames. Subsequently, it actively compares the extracted facial features with those 

previously labeled. If a match is found between the features and the labeled faces, it proceeds 

to actively print the name of the recognized person. However, if recognition fails, it actively 

prints "Unknown." This process enables real-time face recognition with dynamic feedback. 

This phase performs real-time face recognition using the previously encoded dataset. It 

involves the following steps: 

1. Importing Libraries: The code imports the necessary libraries, including imutils.video 

for video streaming, face_recognition for face recognition, and OpenCV (cv2) for image 

processing. 

2. Argument Parsing: It constructs an argument parser to accept command-line 

arguments. The required arguments are the path to the Haar Cascade classifier file for face 

detection  and the path to the serialized facial encodings database  

3. Loading Encodings and Detector: It loads the known facial encodings and names from 

the serialized database file. Additionally, it loads the Haar Cascade classifier for face detection. 

4. Initializing Video Stream: The code initializes a video stream using VideoStream and 

allows the camera to warm up for 2 seconds. 

5. Frame Processing and Recognition: The code enters a loop where it continuously 

captures frames from the video stream and processes them. For each frame, it performs the 

following steps: 

• Converts the frame to grayscale (for face detection) and RGB format (for face recognition). 

• Detects faces in the grayscale frame using the Haar Cascade classifier. 

• Reorders the detected bounding box coordinates to the (top, right, bottom, left) format 

expected by face_recognition. 

• Computes facial encodings for each detected face. 

• Matches the computed encodings against the known encodings obtained from the dataset. 

• Determines the recognized person's name based on the matching results. 
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6. Display and Exit: The code displays the processed frame with bounding boxes and 

recognized names.  

7. FPS Calculation: The Frames Per Second (FPS) is calculated and displayed at the end 

of execution to give an idea of the processing speed. 

 

3. Proposed Framework 

A visual representation of the proposed framework is shown in Figure 1. As an initial step, 

face detection is performed, and a dataset of human faces is created, which is then labeled. 

Next, the faces are encoded using the desired method, which can either be HOG+SVM or 

CNN.  

 

Figure1 Proposed framework 

As the results of both algorithms need to be compared, the images are trained with both 

methods and the outcomes are analyzed. Finally, during the recognition phase, the encoded 

face is matched with the detected face by the system. 
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Building Dataset Using Haar Cascade  Classifier 

Facial detection plays a crucial role in authentication systems. This process involves the 

utilization of Haar cascades. Initially, the input image is loaded using the built-in function 

cv2.imread, where the image path serves as the input parameter. The image is subsequently 

converted to grayscale and displayed [9, 8, 10]. Additionally, the Haar cascade classifier is 

loaded. In Figure 2, the Haar-like feature is illustrated, encompassing both edge and line 

characteristics. The white bar in the grayscale image represents pixels near the light source.  

 

Figure 2.Haar Feature 

Haar-like features are rectangular filters applied to an image to identify specific patterns or 

features. The Haar value (HV) is computed by subtracting the sum of pixel values within a 

white rectangle (SPW) from the sum within a black rectangle (SPB), as shown in Equation 1. 

HV = SPW− SPB                                  (1) 

The flow of a Haar cascade classifier can be summarized as follows: 

• Image Capture: The process begins with the camera capturing an image. 

• Grayscale Conversion: The acquired image is converted into grayscale, simplifying 

the subsequent analysis. 

• Face Detection: The cascade classifier scans the grayscale image to identify the 

presence of a face. 

• Eye Detection: If a face is detected, the classifier then proceeds to search for both eyes 

within the recognized face region. 

• Eye Verification: The system checks whether both eyes are successfully identified. 

• Face Normalization: If both eyes are found, the system normalizes the size and 

orientation of the face image for consistent processing. 

The captured images are stored in a folder, and the name of the folder corresponds to the name 

of the person in the captured images. This way, "n" number of datasets can be created. 

Encode Dataset 

After creating the datasets, the next step is to encode (train) them. The encoding can be done 
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using either HOG+SVM or CNN.  

Histogram of Oriented Gradients (HOG) 

In the HOG concept, the approach is centered on the grouping of pixels into small cells rather 

than using the individual gradient direction of each pixel in an image. Within each cell, 

gradient directions are calculated and grouped into several orientation bins. The gradient 

magnitudes are summed for each bin, with greater weight assigned to stronger gradients, 

thereby reducing the impact of small random orientations resulting from noise. A picture of 

the dominant orientation in that cell is generated by means of this histogram. This process is 

applied to all cells, resulting in a representation of the image's structure [12,13,14].The HOG 

features maintain the distinct representation of an object while allowing for some variations in 

shape. An experimental image version enhanced with HOG features is depicted in Figure 3. 

the dlib is used toestimate the location of 68 coordinates (x, y) that map the facial points on a 

person’s face in the figure 4. 

 

Figure 3. Experimental version of an image with HOG 

 

Figure 4. Coordinates of a human face 

Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a supervised learning model equipped with a corresponding 

learning algorithm, designed for the analysis of data in tasks such as classification and 
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regression. [15,16]Capable of addressing both linear and non-linear problems, SVM proves 

effective in a variety of practical scenarios. The algorithm constructs a line or hyperplane to 

delineate data into distinct classes. SVM is employed in image training by extracting features 

from images and assigning appropriate labels[28]. 

Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a specialized form of multilayer perceptrons, 

tailored with regulated connectivity patterns. Unlike traditional fully connected networks, 

where every neuron in one layer is linked to all neurons in the subsequent layer, CNNs exhibit 

a more structured architecture. They typically consist of an input layer, an output layer, and 

multiple hidden layers, predominantly comprising convolutional layers. These convolutional 

layers perform operations such as dot products or element-wise multiplications. Each 

convolutional layer is usually followed by a Rectified Linear Unit (ReLU) activation function 

and may include additional layers like pooling, fully connected, and normalization layers. 

These layers collectively process the input data, making them aptly named "hidden layers" due 

to the transformations applied by their operations [18, 19]. 

CNNs are renowned for their capability to handle complex computations across numerous 

layers. However, the extensive dataset processing can lead to prolonged computation times 

compared to methods like Histogram of Oriented Gradients (HOG). To mitigate this, 

leveraging GPU acceleration can significantly enhance processing speed during both training 

and inference phases [20, 29, 30]. 

GPU Programming 

CUDA (Compute Unified Device Architecture) is an API and parallel computing platform 

developed by NVIDIA for utilizing their CUDA-enabled GPUs for general-purpose 

computing, known as General Purpose computing on Graphics Processing Units (GPGPU). It 

provides developers and engineers direct access to the GPU's virtual instruction set and parallel 

computational elements, enabling the execution of compute kernels [21, 22]. GPUs, 

specialized processors designed for real-time, high-resolution 3D graphics and compute-

intensive tasks, are leveraged by CUDA to efficiently meet computational demands.Beyond 

traditional graphical applications, CUDA has found extensive application in accelerating non-

graphical tasks across diverse fields like computational biology and cryptography. These 

applications often experience significant performance enhancements, sometimes achieving 

orders of magnitude improvement in processing speed [23, 24,31]. 

Recognition 

All the prerequisites for face recognition have been completed. Moving on to the recognition 

phase, when the camera is activated, faces are detected. After detecting a face, a comparison 

is made with the encoded data[25,27].HOG matches the extracted and encoded features, 

whereas CNN matches the values of all the layers in the image. This theoretically explains 

why CNN has higher accuracy since it matches with many layers of the image, whereas HOG 

only matches with the image features. Then, a boundary box is created around the face and 

labeled with the matched name. 
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4. Experiment Setup 

Hardware required 

In this paper, the HOG algorithm was implemented on an Intel Core i5 with 4GB of RAM, 

while the CNN algorithm was programmed on an NVIDIA GeForce GTX 1050 Ti, which has 

approximately 768 CUDA cores. The graphics clock has a speed of 1290 MHz and the 

processor clock has a speed of 1392 MHz . 

Software required 

The operating system used is Ubuntu 18.04.4 LTS, which is a result of contributions by 

thousands of developers who aimed to create an ideal developer environment. To work with 

the GPU, CUDA Toolkit 10.2 is utilized[20,21]. Python language is employed in this work, as 

it provides rich set of libraries for face recognition system such as OpenCV, Dlib, and 

TensorFlow. 

 

5. Results and Discussions 

Different images of the authenticated person are captured with various lighting conditions, 

angles, and poses. Figure 5 , shows the working of building a face dataset. 

 

Figure 5 Building a face dataset. 

Images of the authenticated individual are captured under various lighting conditions, angles, 

and postures. Figure 6 illustrates a sample dataset of these captured images. 

 

Figure 6 Sample data set of authenticated person 
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The labeled face database is then saved with the person's name as shown in figure 7. 

 

Figure 7 Dataset created and labeled 

Once the face database is created, it is essential to encode the known faces. Encoding can be 

performed using either HOG or CNN.The encoding of the recorded dataset using the HOG 

method is depicted in Figure 8, and the process takes approximately 4.93 seconds to complete. 

 

Figure 8 Encoding the data set with HOG 

The figure 9 demonstrates the encoding of the recorded dataset using the CNN method. This 

encoding process requires approximately 91.60 seconds to complete. 

 

Figure 9 Encoding the data set with CNN 

After encoding (training) the dataset using HOG or CNN, the faces can be recognized. HOG 

with CPU can be used if the number of datasets is low, whereas CNN with GPU can be used 

if the number of datasets is substantial. Following encoding, face recognition is performed. 

For analytical purposes, encoding is done using both HOG and CNN methods.  

 



917 K. Indra Gandhi et al. AI Based High Performance Authentication...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S10 (2024) 

  

(a) HOG+SVM (b) CNN 

Figure 10  Face recognition in real time video 

Figure 10 shows the recognized face in a real video. The recognized face is displayed in a 

rectangular box with its accuracy and labeled name. Figure 3a represents HOG-based face 

recognition on CPU with an accuracy of 62.91%. Figure 3b represents CNN-based face 

recognition on GPU with an accuracy of 91.69%.  

The proposed face recognition system can also be programmed to detect unknown faces and 

label them as "Unknown." This helps in identifying unknown people on the premises and can 

be used to prevent unauthorized access. 

 

Figure 11 Identification of unknown and known face in real time video 

From the captured video, unknown faces are detected and checked against a recorded dataset 

of known individuals. If there is no match, they are labeled as "Unknown." The system can 

also detect multiple faces simultaneously, as shown in Figure 11. It can process multiple faces 

in real time and display their labeled names. Figure 11 demonstrates that the proposed system 

is capable of identifying multiple faces and distinguishing between known and unknown faces 

simultaneously in real time. 

  

6. Performance Evaluation 

Performance Metrics 

The performance metrics of the proposed model are Accuracy, Precision, Sensitivity and F1 

score. Table 1 represents the training and test dataset and Table 2 represents performance 

evaluation of HoG and CNN.  
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Table 1Training and Test datasets 
Algorithm Total no of 

images in 

dataset 

Training to 

Test Ratio 

No. of 

Training 

Images 

 

No. of Test 

Images 

CNN 2500 70:30 1750 750 

2500 80:20 

 

2000 500 

HoG+SVM 2500 

 

70:30 1750 750 

2500 80:20 

 

2000 500 

Table 2  Performance evaluation of HoG and CNN 
Algorithm Training to Test 

Ratio 

Accuracy 

(%)  

Precision 

(%) 

Sensitivity 

(%) 

F1-Score 

(%) 

CNN 70:30 91.253 95.461 96.596 96.027 

 

80:20 

 

92.133 

 

94.513 93.683 

 

97.583 

HoG 70:30 90.569 

 

94.897 95.389 95.627 

80:20 

 

92.056 93.458 92.789 95.787 

Execution Time Analysis 

In this proposed work, face recognition is processed using the HOG algorithm in the CPU and 

the CNN algorithm in the GPU architecture.  

Table 3 Execution Time comparison of HOG and CNN 
No. of Input Images 

in dataset  

HOG+SVM CNN 

Execution 

Time (s) 

Encoding Size 

 (KB) 

Execution 

Time (s) 

Encoding Size 

(KB) 

10 1.9 10.9 36.7 11 

25 4.42 22.7 90.8 23.3 

100 18 92.1 361 96.5 

250 44.39 231.4 901 242.5 

500 87.93 463.9 2117 486.0 

To analyze execution time, datasets of different sizes are fed to both HOG and CNN methods. 

Table 3 represents the execution time comparison between HOG and CNN algorithms with 

varying dataset sizes.The encoding size of HOG is relatively constant, while the encoding size 

of CNN increases with the number of input images. This is because HOG only needs to store 

the features that it has extracted from the data, while CNN needs to store the entire network 

architecture, as well as the weights of the network. 
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Figure 12  Comparison of HOG and CNN for different dataset size 

Table 4 Comparison between CNN and HOG performance for different images 
Sample 

image 

CNN HOG+SVM 

1   

2 

 

 

3   
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  4   

5   

Figure 12 depicts a comparison of execution time between HOG and CNN for various dataset 

sizes.The execution time of HOG is significantly faster than the execution time of CNN for 

small datasets. However, the execution time of CNN starts to approach the execution time of 

HOG as the number of input images increases. This is because CNN is a more powerful 

algorithm that can learn more complex features from the data, and it therefore takes longer to 

process each image.In the context of face recognition systems, HOG is often used as a pre-

processing step to extract features from images. These features can then be used by a more 

complex algorithm, such as CNN, to perform face recognition 

Accuracy analysis 

To determine the accuracy of the given method, the detected and recognized faces are 

compared with existing datasets, and the percentage of matching is calculated. For HOG, the 

extracted features are matched with the encoded features, and the percentage of feature match 

is recorded.  

 

Figure 13 Performance evaluation of HOG and CNN with respect to Accuracy 
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In CNN, as it takes layers of the image, the values of the layers are compared with the extracted 

values, and the percentage of accuracy is recorded. Five sample images were considered, and 

the accuracy was measured for both HOG and CNN in different architectures.Table 2 presents 

a performance comparison between CNN and HOG for various images. Figure 13 represent 

the performance evaluation of face recognition through HOG and CNN algorithms, using CPU 

and GPU, respectively. From Table 1, it is observed that CNN takes more execution time than 

HOG since CNN extracts more features from the face. In Figure 5, it is observed that CNN 

provides higher accuracy than HOG. Based on the results, it can be concluded that CNN has 

higher accuracy in detecting and recognizing real-time video.The results of this table suggest 

that HOG is a better choice for small datasets, while CNN is a better choice for large datasets. 

However, the choice of algorithm also depends on the specific application. For example, if 

speed is critical, then HOG may be a better choice, even for large datasets. 

 

7. Conclusion 

This paper explored two distinct artificial intelligence approaches, HOG and CNN, for real-

time video-based face recognition. The analysis involved implementing these algorithms on 

different hardware platforms to assess their performance. The experimental results 

demonstrated that CNN outperforms HOG in terms of accuracy. This is attributed to CNN's 

ability to efficiently handle large datasets through parallel execution on GPU architecture, 

resulting in improved encoding and accuracy. However, it is important to consider that GPU 

architecture tends to be more expensive compared to CPU architecture. For cost-sensitive 

image processing applications with smaller datasets, HOG remains a preferred choice. 

Conversely, in scenarios requiring hard real-time image processing and larger datasets, CNN 

proves to be more effective. This high-performance solution will be particularly useful for 

industrial authentication systems, ensuring secure and efficient access control. Overall, the 

selection between HOG and CNN depends on the specific requirements of the application, 

balancing factors such as cost, dataset size, and real-time processing needs. 
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