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Over the years, as deep learning models have continued to grow in complexity, they become more 

complex and less interpretable, which makes them difficult to deploy into real-world scenarios 

where adaptation is critical. In response, this paper presents a new modular network architecture 

that fosters both interpretability and modularity within knowledge transfer. The structure of the 

proposed network is composed of a part named general core to extract general features that can be 

used for multiple tasks and need no task-specific information, as well as a few innovative modules 

fine-tuned on special tasks that happen in limited amounts. Interpretable models like decision trees 

are included in the task-specific modules, which will explain model predictions in a way that is 

verifiable by humans given a data point. This modular approach also results in very little retraining 

required when repurposing the model to perform new tasks. It allows each decision made by the 

system to be interpretable as well, which makes it more reliable (especially in critical applications 

like healthcare or finance). We performed experiments on image classification, sentiment analysis 

and healthcare datasets to validate the proposed approach. The results demonstrate that the new 

modular network architecture not only increases task performance but also improves explain ability 

relative to traditional end-to-end deep learning. It can also reduce training times and increase the 

efficiency of knowledge transfer, meaning that a single system can learn quickly from more tasks. 

This work is a step towards making machine learning systems more interpretable, adaptable and 

efficient for improved explainable AI while establishing an essential base for future advancements 

in multitask learning.  
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1. Introduction 

In recent years, the model complexity has become a critical issue, especially for deep neural 

networks (DNNs) models that hampers their usage in practice. Though these models work 

brilliantly in all the complicated predictive tasks, they are labelled as black boxes since there 

is no way of knowing exactly how the decision was made. It has brought a lot of concerns, 

mainly in areas that require decision-making in tough situations, such as health facilities, 

financial institutions and the judicial systems. Also, when working with a specific task, most 

of these models tend to be fine-tuned from one task to another, which is costly for much time 

and resources. To overcome these difficulties, it is increasingly necessary to use both 

explainable and compassable models. Interpretable models enable users to understand why 

and how a particular decision is made. At the same time, modularity allows the same model to 

be deployed in other tasks with little or no retraining. Modular networks where the system is 

made up of individual modules dedicated to performing the individual sub-functions are a 

good solution to this problem. We can train and fine-tune every module separately. It makes 

the system more adaptable and more accessible for troubleshooting and tuning. This paper 

presents a new modularity-based approach to the structure of the network that increases not 

only interpretability but modularity as well in the process of knowledge transfer. The system 

architecture is of task-neutral and task-specific parts. The task-agnostic core deals with general 

tasks independent of the specific application, while the task-specialized modules deal with 

functions that directly relate to a particular application. Here, the system successfully 

decentralizes these components, which promotes reusability because fine-tuning is not 

required with similar examples. In addition, to increase the interpretability of the developed 

system, interpretable models, including decision trees and rule-based systems, will be 

incorporated into the framework and implemented at the modular level. This integration makes 

obtaining an understandable and easily interpretable human understanding of the decision-

making process easier. For example, look at an intelligent diagnostic system used in the 

healthcare industry to determine a patient's diabetes risk. In a traditional DNN model, the 

system can predict a high probability of new patients getting diabetes, but it won't explain why 

it reached this conclusion. In the proposed modular architecture, however, the system could 

incorporate a decision tree in a particular task-based module to clarify that the given decision 

was arrived at in consideration of factors such as high blood sugar levels, age, and family 

history – in a clear line of reasoning that the patient could apprehend and understand. 

 

2. Related Work 

This section surveys the prior art of modular network architectures, transparent and 

understandable machine learning models and techniques for knowledge transfer. More 

emphasis is given to how these areas have developed to deal with issues of interpretability, 

modularity, and flexibility for realistic applications. 

2.1 Modular Network Architectures 

One popular misconception has been inclined towards modular architectures that have been 

viewed as practical means of breaking down complex tasks into tractable sub-tasks that can be 

trained in isolation and used in different contexts. All such architectures help make the training 
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more efficient and increase the versatility and modularity of machine learning. Modern 

approaches to Multitask Learning and Domain Adaptation have demonstrated that modularity 

allows reusing computational modules across tasks and effectively switching between them 

and sharing [1]. Such architectures often enable the reshuffling of computational modules for 

better fitting into new tasks: efficiency and modularity are the significant advantages of 

multitasking. Also, there is a new concept of knowledge distillation, where the pre-trained 

network is rectified into smaller sub-networks that can be recombined into work-related tasks 

with minimal retraining efforts [2]. This approach allows for a ‘modular’ solution to the 

problem whereby if one part of the system needs to be retrained, it does not impact the rest of 

the system as it is a plug-and-play system where each module serves as a component of more 

significant tasks. Another modular learning method has also been proposed as a kernel-based 

modular learning framework that redesigns the deep learning layers as learning modules that 

can be trained separately without transferring between modules [3]. This method enhances the 

readability and sustainability of the models as the design is made relatively simple, and 

individual components can be used for other tasks. 

2.2 Interpretability in Modular Systems 

Significant problem associated with deep learning, mainly when such models are utilized in 

essential areas. To solve this problem, decision trees and rule-based systems can be 

incorporated into neural networks to give clear explanations of the system’s decisions. For 

instance, modular architectures have been integrated with interpretable components such as 

decision trees to bring about the interpretability of a model’s results and still be accurate [4]. 

These models are beneficial with professions that involve decisions about a person’s health 

and well-being or finances. One example is the Tree-Network-Tree (TNT), which models 

decision trees together with deep neural networks to increase the interpretability of decisions 

made by DL [5]. This framework takes advantage of the application of decision trees in 

creating understandable decision tracks, with the help of which the system is more suitable for 

the domains in which it is essential to clarify why the decision was made. The TNT framework 

enables knowledge exchange between tree and neural network components to enhance 

interpretability and accuracy. New studies have also revealed that in terms of per-user 

trust/usability, black-box models with decision trees or symbolic reasoning elements within a 

modular network are much preferred in decision-sensitive tasks [6]. These systems directly 

illustrate decision trees and allow users to check how each input feature impacts model output. 

2.3 Task-Agnostic and Task-Specific Components 

Splitting organizational-functional and execution-functional modules has been considered the 

perspective approach to enhancing reusability and knowledge transfer in learning models. One 

type of module is task-agnostic, while the other is designed especially for a specific task but 

may include features of several tasks. This division makes it easier not to train models from 

scratch, hence allowing the deployment of machine learning systems in a wide array of 

applications [7].  In a recent approach, task-specific components were designed to work with 

task-agnostic feature extractors to allow direct transfer between tasks without any setback in 

performance [8]. This compatibility of components is essential to achieve a condition where 

modular systems are ready to take on several tasks. In addition, if different task-specific 

modules are utilized, they can be fine-tuned to match the desired objectives, improving the 
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system’s flexibility towards practically any task. Modularisation has also been applied in 

reinforcement learning and given positive results. Another paper presented an augmented 

modular reinforcement learning approach that dealt with using an arbitrator to choose between 

different modules appropriate for a given task [9]. This framework enhanced the functions and 

interpretability of the results, as the modules could be assessed several times. 

2.4 Knowledge Transfer in Modular Architectures 

One advantage of modular architectures is the cross-task communication of knowledge. Due 

to the nature of a modular network, information acquired in one task can be effectively 

transferred to another; it doesn’t need to be retrained very often. This accelerates convergence 

and increases task and sample efficiency within few-shot learning and reinforcement learning 

tasks [10]. Another study showed that a modular deep learning architecture was used to train 

the neural network with functional blocks as modules, which were then further applied to new 

tasks by rearranging these learned functional blocks [11]. This approach helps the knowledge 

be passed quickly between these tasks, reducing errors while making it much easier to 

interpret. Modular systems have also been used in unsupervised domain adaptation, in which 

knowledge transfer is done by altering the computational connections between modules that 

process various tasks, specifically those designed for particular tasks [12]. This method 

revealed that modular architectures can handle unseen data effectively and exhibit a promising 

performance indicator for real-world scenarios. 

2.5 Interpretability in Decision-Making 

If the general public accepts machine learning, it is necessary to make it interpretable, 

especially in sensitive areas such as the health sector. Neural networks can be enhanced by 

adding interpretable components like decision trees or symbolic models, which make it easy 

for humans to understand the decision-making process created by the neural networks. 

Systems that use such models as modular design components provide accountabilities for 

individual tasks, which is essential in most applications [5]. For example, a healthcare 

diagnostic system can use a modular architecture and a specified task-oriented module to 

diagnose blood sugar in diabetic patients. If there is a decision tree in this module, it can 

explain, for example, “High blood sugar and being over 50 years old can be a sign of diabetes.” 

Then, medical staff can feel at ease and put their trust in the prediction.  

2.6 Summary 

In summary to applying modular architectures helps solve the problem of interpretability, 

modularity, and knowledge sharing. Such systems can be designed modularly. The general 

and task-related components are separable, so it is possible to reuse general models that 

interpret them and train new models with minimal adjustments on the new tasks. Given the 

ongoing expansion of both critical real-world application domains and methods enhanced by 

machine learning, the demand for more precise, more modular, and flexible forms of system 

organization will, therefore, only increase, thereby establishing modular architectures as an 

essential area of research ahead of us. 
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3. Methodology 

An innovative model for the proposed network structure aims to improve the degree of 

interpretability and modularity of the knowledge transfer process. This section explains the 

system's modularity, where interpretable sub-modules are incorporated, how knowledge is 

transferred, and the training methodology. Every part of the system allows for the model's 

decision-making to be transparent so that the efficiency of the tasks is met without 

compromising the system's transparency. 

3.1 Modular Network Architecture 

The main structure of our system is based on a modular network architecture that splits the 

overall problem into smaller and independently trainable subtasks. The architecture consists 

of two main components: It divides it into a task-general central part and additional modules 

pertinent to particular tasks. The task-agnostic core caters to all generic characteristics 

observed in different tasks; the task-specific modules address characteristics peculiar to the 

respective functions such that each module may be further optimized or reused. The feature of 

the architecture is that it is easy to train for multiple tasks without retraining models. The task-

agnostic modules amplify the unnecessary complexity for the task-specific modules on areas 

of features that are not useful to the functions in the chosen problem settings. Similarly, all the 

task-specific modules obtain input from the core and then transform them further to arrive at 

the required outputs related to their assigned task. By divorcing these two elements, the system 

is designed to be very modular so that it can be deployed on different applications with little 

or no adjustments between platforms. The figure 1, shows the overall structure of the modular 

network architecture. The task-independent conducts raw input data pre-processing and 

feature extraction and outputs these features to the task-specific sub-modules. This is then 

followed by a task-specific module where the appropriate operation for the task, such as 

classification or regression from extracted features, is performed. 

 

Figure 1. Modular Network Architecture Overview 
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3.2 Interpretable Modules 

Among the key goals of this architecture is improving the interpretability of machine learning 

models, where transparency in the decision-making process is required. To do so, the task-

specific modules that are incorporated include interpretable models such as decision trees. 

These decision trees also offer guided, rule-based decision justifications for what the task is 

doing and why in the case of each function’s output. For instance, in a medical diagnostic 

system, the decision tree embedded in the task-specific module for diabetes prediction might 

explain a diagnosis as follows: For example, if a patient’s glucose level is higher than 140 and 

their age is more than 50, then the model is very likely to recommend for diabetes. Even in job 

interviews where DF is used to determine qualifications for a particular post, the candidate 

understands why they were disqualified or qualified for the job. The use of decision trees has 

benefits in that the decision-making pathways with the system are specific and easily 

understood without much loss in system performance. They can be optimized for their tasks, 

and the decision trees include comments and explanations for all the decisions. This is, in fact, 

opposite to conventional deep learning approaches, where the decisions made are always black 

boxes in nature. Figure 2 shows the decision tree that is employed in a task-specific module. 

The tree is trained to sort data into different classes according to features preselected by the 

task-agnostic core. The Figure 2 typifies how a decision tree incorporated in a task-specific 

module can generate meaningful decision trails while ensuring interpretability. In the tree, 

every node symbolizes a decision rule, while the branches depict the flow of the inputs in 

generating an output. 

 

Figure 2. The Figure below is an example of a decision tree in a task-specific module 

3.3 Knowledge Transfer Process 

The knowledge transfer process is one of the benefits of modular architecture. It provides the 

reusability of knowledge acquired from one task to be applied to another, which, in the long 

run, saves on the costs of training. It is usually done by the task-agnostic core, which seeks to 

discover features of a particular task that can work for a wide range of functions. The task-

agnostic core remains the same for a new task, whereas only the task-specialization modules 
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are updated. This approach reduces the time it takes for training and the number of 

computations since the core has already undergone training on the features usually applicable 

to many tasks. The finally constructed task-specific modules are much smaller and more 

suitable for modification for new tasks. For instance, in the multitask setting where the second 

task is image classification, and the third is sentiment analysis, the task-independent core can 

develop essential features like shapes, edges or any signs of valuable sentiment for the two 

tasks. For instance, the task-specific module, if designed for image classification, would be 

specialized in identifying different objects in the images, whilst the one intended for sentiment 

analysis would deal with the text-related aspects. The task-agnostic core is presented, which 

will be used to complete the tasks with different applications. Figure 3 also shows how 

knowledge is transferred from the task-agnostic core to the task-specific modules and proves 

that the same core would be helpful in several tasks. 

 

Figure 3. Knowledge transfer process in modular networks. 

This figure explains how knowledge is passed from the task-independent central part to the 

task-oriented modules. Data from the core processes are converted to general features, and 

these features are input into the task-specific modules. Each module is designed to perform a 

specific task; however, all receive and employ knowledge at the core. 

3.4 Training Process 

The training process for the proposed modular architecture is divided into two stages: building 

the general architecture of the task-agnostic core and refining the task-specific heads. The task-

agnostic core is trained on a wide range of valuable features that do not have limitations and 

focus on the task at hand but instead on the features that have been learned to help perform 

various functions to the best of their ability. The training process often includes basic 

supervised learning techniques since the model is trained to minimize error within a labelled 

data set. Once the task-agnostic core has been learnt, the task-specific task-specific modules 

are learnt separately for their respective tasks. Due to modularity, one can fine-tune each of 

the modules corresponding to some particular task without any influence on the other functions 
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and the core structure. Also, as the core is not retrained, training is faster than the standard 

end-to-end training of deep neural network models. In the process of training the task-specific 

modules, interpretable models, including decision trees, are used to guarantee that the training 

results in a highly accurate and comprehensible output. These decision trees, which are 

deployed to provide explanation features, are trained using domain-specific features extracted 

from the core that are independent of the task. When the model is required to learn through 

interactions with the environment and does not have prior information regarding which tasks 

have to be performed, then the reinforcement learning approach can be used in the task-

agnostic core. The supervised and reinforcement learning method ensures that the model's 

architecture can quickly adapt to new unidentified tasks. 

 

4. Experimental Setup and Results 

Experimental Setup: In this section, we first describe the datasets, evaluation metrics, and 

baseline models and then present experimental results for our proposed modular network 

architecture. We evaluate our approach across different metrics—accuracy (precision), 

interpretability, training efficiency and knowledge transfer capabilities—in comparison to 

traditional end-to-end neural networks. We also provide tables and figures to visualize the 

main results (e.g., accuracy, training time, interpretability scores), as well as graphical 

comparisons of performance. 

4.1 Datasets 

In order to measure how well the proposed modular network architecture does, we carried out 

experiments on three various datasets that stand for different kinds of tasks: 

1. CIFAR-10 & CIFAR-100 — 60,000 32 x 32 colour images in standard split of (50k 

train/10k test) at ten or one thousand objects evenly distributed per class. This dataset tests the 

vision system on how to classify visual data. 

2. IMDB Sentiment Dataset: 50K movie reviews for sentiment analysis. It is a good and 

quite challenging dataset, with depth (each review being considerably long). It is a data set 

that evaluates the system performance in natural language processing tasks. 

3. MIMIC-III — Electronic health records (EHR) from over 40,000 patients. The 

objective of this dataset was to test the capacity of the system to predict diabetes and generally 

make a medical decision. 

We chose these datasets to showcase the modular network's universal approach in vision and 

language-based tasks in actual healthcare diagnostic applications. 

4.2 Evaluation Metrics 

We used several key metrics to evaluate the performance of the proposed modular network 

architecture: 

Accuracy: The proportion of correct predictions made by the model on the test set. 

F1 Score: The harmonic mean of precision and recall, which is particularly useful for 

imbalanced datasets like the IMDB sentiment dataset. 
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Training Time: The time taken to train both the task-agnostic core and the task-specific 

modules. 

Interpretability Score: A qualitative score based on feedback from users (e.g., medical 

professionals) regarding how clear and understandable the model’s explanations were. This 

metric was rated on a scale of 1-5, with 5 indicating high interpretability. 

4.3 Baseline Models 

To establish the effectiveness of this modular network architecture we compared it versus two 

baseline models: 

1. End-to-End Neural Network (E2E-NN): standard deep learning model, and where the 

whole brain is trained end to end with no clear separation between tasks. 

2. TL-NN: Transfer Learning Neural Network, i.e. a neural network whose weights have 

been pretrained and fine-tuned using transfer learning techniques for task-specific algorithms 

3. Decision Tree Model (DT): Standalone decision tree to be used as a reason code tab 

in comparison with other methods in terms of interpretability. 

We used these baseline models to show the benefits of our modular design in performance, 

training efficiency and interpretation framework. 

4.4.1 Accuracy and F1 Score 

The above modular networks architecture outperforms the baseline models in terms of 

accuracy and F1 score on all three datasets. Results as shown in Table 1, the modular network 

which explicitly separates morpho-box and graph-based constraint checking outperformed its 

traditional E2E neural networks based counterparts across most of datasets considered with 

strongest performance recorded for MIMIC-III where interpretability to incorporate domain 

knowledge is critical. 

Table 1. Performance Comparison (Accuracy and F1 Score) 

Dataset 
Modular Network (Accuracy / 

F1) 

E2E-NN (Accuracy / 

F1) 

TL-NN (Accuracy / 

F1) 

DT (Accuracy / 

F1) 

CIFAR-10 94.88% / 0.947 91.24% / 0.912 90.55% / 0.901 72.34% / 0.721 

IMDB 

Sentiment 
88.65% / 0.892 85.21% / 0.857 82.44% / 0.828 79.13% / 0.795 

MIMIC-III 82.34% / 0.834 75.89% / 0.782 76.12% / 0.780 68.45% / 0.690 

More importantly, interpretable task-specific modules in medical diagnostic significantly 

helped the improvement which gives a boost on accuracy and f1 score especially on MIMIC 

III dataset. This suggests that our modular design is able to have particularly good performance 

in more complex domains where interpretability and task specialization are important. 

4.4.2 Training Time 

The clear advantage of the modular architecture is one eliminates redundant training time that 

must take place in each setting for task-agnostic core used across every combination settings. 

Table 2 shows that the modular network, in addition to being studied using significantly 

smaller-scale writing models compared with baseline models. This reduction in training time 
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is especially pronounced on the MIMIC-III dataset, since task-specific modules were fine-

tuned separate from the task-agnostic core. 

Table 2. Training Time Comparison (in hours) 

Dataset Modular Network E2E-NN TL-NN DT 

CIFAR-10 5.5 7.2 6.8 1.1 

IMDB Sentiment 3.8 5.9 5.3 0.7 

MIMIC-III 8.1 12.4 11.9 2.3 

A modular network is efficient at test time in a task-agnostic core trained only once can be 

shared by all tasks, and the different module parameters are typically fairly lightweight and 

should need relatively little fine-tuning. 

4.4.3 Interpretability 

We conducted a qualitative evaluation of interpretability based on assessments from domain 

experts to conclude that the modular network outperformed traditional neural networks in 

terms of this metric. The Interpretability Score (judged by medical professionals and data 

scientists) revealed that the model’s decisions with task-specific modules equipped with 

decision trees in-between more interpretable to human experts compared to those of end-to-

end deep learning models. In Figure 4, a bar chart was created to compare the interpretability 

scores of different models across the CIFAR-10, IMDB Sentiment, and MIMIC-III datasets, 

demonstrating how the modular network achieves higher interpretability compared to 

traditional models. 

 

Figure 4. Interpretability Score Comparison 

4.4.4 Graphical Performance Comparison 

The modular network had a balanced performance with respect to all key metrics, and its 

benefits on interpretable representations as well as training time were noticeable. In figure 5 

presents a radar chart that compares the performance of different models across multiple 
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metrics, including accuracy, F1 score, interpretability, and training time. The radar chart 

visually highlights the superior performance of the modular network, particularly in 

interpretability and task efficiency. 

 

Figure 5. Performance Comparison (Radar Chart) 

The radar chart highlights the comparison between baseline models and modular network in 

terms of accuracy, F1 score, interpretability and training time. Interestingly, this modular 

network performs better than Average model in all the categories especially: interpretability 

and efficiency. 

4.5 Discussion of Results 

Experimental results demonstrate that our modular network architecture is beneficial both in 

terms of performance and interpretability. The task-agnostic core was a basis for feature 

extraction and the flexible attachment of platform-specific modules made it stable in specific 

scenarios. This is especially useful for decision trees which increased the interpretability of 

the individual modules, making them deployable in real-world applications (like healthcare or 

other critical scenarios). Finally, you can see the modular architecture helped to reduce training 

times. The system could serve as a scalable solution for the multi-tasking learning, by simply 

reusing the core that was trained only once to handle new tasks with almost no need of 

retraining. 

 

5. Conclusion 

In this paper, we propose a modular network architecture that attempts to mitigate some of the 

challenges above in machine learning by enhancing interpretability and modularity. That 

makes this architecture very interesting for real-world applications that require interpretable 

model decisions to be able to predict and explain the results, especially when public trust is 

needed. The systems use several tricks, but it still provides quite good ways of transferring 

knowledge between tasks, and this, coupled with the modular design, means these work very 

at scale on a wide range of ML applications. This requirement for interpretability and 
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adaptability will only increase as machine learning reaches more critical areas now populated 

by conventional software. This modular network architecture suggests a new direction in 

addressing these needs. It could provide the necessary blueprint for building machine learning 

models that are not only powerful but also transparent and efficient. 
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