
Nanotechnology Perceptions
ISSN 1660-6795

www.nano-ntp.com

Nanotechnology Perceptions 20 No. S10 (2024) 907-923

AI Based High Performance

Authentication System for Industries

K Indra Gandhi, Jawahar PK, G. Kannan

Department of ECE, B.S.Abdur Rahman Crescent Institute of Science & Technology, India.

Email: indra@crescent.education

Face recognition technology has gained significant popularity in a computer vision applications,

such as surveillance, object tracking, human identification, and self-driving cars. Its non-intrusive

nature makes it particularly desirable for security purposes. This paper emphasizes the development

of a real-time video-based facial recognition system, employing Artificial Intelligence (AI) to

facilitate swift authentication. The main aim is to enhance the processing time of face recognition

while maintaining a high level of accuracy. To achieve this objective, two separate algorithms are

utilized for face recognition: the Histogram of Oriented Gradients (HoG) with Support Vector

Machine (SVM) on the CPU, and the Convolutional Neural Network (CNN) with CUDA on the

GPU. Experimental findings demonstrate that the CNN algorithm achieves an accuracy rate of

91.69%, while the HOG+SVM algorithm achieves 62.91% accuracy in real-time face recognition.

These findings carry practical implications for the Nokia industry in real-time video-based

employee authentication, thus promoting the adoption of secure and efficient face recognition

technology in diverse domains.

Keywords: Computer vision, Face recognition, HOG, CNN, CUDA.

1. Introduction

Facial recognition systems are software applications designed to verify or identify individuals

from digital images, finding applications in identity authentication, security, and access

control. The technology has gained significant interest over the past decade due to its potential

as a user-friendly and minimally invasive method of human identification [1]. While humans

can easily recognize faces, automating this process presents challenges. Facial recognition

algorithms must contend with variations in lighting, facial expressions, and perspectives,

making it a complex task for modern computer systems.

Deep learning techniques, such as convolutional neural networks (CNNs), have demonstrated

remarkable success in various computer vision tasks, including image classification,

segmentation, and object detection. These methods mitigate preprocessing challenges and

enhance evaluation techniques. Real-world applications of facial recognition systems include

automatic tagging on social media platforms and face unlock features in mobile applications.

Other algorithms, like the histogram of oriented gradients (HOG), have also been employed

http://www.nano-ntp.com/

 AI Based High Performance Authentication… K. Indra Gandhi et al. 908

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

for facial recognition. This technique quantifies occurrences of gradient orientations in

localized image regions, computed on a dense grid of uniformly spaced cells [6].

Ishita et al. [2] aimed to develop a cost-effective security surveillance system using Raspberry

Pi kits, incorporating traditional face detection methods such as Haar detection and PCA. They

suggested using RF I-cards instead of passwords for enhanced security in specific areas. The

study utilized Haar cascade and Eigenface approaches for adaptive face detection. Jie Wang

et al. [3] investigated Convolutional Neural Networks (CNNs), emphasizing the importance

of convolutional and downsampling layers to reduce memory requirements. Ciresan et al. [4]

achieved near-human performance using artificial neural network architectures with receptive

fields in convolutional layers. Wazwaz et al. [5] implemented a network with a microcomputer

and camera for human face analysis on a Raspberry Pi, utilizing algorithms for face detection

and recognition. Savath Saypadith et al. [7] proposed a CNN-based framework for face

detection, tracking, and recognition on the NVIDIA Jetson TX2 board, demonstrating real-

time recognition of multiple faces.Effective facial recognition systems today require

substantial and diverse datasets to achieve accuracy. They must adeptly manage facial data

variations, accurately identify features, and operate in real-time, necessitating significant

RAM resources. Research indicates that integrating GPUs into these systems significantly

enhances processing speed, enabling real-time analysis and backend processing.

To achieve faster facial recognition while ensuring accuracy and efficiency, selecting

algorithms that are both fast and accurate is crucial. GPUs play a pivotal role in accelerating

the recognition process. This paper aims to compare the efficiency of the HOG + linear SVM

and CNN algorithms for facial recognition, providing a comparative analysis to identify the

most efficient technique. Our objective is to leverage available resources to optimize facial

recognition systems for efficiency and accuracy. The study evaluates the performance of facial

recognition systems using the HOG+SVM algorithm on the CPU and the Convolutional

Neural Network (CNN) algorithm on the GPU with CUDA, analyzing real-time video data to

assess accuracy and speed.

2. Methodology:

The proposed system consists of three main phases: capturing facial images, encoding facial

datasets, and conducting real-time face recognition.

Phase 1: Capturing Face Images

The process begins by launching the program and initiating video capture. In this step, the

system actively detects a single face within the frame and proceeds to capture images of the

same face from various angles. It actively organizes these diverse pictures of the same

individual systematically and stores them within a dedicated folder, with each folder

corresponding to a specific person's name. This process repeats for all individuals who require

recognition. Once completed, the system actively has a collection of facial data neatly labeled

in folders according to each person's identity. Finally, consolidate all these labeled facial

datasets into a central dataset folder, ready for use in face encoding purposes. This phase is

responsible for capturing images of faces in real-time. It involves the following steps:

909 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

1. Importing Libraries: The code begins by importing libraries necessary for image

processing, video capture, and argument parsing. These libraries include OpenCV (cv2),

imutils, time, and argparse.

2. Argument Parsing: It constructs an argument parser to accept command-line

arguments. Specifically, it requires the path to the Haar Cascade classifier file for face

detection and the directory where captured face images will be saved.

3. Loading the Cascade Classifier: It loads OpenCV's Haar Cascade Classifier for face

detection using the provided cascade file path.

4. Initializing the Video Stream: The code initializes a video stream using the video

stream class from the imutils video module. This prepares the camera sensor for use and allows

it to warm up for 2 seconds.

5. Frame Capture and Processing: It enters a loop that continuously captures frames from

the video stream. For each frame, the following actions are performed:

a. A copy of the original frame is made for potential saving.

b. The frame is resized to a width of 400 pixels to speed up face detection.

c. Faces are detected in the grayscale version of the frame using the loaded Cascade

Classifier.

d. Bounding boxes are drawn around detected faces.

e. The processed frame is displayed on the screen.

Each image is named sequentially, starting from "00001.png" and incrementing with each

capture.

Phase 2: Encoding Face Datasets

This phase is responsible for encoding the face datasets. It involves the following steps:

1. Importing Libraries: The code imports necessary libraries, including imutils.paths for

listing image files, face_recognition for face-related operations, and pickle for serialization.

2. Argument Parsing: It constructs an argument parser to accept command-line

arguments. The required arguments are the path to the directory containing the face images

and the path to the file where the facial encodings will be serialized .

3. Listing Image Paths: It collects the file paths of all images in the specified dataset

directory .

4. Initializing Lists: The code initializes two lists: known Encodings to store facial

encodings and known Names to store the corresponding names of individuals.

5. Looping Over Image Paths: For each image in the dataset directory, the following

actions are performed:

• The person's name is extracted from the image path.

• The image is loaded, converted to RGB format, and stored in the image variable.

 AI Based High Performance Authentication… K. Indra Gandhi et al. 910

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

• Face locations (bounding boxes) in the image are detected.

• Facial encodings for each detected face are computed.The encodings and corresponding

names are added to the respective lists.The images are trained using HOG+SVM and CNN

algorithm.

6. Serialization: After processing all images, the code serializes the collected facial

encodings and names into a binary file using the Pickle module. This serialized data can be

later used for recognition.

Phase 3: Real-Time Face Recognition

The process commences by initiating the video capture process. It actively converts the live

stream of image data into individual image frames, then actively detects faces in real-time

within these frames. Subsequently, it actively compares the extracted facial features with those

previously labeled. If a match is found between the features and the labeled faces, it proceeds

to actively print the name of the recognized person. However, if recognition fails, it actively

prints "Unknown." This process enables real-time face recognition with dynamic feedback.

This phase performs real-time face recognition using the previously encoded dataset. It

involves the following steps:

1. Importing Libraries: The code imports the necessary libraries, including imutils.video

for video streaming, face_recognition for face recognition, and OpenCV (cv2) for image

processing.

2. Argument Parsing: It constructs an argument parser to accept command-line

arguments. The required arguments are the path to the Haar Cascade classifier file for face

detection and the path to the serialized facial encodings database

3. Loading Encodings and Detector: It loads the known facial encodings and names from

the serialized database file. Additionally, it loads the Haar Cascade classifier for face detection.

4. Initializing Video Stream: The code initializes a video stream using VideoStream and

allows the camera to warm up for 2 seconds.

5. Frame Processing and Recognition: The code enters a loop where it continuously

captures frames from the video stream and processes them. For each frame, it performs the

following steps:

• Converts the frame to grayscale (for face detection) and RGB format (for face recognition).

• Detects faces in the grayscale frame using the Haar Cascade classifier.

• Reorders the detected bounding box coordinates to the (top, right, bottom, left) format

expected by face_recognition.

• Computes facial encodings for each detected face.

• Matches the computed encodings against the known encodings obtained from the dataset.

• Determines the recognized person's name based on the matching results.

911 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

6. Display and Exit: The code displays the processed frame with bounding boxes and

recognized names.

7. FPS Calculation: The Frames Per Second (FPS) is calculated and displayed at the end

of execution to give an idea of the processing speed.

3. Proposed Framework

A visual representation of the proposed framework is shown in Figure 1. As an initial step,

face detection is performed, and a dataset of human faces is created, which is then labeled.

Next, the faces are encoded using the desired method, which can either be HOG+SVM or

CNN.

Figure1 Proposed framework

As the results of both algorithms need to be compared, the images are trained with both

methods and the outcomes are analyzed. Finally, during the recognition phase, the encoded

face is matched with the detected face by the system.

 AI Based High Performance Authentication… K. Indra Gandhi et al. 912

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

Building Dataset Using Haar Cascade Classifier

Facial detection plays a crucial role in authentication systems. This process involves the

utilization of Haar cascades. Initially, the input image is loaded using the built-in function

cv2.imread, where the image path serves as the input parameter. The image is subsequently

converted to grayscale and displayed [9, 8, 10]. Additionally, the Haar cascade classifier is

loaded. In Figure 2, the Haar-like feature is illustrated, encompassing both edge and line

characteristics. The white bar in the grayscale image represents pixels near the light source.

Figure 2.Haar Feature

Haar-like features are rectangular filters applied to an image to identify specific patterns or

features. The Haar value (HV) is computed by subtracting the sum of pixel values within a

white rectangle (SPW) from the sum within a black rectangle (SPB), as shown in Equation 1.

HV = SPW− SPB (1)

The flow of a Haar cascade classifier can be summarized as follows:

• Image Capture: The process begins with the camera capturing an image.

• Grayscale Conversion: The acquired image is converted into grayscale, simplifying

the subsequent analysis.

• Face Detection: The cascade classifier scans the grayscale image to identify the

presence of a face.

• Eye Detection: If a face is detected, the classifier then proceeds to search for both eyes

within the recognized face region.

• Eye Verification: The system checks whether both eyes are successfully identified.

• Face Normalization: If both eyes are found, the system normalizes the size and

orientation of the face image for consistent processing.

The captured images are stored in a folder, and the name of the folder corresponds to the name

of the person in the captured images. This way, "n" number of datasets can be created.

Encode Dataset

After creating the datasets, the next step is to encode (train) them. The encoding can be done

913 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

using either HOG+SVM or CNN.

Histogram of Oriented Gradients (HOG)

In the HOG concept, the approach is centered on the grouping of pixels into small cells rather

than using the individual gradient direction of each pixel in an image. Within each cell,

gradient directions are calculated and grouped into several orientation bins. The gradient

magnitudes are summed for each bin, with greater weight assigned to stronger gradients,

thereby reducing the impact of small random orientations resulting from noise. A picture of

the dominant orientation in that cell is generated by means of this histogram. This process is

applied to all cells, resulting in a representation of the image's structure [12,13,14].The HOG

features maintain the distinct representation of an object while allowing for some variations in

shape. An experimental image version enhanced with HOG features is depicted in Figure 3.

the dlib is used toestimate the location of 68 coordinates (x, y) that map the facial points on a

person’s face in the figure 4.

Figure 3. Experimental version of an image with HOG

Figure 4. Coordinates of a human face

Support Vector Machine (SVM)

Support Vector Machine (SVM) is a supervised learning model equipped with a corresponding

learning algorithm, designed for the analysis of data in tasks such as classification and

 AI Based High Performance Authentication… K. Indra Gandhi et al. 914

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

regression. [15,16]Capable of addressing both linear and non-linear problems, SVM proves

effective in a variety of practical scenarios. The algorithm constructs a line or hyperplane to

delineate data into distinct classes. SVM is employed in image training by extracting features

from images and assigning appropriate labels[28].

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a specialized form of multilayer perceptrons,

tailored with regulated connectivity patterns. Unlike traditional fully connected networks,

where every neuron in one layer is linked to all neurons in the subsequent layer, CNNs exhibit

a more structured architecture. They typically consist of an input layer, an output layer, and

multiple hidden layers, predominantly comprising convolutional layers. These convolutional

layers perform operations such as dot products or element-wise multiplications. Each

convolutional layer is usually followed by a Rectified Linear Unit (ReLU) activation function

and may include additional layers like pooling, fully connected, and normalization layers.

These layers collectively process the input data, making them aptly named "hidden layers" due

to the transformations applied by their operations [18, 19].

CNNs are renowned for their capability to handle complex computations across numerous

layers. However, the extensive dataset processing can lead to prolonged computation times

compared to methods like Histogram of Oriented Gradients (HOG). To mitigate this,

leveraging GPU acceleration can significantly enhance processing speed during both training

and inference phases [20, 29, 30].

GPU Programming

CUDA (Compute Unified Device Architecture) is an API and parallel computing platform

developed by NVIDIA for utilizing their CUDA-enabled GPUs for general-purpose

computing, known as General Purpose computing on Graphics Processing Units (GPGPU). It

provides developers and engineers direct access to the GPU's virtual instruction set and parallel

computational elements, enabling the execution of compute kernels [21, 22]. GPUs,

specialized processors designed for real-time, high-resolution 3D graphics and compute-

intensive tasks, are leveraged by CUDA to efficiently meet computational demands.Beyond

traditional graphical applications, CUDA has found extensive application in accelerating non-

graphical tasks across diverse fields like computational biology and cryptography. These

applications often experience significant performance enhancements, sometimes achieving

orders of magnitude improvement in processing speed [23, 24,31].

Recognition

All the prerequisites for face recognition have been completed. Moving on to the recognition

phase, when the camera is activated, faces are detected. After detecting a face, a comparison

is made with the encoded data[25,27].HOG matches the extracted and encoded features,

whereas CNN matches the values of all the layers in the image. This theoretically explains

why CNN has higher accuracy since it matches with many layers of the image, whereas HOG

only matches with the image features. Then, a boundary box is created around the face and

labeled with the matched name.

915 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

4. Experiment Setup

Hardware required

In this paper, the HOG algorithm was implemented on an Intel Core i5 with 4GB of RAM,

while the CNN algorithm was programmed on an NVIDIA GeForce GTX 1050 Ti, which has

approximately 768 CUDA cores. The graphics clock has a speed of 1290 MHz and the

processor clock has a speed of 1392 MHz .

Software required

The operating system used is Ubuntu 18.04.4 LTS, which is a result of contributions by

thousands of developers who aimed to create an ideal developer environment. To work with

the GPU, CUDA Toolkit 10.2 is utilized[20,21]. Python language is employed in this work, as

it provides rich set of libraries for face recognition system such as OpenCV, Dlib, and

TensorFlow.

5. Results and Discussions

Different images of the authenticated person are captured with various lighting conditions,

angles, and poses. Figure 5 , shows the working of building a face dataset.

Figure 5 Building a face dataset.

Images of the authenticated individual are captured under various lighting conditions, angles,

and postures. Figure 6 illustrates a sample dataset of these captured images.

Figure 6 Sample data set of authenticated person

 AI Based High Performance Authentication… K. Indra Gandhi et al. 916

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

The labeled face database is then saved with the person's name as shown in figure 7.

Figure 7 Dataset created and labeled

Once the face database is created, it is essential to encode the known faces. Encoding can be

performed using either HOG or CNN.The encoding of the recorded dataset using the HOG

method is depicted in Figure 8, and the process takes approximately 4.93 seconds to complete.

Figure 8 Encoding the data set with HOG

The figure 9 demonstrates the encoding of the recorded dataset using the CNN method. This

encoding process requires approximately 91.60 seconds to complete.

Figure 9 Encoding the data set with CNN

After encoding (training) the dataset using HOG or CNN, the faces can be recognized. HOG

with CPU can be used if the number of datasets is low, whereas CNN with GPU can be used

if the number of datasets is substantial. Following encoding, face recognition is performed.

For analytical purposes, encoding is done using both HOG and CNN methods.

917 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

(a) HOG+SVM (b) CNN

Figure 10 Face recognition in real time video

Figure 10 shows the recognized face in a real video. The recognized face is displayed in a

rectangular box with its accuracy and labeled name. Figure 3a represents HOG-based face

recognition on CPU with an accuracy of 62.91%. Figure 3b represents CNN-based face

recognition on GPU with an accuracy of 91.69%.

The proposed face recognition system can also be programmed to detect unknown faces and

label them as "Unknown." This helps in identifying unknown people on the premises and can

be used to prevent unauthorized access.

Figure 11 Identification of unknown and known face in real time video

From the captured video, unknown faces are detected and checked against a recorded dataset

of known individuals. If there is no match, they are labeled as "Unknown." The system can

also detect multiple faces simultaneously, as shown in Figure 11. It can process multiple faces

in real time and display their labeled names. Figure 11 demonstrates that the proposed system

is capable of identifying multiple faces and distinguishing between known and unknown faces

simultaneously in real time.

6. Performance Evaluation

Performance Metrics

The performance metrics of the proposed model are Accuracy, Precision, Sensitivity and F1

score. Table 1 represents the training and test dataset and Table 2 represents performance

evaluation of HoG and CNN.

 AI Based High Performance Authentication… K. Indra Gandhi et al. 918

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

Table 1Training and Test datasets
Algorithm Total no of

images in

dataset

Training to

Test Ratio

No. of

Training

Images

No. of Test

Images

CNN 2500 70:30 1750 750

2500 80:20

2000 500

HoG+SVM 2500

70:30 1750 750

2500 80:20

2000 500

Table 2 Performance evaluation of HoG and CNN
Algorithm Training to Test

Ratio

Accuracy

(%)

Precision

(%)

Sensitivity

(%)

F1-Score

(%)

CNN 70:30 91.253 95.461 96.596 96.027

80:20

92.133

94.513 93.683

97.583

HoG 70:30 90.569

94.897 95.389 95.627

80:20

92.056 93.458 92.789 95.787

Execution Time Analysis

In this proposed work, face recognition is processed using the HOG algorithm in the CPU and

the CNN algorithm in the GPU architecture.

Table 3 Execution Time comparison of HOG and CNN
No. of Input Images

in dataset

HOG+SVM CNN

Execution

Time (s)

Encoding Size

 (KB)

Execution

Time (s)

Encoding Size

(KB)

10 1.9 10.9 36.7 11

25 4.42 22.7 90.8 23.3

100 18 92.1 361 96.5

250 44.39 231.4 901 242.5

500 87.93 463.9 2117 486.0

To analyze execution time, datasets of different sizes are fed to both HOG and CNN methods.

Table 3 represents the execution time comparison between HOG and CNN algorithms with

varying dataset sizes.The encoding size of HOG is relatively constant, while the encoding size

of CNN increases with the number of input images. This is because HOG only needs to store

the features that it has extracted from the data, while CNN needs to store the entire network

architecture, as well as the weights of the network.

919 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

Figure 12 Comparison of HOG and CNN for different dataset size

Table 4 Comparison between CNN and HOG performance for different images
Sample

image

CNN HOG+SVM

1

2

3

 AI Based High Performance Authentication… K. Indra Gandhi et al. 920

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

 4

5

Figure 12 depicts a comparison of execution time between HOG and CNN for various dataset

sizes.The execution time of HOG is significantly faster than the execution time of CNN for

small datasets. However, the execution time of CNN starts to approach the execution time of

HOG as the number of input images increases. This is because CNN is a more powerful

algorithm that can learn more complex features from the data, and it therefore takes longer to

process each image.In the context of face recognition systems, HOG is often used as a pre-

processing step to extract features from images. These features can then be used by a more

complex algorithm, such as CNN, to perform face recognition

Accuracy analysis

To determine the accuracy of the given method, the detected and recognized faces are

compared with existing datasets, and the percentage of matching is calculated. For HOG, the

extracted features are matched with the encoded features, and the percentage of feature match

is recorded.

Figure 13 Performance evaluation of HOG and CNN with respect to Accuracy

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

A
c
c
u

r
a

c
y

 i
n

 %

Sample Image

Accuracy : HOG Vs CNN

CNN

HOG

921 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

In CNN, as it takes layers of the image, the values of the layers are compared with the extracted

values, and the percentage of accuracy is recorded. Five sample images were considered, and

the accuracy was measured for both HOG and CNN in different architectures.Table 2 presents

a performance comparison between CNN and HOG for various images. Figure 13 represent

the performance evaluation of face recognition through HOG and CNN algorithms, using CPU

and GPU, respectively. From Table 1, it is observed that CNN takes more execution time than

HOG since CNN extracts more features from the face. In Figure 5, it is observed that CNN

provides higher accuracy than HOG. Based on the results, it can be concluded that CNN has

higher accuracy in detecting and recognizing real-time video.The results of this table suggest

that HOG is a better choice for small datasets, while CNN is a better choice for large datasets.

However, the choice of algorithm also depends on the specific application. For example, if

speed is critical, then HOG may be a better choice, even for large datasets.

7. Conclusion

This paper explored two distinct artificial intelligence approaches, HOG and CNN, for real-

time video-based face recognition. The analysis involved implementing these algorithms on

different hardware platforms to assess their performance. The experimental results

demonstrated that CNN outperforms HOG in terms of accuracy. This is attributed to CNN's

ability to efficiently handle large datasets through parallel execution on GPU architecture,

resulting in improved encoding and accuracy. However, it is important to consider that GPU

architecture tends to be more expensive compared to CPU architecture. For cost-sensitive

image processing applications with smaller datasets, HOG remains a preferred choice.

Conversely, in scenarios requiring hard real-time image processing and larger datasets, CNN

proves to be more effective. This high-performance solution will be particularly useful for

industrial authentication systems, ensuring secure and efficient access control. Overall, the

selection between HOG and CNN depends on the specific requirements of the application,

balancing factors such as cost, dataset size, and real-time processing needs.

References
1. Viola P, Jones M. Robust real-time face detection. Int J Comput Vis. 2004;57(2):137-54.

2. Gupta I, Patil V, Kadam C, Dumbre S. Face detection and recognition using Raspberry Pi. In:

2016 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-

ECE); 2016 Dec 19-21; Pune, India. IEEE; 2016. p. 83-6. doi: 10.1109/WIECON-

ECE.2016.8009092.

3. Wang J, Li Z. Research on face recognition based on CNN. In: 2nd International Symposium

on Resource Exploration and Environmental Science; 2018 Apr 12-13; Wuhan, China. IOP

Conf Ser Earth Environ Sci. 2018;170:1-5. doi: 10.1088/1755-1315/170/3/032110.

4. Ciresan D, Meier U, Schmidhuber J. Multi-column deep neural networks for image

classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR); 2012 Jun 16-21; Providence, RI. IEEE; 2012. p. 3642-9.

5. Wazwaz AA, Herbawi AO, Teeti MJ, Hmeed SY. Raspberry Pi and computers-based face

detection and recognition system. In: 2018 4th International Conference on Computer and

Technology Applications (ICCTA); 2018 May 3-5; Istanbul, Turkey. IEEE; 2018. p. 171-4.

 AI Based High Performance Authentication… K. Indra Gandhi et al. 922

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

doi: 10.1109/CATA.2018.8398677.

6. Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: A convolutional neural network

approach. IEEE Trans Neural Netw. 1997;8(1):98-113.

7. Saypadith S, Aramvith S. Real-time multiple face recognition using deep learning on

embedded GPU system. In: APSIPA Annual Summit and Conference; 2018 Nov 12-15;

Honolulu, HI. APSIPA; 2018. p. 1318-24.

8. Kumar A, Kaur A, Kumar M. Face detection techniques: A review. Artif Intell Rev.

2018;50(3):331-56. doi: 10.1007/s10462-018-9650-2.

9. Shivashankar J, Bhutekar K, Manjaramkar AK. Parallel face detection and recognition on

GPU. Int J Comput Sci Inf Technol. 2014;5:2013-8.

10. Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV library.

Sebastopol (CA): O'Reilly Media; 2008.

11. NVIDIA. GeForce GTX 1050 Ti specifications [Internet]. 2017 [cited 2024 Aug 27]. Available

from: https://www.geforce.com/hardware/desktop-gpus/geforce-gtx-1050-ti/specifications.

12. Canonical Ltd. Ubuntu desktop features [Internet]. 2024 [cited 2024 Aug 27]. Available from:

https://ubuntu.com/desktop/developers.

13. Khan M, Chakraborty S, Astya R, Khepra S. Face detection and recognition using OpenCV.

In: 2019 International Conference on Computing, Communication, and Intelligent Systems

(ICCCIS); 2019 Jan 18-19; Greater Noida, India. IEEE; 2019. p. 116-9. doi:

10.1109/ICCCIS48478.2019.8974493.

14. Herout A, Josth R, Juranek R, Havel J, Hradis M, Zemcik P. Real-time object detection on

CUDA. J Real-Time Image Proc. 2011;6:159-70.

15. Prasad PS, Pathak R, Gunjan VK, Ramana Rao HV. Deep learning-based representation for

face recognition. In: Proceedings of the International Conference on Computational and

Cyberphysical Engineering (ICCCE); 2019 Mar 14-16; Chennai, India. Lecture Notes in

Electrical Engineering, vol. 370. Springer; 2019. p. 309-18. doi: 10.1007/978-981-13-8752-

8_33.

16. Pei Z, Xu H, Zhang Y, Guo M, Yang YH. Face recognition via deep learning using data

augmentation based on orthogonal experiments. Electronics. 2019;8(5):566. doi:

10.3390/electronics8050566.

17. Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns. In:

Proceedings of the European Conference on Computer Vision; 2004 May 11-14; Prague,

Czech Republic. Springer; 2004. p. 469-81.

18. Taigman Y, Yang M, Ranzato M, Wolf L. DeepFace: Closing the gap to human-level

performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition; 2014 Jun 23-28; Columbus, OH. IEEE; 2014. p. 1701-8.

19. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul

21-23; Providence, RI. IEEE; 2017. p. I-511.

20. Ranjan R, Patel VM, Chellappa R. HyperFace: A deep multi-task learning framework for face

detection, landmark localization, pose estimation, and gender recognition. IEEE Trans Pattern

Anal Mach Intell. 2019;41(1):121-35.

21. Liu Z, Luo P, Wang X, Tang X. Deep learning face attributes in the wild. In: Proceedings of

the IEEE International Conference on Computer Vision; 2015 Dec 13-16; Santiago, Chile.

IEEE; 2015. p. 3730-8.

22. Bansal A, Nanduri A, Castillo CD. Deep learning face representations for access control. In:

Proceedings of the IEEE International Joint Conference on Biometrics; 2017 Oct 1-4; Denver,

CO. IEEE; 2017. p. 1-8.

23. Li C, Luo J, Zhang J, Xie X, Li W, Zhang L. Face recognition using deep multi-pose

representations. IEEE Trans Image Process. 2021;30:576-88.

923 K. Indra Gandhi et al. AI Based High Performance Authentication...

Nanotechnology Perceptions Vol. 20 No. S10 (2024)

24. Parkhi OM, Vedaldi A, Zisserman A, Jawahar CV. Deep face recognition. In: Proceedings of

the British Machine Vision Conference; 2015 Sep 7-10; Swansea, UK. BMVA Press; 2015. p.

41.1-41.12.

25. Gudla SS, Sastry NMA. A survey on face recognition methods. In: Proceedings of the

International Conference on Advances in Computing and Data Sciences; 2021 Apr 9-10;

Dehradun, India. Springer; 2021. p. 182-91.

26. Zhu X, Ramanan D, Fowlkes CC. Face detection, pose estimation, and landmark localization

in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition; 2012 Jun 16-21; Providence, RI. IEEE; 2012. p. 2879-86.

27. Gao S, Zhao M, Wang X, Zhang G. Face recognition based on deep learning: An overview.

Int J Comput Vis. 2022;130(2):466-88.

28. Li H, Luo J, Li S, Zhou Z, Fu H. Recent advances in deep learning for face recognition: A

comprehensive survey. Neurocomputing. 2022;503:214-35.

29. Shen T, Huang X, Zeng Z, Li X, Zhang G. An overview of face recognition: Techniques,

datasets, and applications. ACM Trans Multimedia Comput Commun Appl. 2022;18(1):1-27.

30. Mishra DK, Kumar D. Face recognition system using artificial intelligence: Comparison of

classifiers. In: 2023 4th International Conference on Electronics and Sustainable

Communication Systems (ICESC); 2023 Aug 4-6; Coimbatore, India. IEEE; 2023. p. 1527-

32. doi: 10.1109/ICESC57686.2023.10193514.

31. Indra Gandhi K, Kannan G, Jawahar PK. Real-time enhanced efficient thread level parallelism

scheme for performance improvement in heterogeneous edge computing. Multidiscip Sci J.

2024;9:2024145-2024145.

