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Access to safe drinking water is essential for human health, necessitating effective assessment and
prediction of water potability. This study addresses the challenges of implementing machine
learning models for water potability prediction in resource-constrained environments, focusing on
advanced data preprocessing techniques to optimize datasets and enhance model accuracy. The
research highlights the importance of data cleaning, feature engineering, and dimensionality
reduction in improving predictive modelling efficiency on personal computers with limited
computational power. The methodology follows PRISMA 2020 guidelines, involving rigorous
screening and selection of research papers from credible databases. Data cleaning processes address
common data potability issues, ensuring reliability by removing inconsistencies, outliers, and
missing values. Feature engineering techniques extract relevant features to improve model
discriminative power, while dimensionality reduction methods, such as PCA and autoencoders,
manage high-dimensional data, enhancing model efficiency and interpretability. The literature
review underscores the critical role of these preprocessing techniques in various domains,
particularly water potability prediction. The results demonstrate that meticulous data cleaning,
strategic feature engineering, and advanced dimensionality reduction consistently correlate with
higher model accuracy. Studies achieving high accuracy emphasize robust preprocessing, real-time
data handling, and deep learning models that automatically perform feature extraction. In
conclusion, optimizing data preprocessing is crucial for accurate and efficient water potability
prediction, especially in settings with limited computational resources. This research contributes to
making predictive modelling more accessible and applicable in diverse contexts, ensuring reliable
and precise outcomes for water potability assessment.

Keywords: Water Potability; Machine Learning; Data Preprocessing; Data Cleaning; Feature
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1. Introduction
1.1. Background on water potability and the role of Al.

The term "potability" refers to the suitability of something for drinking or consumption. When
it comes to water, potability indicates whether the water is safe and clean enough for human
consumption without causing harm or illness. Access to safe drinking water is a fundamental
prerequisite for human health a wellbeing, making the assessment and prediction of water
portability a critical aspect of public health efforts [1]. In recent years, machine learning has
emerged as a promising tool to augment water potability assessment and predictive modelling
[2]. However, the implementation of such models in resource-constrained environments,
particularly those dependent on personal computers (PCs), faces notable challenges due to
computational limitations. This study seeks to address these challenges by focusing on
advanced data preprocessing and feature engineering techniques, aiming to optimize water
potability datasets and improve the accuracy of water portability prediction models. In
resource-constrained settings, the computational constraints of PCs can hinder the deployment
of sophisticated machine learning models for water potability prediction [3]. This study
recognizes the importance of overcoming these limitations and emphasizes the role of data
preprocessing in enhancing model efficiency. This is by specifically targeting data cleaning,
feature engineering, and dimensionality reduction, the research aims to streamline the data
preparation pipeline and alleviate computational burdens, making predictive modelling more
accessible and applicable in diverse contexts. The study's primary focus lies in identifying and
mitigating common data potability issues inherent in water potability datasets. Through
rigorous data cleaning processes, the research ensures that the input data is free from
inconsistencies, outliers, and missing values, providing a solid foundation for subsequent
analysis. Additionally, feature engineering methods are explored to extract pertinent
information from the datasets, thereby improving the discriminative power of the predictive
models. These efforts collectively contribute to the overarching goal of optimizing water
potability datasets for more accurate and efficient water portability prediction, particularly in
environments where computational resources are limited.

1.2. Objectives and scope of the literature review

The aim of the study is identifying and mitigating common data potability issues is consistently
addressed across various research papers through meticulous data cleaning, feature
engineering, and dimensionality reduction techniques.

The research questions:

1. How does data cleaning impact the reliability and accuracy of machine learning models
for water potability prediction?

2. How does feature engineering contribute to improving the discriminative power of water
potability datasets and enhance model interpretability?

3. How do dimensionality reduction methods manage high-dimensional data while
preserving essential information for accurate model predictions?
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2. Methodology

This review focuses on Data Preprocessing for Improved Water Potability Prediction though
Data Cleaning, Feature Engineering, and Dimensionality Reduction Techniques. The study
used the PRISMA 2020 guidelines. The checklist and flowcharts of PRISMA were retrieved
from http://prisma-statement.org/. The below section covers these subtopics eligibility criteria,
information sources search strategy, selection procedure, data collection, data collection
procedure and data items, bias assessment, and reporting as well as synthesis method in order
to explained how the PRISMA 2020 guidelines was followed in this study.

2.1. Eligibility criteria

The studies used in this study were selected from scholarly databases. The BiBTex files of the
studies were downloaded using Harzing’s Publish and Perish. Downloaded research papers
were imported to Mendeley Reference Manager to check if there is any duplication. Mendeley
Reference Manager was further used to merge downloaded research papers from various
databases. Research papers identified as duplicates were removed and the remaining research
papers were checked through screening their abstracts if they are aligned with the objective of
the study. Two reviewers were used to screen the remaining research papers and discuss the
inconsistencies until a mutual agreement was reached. The following questions were used as
a criterion to decide the inclusion or exclusion of the literature:

1. Isthe study aligned with the objectives of our study?
2. s the study written in English?

3. Is the study addressing data cleaning and or feature engineering and or dimensionality
Reduction.

4. How is the quality of the study?

In an attempt to assess the quality of the literature from the research papers, the following
guestions were asked.

1. Isthe aim of the study clearly stipulated?

2. Is there evidence presented that is enough to substantiate the finding of the study?
3. Does the outcome(s) align with the objectives of the study?

4. How is the overall structure of the research study?

In order to improve the quality of our findings and assess any improvements within the
proposed topics only reach papers published from 2015 to 2024 were reviewed. Research
papers meeting the criterion of the study were included and those that did not were excluded.

2.2. Information sources

The research papers were searched from credible sources from PubMed, Scopus, Semantic
Scholar, Web of Science, Crossref, Google Scholar, etc Google Scholar, ISI Web of science
and IEEE Explore. These research papers downloaded were mainly from journals whose
subjects are water research, sustainability, environment, remote sensing, and hydrology.
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2.3. Search strategy

A particular pattern was followed to search for research papers. Keywords and Boolean
operators were used to search for research papers: “Water Potability” AND “Machine
Learning” OR “data cleaning” OR “feature engineering” OR “dimensionality reduction”. In
order to focus on the research studies that are written in English an English filter was used.

2.4. Selection process

Using the strategies mentioned in our search criteria a total of 237 papers were selected from
the mentioned information source.168 papers were screened out during abstract scanning and
69 papers were selected after full-text reading. The final dataset had a total of 31 studies. The
selection process was based on our eligibility criteria.

Figure 1 outlining the results obtained after following the inclusion and exclusion criteria.
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Figure 1:PRISMA 2020 inclusion and exclusion flow diagram (edited)[ Retrieved from
http://prisma-statement.org/.]

2.5. Data collection and data items

Two reviewers with qualifications and research knowledge of application of machine learning,
independently screened the literature and resolved any discrepancies through discussion until
they reached a consensus. However, some selected studies were not openly accessible, so only
their abstracts were evaluated. The references for these publications are [1], [4], [5], [6], [7].
[81, [9], [10], [11], and [12]. These eleven studies represent a small portion of the total seventy,
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and therefore do not significantly affect our analysis results.
2.6. Synthesis Method

Below here is the histogram displaying the distribution of methodologies used in potable water
quality monitoring research. The methodologies include traditional techniques, electronic nose
systems, deep learning and Artificial Intelligence (Al), innovative monitoring technologies,
and intelligent systems and Internet of Things (IoT). The histogram shows the number of some
papers that employ each methodology, providing a visual summary of the research landscape
in this field.
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Figure 2: Histogram displaying the distribution of methodologies used in potable water
guality monitoring research.

3. Findings

3.1 Overview of Al techniques used in water potability studies.

Data cleaning, feature engineering, and dimensionality reduction are integral components of
the data preprocessing pipeline in various domains, including water potability prediction [7].
These techniques play a crucial role in enhancing the water potability prediction and
improving the performance of predictive models. In the context of water potability prediction,
the synergistic application of data cleaning, feature engineering, and dimensionality reduction

techniques is essential for refining datasets, improving model interpretability, and ensuring
that predictive 8models accurately capture the complexities of water potability dynamics [9].

3.1.1. Data Cleaning
Data Cleaning is also known as data cleansing or data preprocessing. Data cleaning involves
Nanotechnology Perceptions Vol. 20 No. S11 (2024)
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identifying and rectifying errors, inconsistencies, and inaccuracies within a dataset [7]. In the
context of water potability prediction, this process is vital for ensuring the reliability of input
data. Common data potability issues, such as missing values, outliers, and measurement errors,
can adversely affect the accuracy of predictive models. Data cleaning techniques may include
imputation methods for missing values, outlier detection and treatment, and validation checks
to identify and rectify errors in data entry [8]. Data cleaning methods follow the following

steps as reflected in figure 3.
Removal of |
unwanted
observations ‘

Fixing
Structural
errors

Handling
missing data

Managing |
Unwanted ‘
outliers I

Figure 3:Data Cleaning steps [https://www.geeksforgeeks.org/]

3.1.2. Feature Engineering

Feature engineering involves transforming and creating new features from existing ones to
improve the discriminative power of the dataset as demonstrated in Figure 4. In water
potability prediction, relevant features extracted through engineering techniques can provide
a more comprehensive representation of the underlying patterns. Scaling, normalization, and
transformations are commonly used feature engineering methods to highlight important
information and mitigate the impact of skewed distributions. Feature engineering is crucial for
uncovering latent patterns in water potability datasets and improving the accuracy of predictive

models [7][8].
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Figure 4:Feature Engineering illustration [https://www.geeksforgeeks.org]
3.1.3 Dimensionality Reduction

High-dimensional datasets, common in water potability studies, can pose computational
challenges and reduce the efficiency of predictive models. Dimensionality reduction
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techniques aim to mitigate these challenges by reducing the number of features while retaining
essential information [8]. Principal Component Analysis (PCA), t-Distributed Stochastic
Neighbor Embedding (t-SNE), Linear Discriminant Analysis and Generalized Discriminant
Analysis are popular dimensionality reduction methods used to capture the variance in data
while reducing its dimensionality as illustrated in figure 5. These techniques contribute to more
efficient and scalable predictive models without sacrificing accuracy [8].

Dimensionality Reduction

Figure 5:Dimensionality Reduction illustration [https://www.geeksforgeeks.org]
3.2 Detailed analysis of studies under each thematic area

Table 1 provides a structured overview of the thematic areas covered by each study and their
specific focus within the context of water quality monitoring. Each paper is applying different
machine learning algorithms using a certain type of data and such is regarded a thematic area
in this research paper.

Table 1:Analysis of studies under each thematic area

Thematic Area Study Key Findings Methodologies
Nanosensors for Water | [14] High sensitivity and | Utilization of nanomaterials
Quality Monitoring selectivity ~for  detecting | (carbon nanotubes, metal
contaminants. nanoparticles, quantum) dots)
integrated into sensor devices.
loT-based Smart Water | [15] Continuous monitoring and | Reviews loT  architectures,
Quality Monitoring real-time  data  through | protocols, sensor networks, data
connected devices. acquisition modules, and cloud-
based analysis.
Real-time Monitoring | [16] Effective  for  real-time | Development and deployment of
with Chemical Sensors monitoring of parameters | sensor arrays; techniques include
like  pH, conductivity, | electrochemical sensing, optical
dissolved oxygen, specific | sensing, biosensing.
ions.
Al and Machine | [3] Al techniques are crucial for | Reviews Al  models  for
Learning for Water monitoring and assessment. predicting parameters, anomaly
Quality Monitoring detection, data interpolation,
trend analysis.
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Human Consumption

quality ~ monitoring  for
human consumption.

Statistical and Index- | [17] Water Quality Index (WQI) | Discusses calculation of WQI
based Methods and Pollution Index (PI) are | and Pl using statistical methods
valuable tools for assessing | in various water bodies.
water quality and pollution
levels.
Applications of Deep | [2] Deep learning applications | Reviews state-of-the-art deep
Learning are advancing water quality | learning models and their
management. applications in water quality
monitoring.
Coastal and | [18] Observations on coastal | Examines recent observations,
Environmental aquifers and their | evolution, and perspectives for
Sustainability sustainability. sustainability.
Atmospheric Water | [19] Techniques and performance | Reviews various techniques,
Harvesting of atmospheric water | renewable energy solutions, and
harvesting. feasibility studies.
Electronic Nose | [20] Use of Metal-oxide (MOX) | Reviews applications of
Systems gas sensors for | electronic nose systems based on
environmental monitoring. MOX gas sensors.
Portable Biological | [21] Field applications of portable | Discusses portable spectroscopy
Spectroscopy biological spectroscopy. and spectrometry for on-site
water analysis.
Water Quality | [22] Various models and | Reviews predictive  models,
Prediction Models techniques for water quality | machine learning techniques, and
prediction. their applications.
Machine Learning for | [23] Importance  of  machine | Reviews the application of
Infrastructure Integrity learning in water | natural language processing and
and Quality infrastructure. machine learning in water quality
management.
Realtime Water Quality | [24] Machine learning techniques | Discusses models and
Prediction for real-time prediction. applications for real-time water
quality prediction.
Water Quality Analysis | [25] State-of-the-art analysis in | Reviews current practices and
in Chile and Latin water quality. gaps in water quality analysis in
America Latin America.
IoT  Innovations in | [26] Advances in loT  for | Comprehensive review of loT
Water Management sustainable water | advancements, implications, and
management. applications in water quality
monitoring.
Reclamation of Areas | [27] Strategies for reclaiming | Systematic review of reclamation
Degraded by Mining mining-degraded areas. techniques and their
effectiveness.
Treatment of Sulfur- | [28] Data-driven insights into | Reviews treatment methods and
containing Organic wastewater treatment. data-driven  approaches  for
Wastewater sulphur-containing organic
wastewater.
Condition-based [29] Applications of clustering in | Reviews clustering applications
Maintenance maintenance. using latent Dirichlet allocation
for condition-based maintenance.
Water  Quality  for | [30] Scoping review of water | Examines monitoring techniques

and regulatory standards for
potable water.

3.3 Summary of applications and case studies.

Table 2 below summarizes the key aspects of each paper concerning data cleaning, feature
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engineering, and dimensionality reduction, showing how these techniques are employed to
improve water potability monitoring systems. From the table below papers that use PCA as
dimensional reduction technique achieve high accuracy in their best performing model of
course based on the nature of the datasets.

Table 2: Key aspects of each paper concerning data cleaning, feature engineering, and

dimensionality reduction.

Paper | Data Cleaning Feature Dimensionality Machine Data Sources Model Model
Engineering Reduction Learning Validation Accuracy
Algorithms Technique
Used Used
[14] Removes noise, | Extracts specific | PCA Random Nanosensor data | Cross- High
corrects errors | contaminant Forest, A validation
in  nanosensor | levels from Support Vector
data sensor data Machine
(SVM™M)
[15] Implements Creates PCA or t-SNE Decision Trees, | 10T sensor data | k-fold Medium
real-time meaningful K-Nearest Cross-
cleaning features like Neighbour (k- validation
algorithms for | averages, NN)
missing  data, | variances, and
outliers,  and | thresholds  for
noise from loT | contaminants
Sensors
[16] Addresses Converts raw | PCA Neural Chemical sensor | Train-test High
noise,  sensor | sensor  outputs Networks, data split
errors in | into actionable SVM
chemical insights like
sensors pollutant patterns
[3] Robust Techniques like | PCA Gradient Environmental k-fold High
preprocessing PCA reduce Boosting, monitoring data | cross-
for clean data, | feature space, Random Forest validation
enhances model | improving Al
performance model efficiency
with new | and reducing
features  like | overfitting
composite
indicators
[17] Ensures dataset | Derives indices | Summarizes Linear Water quality | Cross- Medium
integrity ~ for | and  composite | complex datasets | Regression, k- | data validation
calculating features fromraw | into indices NN
indices like | measurements
WQI. for
summarization
[2] Prepares large- | Deep  learning | Autoencoders Convolutional Large-scale Train-test Very
scale datasets | models perform Neural environmental split High
for deep | automatic feature Networks datasets
learning, extraction, (CNN),
addresses noise | advanced Recurrent
and missing | techniques like Neural
values autoencoders Networks
(RNN)
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4. Discussion
4.1. Comparative analysis of Al and traditional methods.

Table 3 below is a tabulated comparative analysis of Al and traditional methods of predicting
water potability based on the provided research papers in respect to accuracy, efficiency, real-
time capabilities and adaptability:

Table 3: Al and traditional methods of predicting water potability.

Aspect Traditional Methods Al-Based Methods
Accuracy . High for specific | o Very high, especially with
contaminants (e.g., Nanosensors) large datasets (machine learning)
o Moderate  with  statistical | o Capable  of  recognizing
methods, depending on data quality. complex patterns and non-linear
. Good for biological | relationships (deep learning)
contaminants with spectroscopy
Efficiency . Requires extensive calibration | e Processes large  volumes
(chemical sensors) quickly once trained (machine learning)
. Efficient for historical data | e Efficient in handling high-
analysis (statistical methods) dimensional data (deep learning)
. Portable but needs | o Continuous monitoring and
recalibration (biological spectroscopy) | data collection (IoT-based systems)
Real-time . Limited real-time monitoring | e Excellent real-time monitoring
Capabilities (chemical sensors, hanosensors) when integrated with loT sensors.
o Periodic assessment, not real- | o Provides continuous
time (statistical methods) monitoring and immediate alerts (1oT-
o Near real-time but with | based systems)
potential delays (biological
spectroscopy)
Adaptability . Limited adaptability to new | e Highly adaptable to new
contaminants contaminants and conditions with
. Requires updating indices and | retraining (machine learning)
models for new parameters (statistical | o Scalable and suitable for
methods) diverse water quality parameters (deep
o Adaptable within biological | learning)
categories but less so for chemical | o Integrates new sensors and
parameters updates models as new data is collected
References [14], [16], [17], [21] J141,[16],[17],[21]

In conclusion, while traditional methods have their strengths, particularly in established and
well-understood scenarios, Al-based methods offer significant advantages in terms of
accuracy, efficiency, real-time capabilities, and adaptability, making them increasingly
essential for modern water quality monitoring.

4.2. Challenges, limitations, and regulatory considerations.

This Table 4 encapsulates the core challenges, limitations, and regulatory considerations for
each paper, providing a comprehensive comparative analysis for Al and traditional methods
in predicting water potability.
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Table 4: Core challenges, limitations, and regulatory considerations for each paper

Research Challenges Limitations Regulatory Considerations
Paper
[18] . Over-extraction of | e Limited data on | e Need for stricter
groundwater long-term impacts water extraction regulations.
. Saline intrusion . Inadequate . Policy integration
o Climate change impacts monitoring infrastructure | for sustainable groundwater
management
[19] . Variable efficiency in | e Limited large- | o Standards for water
different climates scale deployment quality  from  harvested
. High initial setup costs . Energy atmospheric water.
dependency for some | e Incentives for
techniques renewable energy integration
[20] o Sensitivity to | e Limited lifespan | o Standardization of
environmental changes of sensors sensor calibration methods
. Calibration challenges . High . Regulatory
maintenance requirements | guidelines for electronic nose
deployment in environmental
monitoring
[29] . Complexity of time- | o Limited by the | e Data privacy and
varying data analysis quality of input data security regulations
o Computational resource | o Difficulties in | e Compliance  with
demands real-time application maintenance standards and
guidelines
[21] . Field calibration issues . Limited to| e Standards for field
) Sensitivity to | specific biological | spectroscopy use
environmental interferences markers . Regulations  for
. Potentially high | portable device certification
cost for portable units
[22] J Data heterogeneity . Model accuracy | e Standardization of
. Integration of diverse | dependent on data quality | prediction models
data sources . Scalability . Guidelines for data
issues collection and sharing
[23] . High computational | e Overfitting and | e Compliance  with
requirements generalization issues Al usage standards in water
. Need for large training | e Interpretability | management
datasets of models . Data  protection

and privacy regulations

4.3. Future research directions and emerging trends.

The reviewed papers as presented in Table 5 highlight several key future research directions
and emerging trends in water quality monitoring and treatment. Researchers are focusing on
improving the cost-effectiveness, precision, and integration of advanced monitoring
technologies. There is also a significant trend towards real-time, continuous monitoring
systems, leveraging advancements in software engineering, artificial intelligence, and data
analytics to enhance water quality assessment and management. Standardization of
methodologies and extensive field validations are crucial for transitioning these technologies

from experimental to practical applications.
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Table 5:Several key future research directions and emerging trends in water quality
monitoring and treatment

Paper Future Research Directions Emerging Trends

[9] . Reduce operational costs and simplify | e Real-time monitoring systems.
monitoring systems. . Advanced analytical techniques
. Assess long-term  reliability and | (e.g., high-performance liquid
effectiveness. chromatography, chemiluminescence).
. Integrate  with  other  monitoring
technologies.

[10] . Enhance precision and accuracy of | e Portable and in-flight monitoring
capillary electrophoresis in-flight. systems.
. Conduct comparative studies with other | e Miniaturization of  analytical
techniques. devices.
. Adapt capillary electrophoresis  for
different environments.

[11] . Integrate advanced software engineering | Software-driven monitoring
techniques with monitoring systems. solutions.
o Develop intelligent systems for real-time | o Use of Al and ML for data analysis.
data analysis.
. Improve user interfaces for accessibility.

[12] . Develop advanced data analysis tools for | e Adoption of non-target analysis
non-target analysis. techniques (e.g., LC-HRMS).
. Standardize non-target analysis | e Use of big data and advanced
protocols. analytics.
o Apply non-target analysis in various
scenarios.

[13] . Develop more sensitive detection | e Continuous monitoring systems.
systems. . Integration with smart technologies
o Integrate automated response | and loT.
mechanisms.
. Conduct field validation studies.

5. Conclusion

5.1. Summary of key findings.

The study's primary focus on identifying and mitigating common data potability issues is
consistently addressed across various research papers through meticulous data cleaning,
feature engineering, and dimensionality reduction techniques. The following key points are
evident from the analysis:

1. Data Cleaning:

0 Fundamental Process: Data cleaning is universally recognized as essential for removing
noise, handling missing data, and correcting errors, ensuring the integrity and reliability of
datasets. This foundational step is critical for accurate model predictions.

0 Improved Model Accuracy: Studies that implement rigorous data cleaning processes,
such as those by [22] and [24], report high model accuracy, underscoring the importance of
clean data.

2. Feature Engineering:
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0 Enhancing Data Quality: By transforming raw data into meaningful features, feature
engineering enhances the discriminative power of the dataset. This process is crucial for
improving model interpretability and performance, as demonstrated by [23] and [20].

0 Actionable Insights: Effective feature engineering methods enable the extraction of
actionable insights from raw data, facilitating more accurate and reliable predictions.

3. Dimensionality Reduction:

0 Managing Complexity: Techniques like PCA and t-SNE help in reducing the complexity
of high-dimensional datasets while retaining essential information. This simplification is
crucial for maintaining model efficiency and preventing overfitting.

o Efficiency and Scalability: Dimensionality reduction techniques contribute to the
development of more efficient and scalable predictive models, as seen in studies by [29] and
[28].

Overall, the integration of meticulous data cleaning, strategic feature engineering, and
advanced dimensionality reduction techniques consistently correlates with higher model
accuracy across the studies. Employing these methods effectively ensures that the data used
for model training is robust, relevant, and manageable, leading to more reliable and precise
outcomes. In conclusion, optimizing data preprocessing is crucial for accurate and efficient
water potability prediction, especially in settings with limited computational resources. This
research contributes to making predictive modelling more accessible and applicable in diverse
contexts, ensuring reliable and precise outcomes for water potability assessment.

5.2. Review in relation to the study objectives

Table 6 presents the contribution of research papers reviewed that mostly contribute to the
research questions of the research study as presented in section 1.2 and Figure 6 presents the
histogram of most papers contributing to the research questions.

Table 6:Research papers reviewed that mostly contribute to the research questions.

Objective Study Key Contributions
How does data cleaning impact the reliability | [1] Importance of understanding contaminants
and accuracy of machine learning models for for data preprocessing.
water potability prediction? [8] Clean data for precise assessments protecting
vulnerable populations.
[11] Role of software engineering in maintaining
clean datasets.
[22] Various data cleaning techniques and their
impact on prediction models.
[25] Addressing the gap in water quality analysis
with clean data.
[30] Vigilance in data cleaning for reliable human
consumption analysis.
How does feature engineering contribute to | [3] Feature engineering's role in improving
improving the discriminative power of water assessment accuracy.
potability —datasets and enhance model | [6] Al to process electronic nose data, enhancing
interpretability? feature extraction for contaminant detection.
[5] Optimized  sensor  placement  using
engineered features.
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[10] Capillary electrophoresis evaluation with
engineered features for better monitoring.
[12] Non-target analysis application, highlighting
feature engineering's role in complex data
handling.

[23] Machine learning techniques that rely on
effective feature engineering for water
infrastructure integrity.

[28] Insights into wastewater treatment processes
improved by feature engineering.

[29] Application of clustering for condition-based
maintenance highlighting feature
engineering.

[29] Review of clustering applications for
maintenance processes emphasizing feature
extraction.

How do dimensionality reduction methods | [2] Deep learning benefiting from
manage high-dimensional data while preserving dimensionality reduction for precise water
essential information for accurate model quality management.

predictions? [9] Enhanced real-time monitoring capabilities
through dimensionality reduction.

[13] Continuous monitoring systems leveraging
reduced dimensions for better accuracy.

[14] Nanosensors benefiting from reduced data
complexity for real-time analysis.

[15] 10T integration with reduced data dimensions
for smart water quality monitoring.

[16] Real-time monitoring improvements through
effective dimensionality reduction.

[21] Portable biological spectroscopy enhanced
by dimensionality reduction techniques.

[26] loT innovations utilizing dimensionality
reduction for efficient water quality
monitoring.

Number of Studies Categorized by Objectives
9

Number of Studies

Data Cleaning Impact Feature Engineering Contribution Dimensionality Reduction
Objectives

Figure 6:Histogram of papers contributing mostly to the research questions.
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5.3. Implications for practice and policy.

The reviewed papers on Table 7 suggest several practical and policy implications to enhance
water quality monitoring and treatment. For practice, there is an emphasis on adopting
advanced technologies, integrating data-driven methodologies, and ensuring comprehensive
real-time monitoring. Policymakers are encouraged to establish regulations and standards that
promote these advanced practices, provide funding for research and development, and support
the integration of health and environmental data. These measures aim to improve water quality
management, ensure sustainable reclamation practices, and enhance the safety and reliability
of potable water supplies.

Table 7:Several practical and policy implications to enhance water quality monitoring and

treatment.
Paper | Implications for Practice Implications for Policy
[9] . Implement systematic approaches for | e Develop and enforce regulations for
reclamation of mining-degraded areas. reclamation of mining sites.
. Use advanced technologies and best | e Provide incentives for adopting
practices for effective reclamation. sustainable reclamation practices.
[28] . Employ data-driven methodologies for | e Establish guidelines for using data
treating sulfur-containing wastewater. analytics in wastewater treatment.
. Integrate machine learning models to | e Support research in advanced data-
optimize treatment processes. driven treatment technologies.
[31] o Standardize clustering methodologies for | o Create policies promoting the use of
condition-based maintenance. advanced clustering techniques in
o Develop adaptive algorithms  for | maintenance.
managing time-varying processes. . Fund research for developing
adaptive maintenance technologies.
[30] o Integrate surveillance data with health | o Formulate policies that require the
outcomes to improve water quality monitoring. integration of health data with water quality
. Implement real-time monitoring | monitoring.
technologies for timely interventions. . Provide funding for the development
of real-time monitoring systems.
[4] . Use electronic nose systems for real-time | Establish  standards  for  the
monitoring of potable water quality. deployment of electronic nose systems.
o Conduct extensive field trials to validate | o Support policies that fund field trials
technology. and real-world applications.
[1] o Focus  on removing emerging | e Develop regulations addressing
contaminants in water purification processes. emerging contaminants.
. Conduct socio-economic analyses of | e Provide economic incentives for
purification technologies. advanced water purification technologies.
[5] . Develop dynamic methodologies for | e Formulate policies for adaptive
placing water monitoring stations. placement of monitoring stations.
o Utilize real-time data and predictive | e Encourage the use of predictive
analytics for contamination detection. analytics in water quality management.
[6] . Use interpretable models for monitoring | Establish guidelines for the use of
cyanobacteria in potable water. black-box and interpretable models in water
. Validate models extensively in real-world | monitoring.
settings. . Support policies that fund real-world
validation studies.
[7] . Integrate multiple intelligent techniques | o Develop policies encouraging the
for comprehensive water quality monitoring. integration of various intelligent monitoring
techniques.
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. Transition experimental techniques to | e Provide funding for the practical
practical applications. implementation of intelligent monitoring
systems.

5.4. Final thoughts on the potential of Al in enhancing water potability.

Al has the potential to transform the water industry, enhancing the quality and safety of potable
water through advanced monitoring, data analysis, and optimization techniques. This by
addressing the challenges and fostering collaboration between technologists, policymakers,
and water management authorities, Al can play a pivotal role in ensuring safe and reliable
drinking water for all. The potential of Al in enhancing water potability, as evidenced by the
papers provided, is substantial and multifaceted. Here are the key insights and detailed reasons
from the papers presented in Table 8:

Table 8:Key insights and detailed reasons from the reviewed papers

Paper

Detailed Reasons

[1]

This paper discusses the nature and purification of potable water, emphasizing traditional methods.
While it does not focus on Al directly, the foundational understanding of water contaminants and
purification processes provides a baseline for integrating advanced Al-driven methods for more efficient
and accurate water purification.

(2]

This review highlights the state-of-the-art applications of deep learning in water quality management.
Al techniques, particularly deep learning, offer significant advancements in monitoring and predicting
water quality parameters. They enhance the accuracy of detecting contaminants and predicting future
water quality issues, enabling proactive management and intervention.

(3]

The systematic literature analysis on Al for surface water quality monitoring and assessment
demonstrates that Al algorithms, including machine learning and neural networks, improve the precision
of water quality assessment. These methods can analyze complex data sets from various sensors to
provide real-time monitoring and early detection of pollution events.

[4]

This study introduces an electronic nose system for monitoring potable water quality. Al is used to
process the data from the electronic nose, which mimics the human olfactory system. The Al-driven
system can detect and identify different water contaminants, providing a rapid and reliable method for
continuous water quality monitoring.

5]

This paper focuses on methodologies for locating monitoring stations to detect contamination in potable
water distribution systems. Al can enhance these methodologies by optimizing the placement of sensors
and predicting potential contamination points based on historical and real-time data.

[6]

The study applies black-box modeling to electronic nose data for monitoring cyanobacteria in potable
water. Al, through system identification techniques, helps in understanding and predicting the behavior
of water quality parameters influenced by cyanobacteria, leading to better management strategies

[7]

A survey on intelligent techniques for potable water quality monitoring shows that Al techniques, such
as machine learning and 10T (Internet of Things), significantly improve the detection, prediction, and
management of water quality. Al systems can handle large volumes of data from diverse sources,
providing comprehensive insights into water quality.

(8]

The study on potable water quality monitoring in primary schools in Bangladesh highlights the health
risks associated with poor water quality. Al-driven analysis can enhance the monitoring and mitigation
strategies by providing accurate and timely assessments, thus protecting vulnerable populations

9]

This paper presents a near real-time monitoring system for N-nitrosodimethylamine in potable water
using advanced chromatography techniques. Al algorithms can enhance the data analysis process,
improving the speed and accuracy of contaminant detection.

[10]

The evaluation of capillary electrophoresis for monitoring ionic contaminants in space missions shows
the potential for Al to improve the analysis and management of water quality in extreme environments,
ensuring safe drinking water for astronauts.

[11]

Al applications in software engineering are discussed, highlighting the potential for integrating Al
techniques in water quality monitoring systems to enhance their efficiency and accuracy.
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[12] The application of non-target analysis with LC-HRMS for monitoring water quality illustrates how Al
can process complex analytical data to identify and quantify a wide range of contaminants, ensuring
comprehensive water guality assessment.

[13] The study on continuous active monitoring to identify cross-connections between potable water and
effluent systems emphasizes the role of Al in providing continuous, real-time monitoring and alerting
systems to prevent contamination.

[14] The use of nanosensors for water quality monitoring demonstrates how Al can enhance the sensitivity
and specificity of these sensors, providing precise and real-time water quality data.

[15] The paper on loT-based smart water quality monitoring outlines the integration of Al with 10T devices
to provide real-time, accurate water quality data, improving domestic water quality management.

[16] The use of chemical sensors for real-time water quality monitoring showcases the role of Al in

processing sensor data, leading to timely and accurate water quality assessments.

Overall, these papers collectively highlight that Al, through various techniques such as
machine learning, deep learning, and IoT integration, significantly enhances the monitoring,
assessment, and management of potable water quality. Al provides real-time, accurate, and
comprehensive insights, enabling proactive measures to ensure safe and clean drinking water.
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