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Access to safe drinking water is essential for human health, necessitating effective assessment and 

prediction of water potability. This study addresses the challenges of implementing machine 

learning models for water potability prediction in resource-constrained environments, focusing on 

advanced data preprocessing techniques to optimize datasets and enhance model accuracy. The 

research highlights the importance of data cleaning, feature engineering, and dimensionality 

reduction in improving predictive modelling efficiency on personal computers with limited 

computational power. The methodology follows PRISMA 2020 guidelines, involving rigorous 

screening and selection of research papers from credible databases. Data cleaning processes address 

common data potability issues, ensuring reliability by removing inconsistencies, outliers, and 

missing values. Feature engineering techniques extract relevant features to improve model 

discriminative power, while dimensionality reduction methods, such as PCA and autoencoders, 

manage high-dimensional data, enhancing model efficiency and interpretability. The literature 

review underscores the critical role of these preprocessing techniques in various domains, 

particularly water potability prediction. The results demonstrate that meticulous data cleaning, 

strategic feature engineering, and advanced dimensionality reduction consistently correlate with 

higher model accuracy. Studies achieving high accuracy emphasize robust preprocessing, real-time 

data handling, and deep learning models that automatically perform feature extraction. In 

conclusion, optimizing data preprocessing is crucial for accurate and efficient water potability 

prediction, especially in settings with limited computational resources. This research contributes to 

making predictive modelling more accessible and applicable in diverse contexts, ensuring reliable 

and precise outcomes for water potability assessment.  

 

Keywords: Water Potability; Machine Learning; Data Preprocessing; Data Cleaning; Feature 

Engineering; Dimensionality Reduction.  
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1. Introduction 

1.1. Background on water potability and the role of AI. 

The term "potability" refers to the suitability of something for drinking or consumption. When 

it comes to water, potability indicates whether the water is safe and clean enough for human 

consumption without causing harm or illness. Access to safe drinking water is a fundamental 

prerequisite for human health a wellbeing, making the assessment and prediction of water 

portability a critical aspect of public health efforts [1]. In recent years, machine learning has 

emerged as a promising tool to augment water potability assessment and predictive modelling 

[2]. However, the implementation of such models in resource-constrained environments, 

particularly those dependent on personal computers (PCs), faces notable challenges due to 

computational limitations. This study seeks to address these challenges by focusing on 

advanced data preprocessing and feature engineering techniques, aiming to optimize water 

potability datasets and improve the accuracy of water portability prediction models. In 

resource-constrained settings, the computational constraints of PCs can hinder the deployment 

of sophisticated machine learning models for water potability prediction [3]. This study 

recognizes the importance of overcoming these limitations and emphasizes the role of data 

preprocessing in enhancing model efficiency. This is by specifically targeting data cleaning, 

feature engineering, and dimensionality reduction, the research aims to streamline the data 

preparation pipeline and alleviate computational burdens, making predictive modelling more 

accessible and applicable in diverse contexts. The study's primary focus lies in identifying and 

mitigating common data potability issues inherent in water potability datasets. Through 

rigorous data cleaning processes, the research ensures that the input data is free from 

inconsistencies, outliers, and missing values, providing a solid foundation for subsequent 

analysis. Additionally, feature engineering methods are explored to extract pertinent 

information from the datasets, thereby improving the discriminative power of the predictive 

models. These efforts collectively contribute to the overarching goal of optimizing water 

potability datasets for more accurate and efficient water portability prediction, particularly in 

environments where computational resources are limited. 

1.2. Objectives and scope of the literature review 

The aim of the study is identifying and mitigating common data potability issues is consistently 

addressed across various research papers through meticulous data cleaning, feature 

engineering, and dimensionality reduction techniques. 

The research questions:  

1. How does data cleaning impact the reliability and accuracy of machine learning models 

for water potability prediction? 

2. How does feature engineering contribute to improving the discriminative power of water 

potability datasets and enhance model interpretability? 

3. How do dimensionality reduction methods manage high-dimensional data while 

preserving essential information for accurate model predictions? 
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2. Methodology   

This review focuses on Data Preprocessing for Improved Water Potability Prediction though 

Data Cleaning, Feature Engineering, and Dimensionality Reduction Techniques. The study 

used the PRISMA 2020 guidelines. The checklist and flowcharts of PRISMA were retrieved 

from http://prisma-statement.org/. The below section covers these subtopics eligibility criteria, 

information sources search strategy, selection procedure, data collection, data collection 

procedure and data items, bias assessment, and reporting as well as synthesis method in order 

to explained how the PRISMA 2020 guidelines was followed in this study.  

2.1. Eligibility criteria  

The studies used in this study were selected from scholarly databases. The BiBTex files of the 

studies were downloaded using Harzing’s Publish and Perish. Downloaded research papers 

were imported to Mendeley Reference Manager to check if there is any duplication. Mendeley 

Reference Manager was further used to merge downloaded research papers from various 

databases. Research papers identified as duplicates were removed and the remaining research 

papers were checked through screening their abstracts if they are aligned with the objective of 

the study. Two reviewers were used to screen the remaining research papers and discuss the 

inconsistencies until a mutual agreement was reached. The following questions were used as 

a criterion to decide the inclusion or exclusion of the literature: 

1. Is the study aligned with the objectives of our study? 

2. Is the study written in English? 

3. Is the study addressing data cleaning and or feature engineering and or dimensionality 

Reduction. 

4. How is the quality of the study? 

In an attempt to assess the quality of the literature from the research papers, the following 

questions were asked. 

1. Is the aim of the study clearly stipulated? 

2. Is there evidence presented that is enough to substantiate the finding of the study? 

3. Does the outcome(s) align with the objectives of the study? 

4. How is the overall structure of the research study? 

In order to improve the quality of our findings and assess any improvements within the 

proposed topics only reach papers published from 2015 to 2024 were reviewed. Research 

papers meeting the criterion of the study were included and those that did not were excluded.  

2.2. Information sources  

The research papers were searched from credible sources from PubMed, Scopus, Semantic 

Scholar, Web of Science, Crossref, Google Scholar, etc Google Scholar, ISI Web of science 

and IEEE Explore. These research papers downloaded were mainly from journals whose 

subjects are water research, sustainability, environment, remote sensing, and hydrology. 
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2.3. Search strategy 

A particular pattern was followed to search for research papers. Keywords and Boolean 

operators were used to search for research papers: “Water Potability” AND “Machine 

Learning” OR “data cleaning” OR “feature engineering” OR “dimensionality reduction”. In 

order to focus on the research studies that are written in English an English filter was used.  

2.4. Selection process 

Using the strategies mentioned in our search criteria a total of 237 papers were selected from 

the mentioned information source.168 papers were screened out during abstract scanning and 

69 papers were selected after full-text reading. The final dataset had a total of 31 studies. The 

selection process was based on our eligibility criteria. 

Figure 1 outlining the results obtained after following the inclusion and exclusion criteria. 

 

Figure 1:PRISMA 2020 inclusion and exclusion flow diagram (edited)[ Retrieved from 

http://prisma-statement.org/.] 

2.5. Data collection and data items 

Two reviewers with qualifications and research knowledge of application of machine learning, 

independently screened the literature and resolved any discrepancies through discussion until 

they reached a consensus. However, some selected studies were not openly accessible, so only 

their abstracts were evaluated. The references for these publications are [1], [4], [5], [6], [7], 

[8], [9], [10], [11], and [12]. These eleven studies represent a small portion of the total seventy, 
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and therefore do not significantly affect our analysis results. 

2.6. Synthesis Method  

Below here is the histogram displaying the distribution of methodologies used in potable water 

quality monitoring research. The methodologies include traditional techniques, electronic nose 

systems, deep learning and Artificial Intelligence (AI), innovative monitoring technologies, 

and intelligent systems and Internet of Things (IoT). The histogram shows the number of some 

papers that employ each methodology, providing a visual summary of the research landscape 

in this field. 

 

Figure 2: Histogram displaying the distribution of methodologies used in potable water 

quality monitoring research. 

 

3. Findings  

3.1 Overview of AI techniques used in water potability studies. 

Data cleaning, feature engineering, and dimensionality reduction are integral components of 

the data preprocessing pipeline in various domains, including water potability prediction [7]. 

These techniques play a crucial role in enhancing the water potability prediction and 

improving the performance of predictive models. In the context of water potability prediction, 

the synergistic application of data cleaning, feature engineering, and dimensionality reduction 

techniques is essential for refining datasets, improving model interpretability, and ensuring 

that predictive 8models accurately capture the complexities of water potability dynamics [9].  

3.1.1.  Data Cleaning 

Data Cleaning is also known as data cleansing or data preprocessing. Data cleaning involves 
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identifying and rectifying errors, inconsistencies, and inaccuracies within a dataset [7]. In the 

context of water potability prediction, this process is vital for ensuring the reliability of input 

data. Common data potability issues, such as missing values, outliers, and measurement errors, 

can adversely affect the accuracy of predictive models. Data cleaning techniques may include 

imputation methods for missing values, outlier detection and treatment, and validation checks 

to identify and rectify errors in data entry [8]. Data cleaning methods follow the following 

steps as reflected in figure 3. 

 

Figure 3:Data Cleaning steps [https://www.geeksforgeeks.org/] 

3.1.2. Feature Engineering  

Feature engineering involves transforming and creating new features from existing ones to 

improve the discriminative power of the dataset as demonstrated in Figure 4. In water 

potability prediction, relevant features extracted through engineering techniques can provide 

a more comprehensive representation of the underlying patterns. Scaling, normalization, and 

transformations are commonly used feature engineering methods to highlight important 

information and mitigate the impact of skewed distributions. Feature engineering is crucial for 

uncovering latent patterns in water potability datasets and improving the accuracy of predictive 

models [7][8]. 

 

Figure 4:Feature Engineering illustration [https://www.geeksforgeeks.org] 

3.1.3 Dimensionality Reduction  

High-dimensional datasets, common in water potability studies, can pose computational 

challenges and reduce the efficiency of predictive models. Dimensionality reduction 
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techniques aim to mitigate these challenges by reducing the number of features while retaining 

essential information [8]. Principal Component Analysis (PCA), t-Distributed Stochastic 

Neighbor Embedding (t-SNE), Linear Discriminant Analysis and Generalized Discriminant 

Analysis are popular dimensionality reduction methods used to capture the variance in data 

while reducing its dimensionality as illustrated in figure 5. These techniques contribute to more 

efficient and scalable predictive models without sacrificing accuracy [8]. 

 

Figure 5:Dimensionality Reduction illustration [https://www.geeksforgeeks.org] 

3.2 Detailed analysis of studies under each thematic area 

Table 1 provides a structured overview of the thematic areas covered by each study and their 

specific focus within the context of water quality monitoring. Each paper is applying different 

machine learning algorithms using a certain type of data and such is regarded a thematic area 

in this research paper.  

Table 1:Analysis of studies under each thematic area 
Thematic Area Study Key Findings Methodologies 

Nanosensors for Water 

Quality Monitoring 

[14] High sensitivity and 

selectivity for detecting 

contaminants. 

Utilization of nanomaterials 

(carbon nanotubes, metal 

nanoparticles, quantum) dots) 

integrated into sensor devices. 

IoT-based Smart Water 

Quality Monitoring 

[15] Continuous monitoring and 

real-time data through 

connected devices. 

Reviews IoT architectures, 

protocols, sensor networks, data 

acquisition modules, and cloud-

based analysis. 

Real-time Monitoring 

with Chemical Sensors 

[16] Effective for real-time 

monitoring of parameters 

like pH, conductivity, 

dissolved oxygen, specific 

ions. 

Development and deployment of 

sensor arrays; techniques include 

electrochemical sensing, optical 

sensing, biosensing. 

AI and Machine 

Learning for Water 

Quality Monitoring 

[3] AI techniques are crucial for 

monitoring and assessment. 

Reviews AI models for 

predicting parameters, anomaly 

detection, data interpolation, 

trend analysis. 
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Statistical and Index-

based Methods 

[17] Water Quality Index (WQI) 

and Pollution Index (PI) are 

valuable tools for assessing 

water quality and pollution 

levels. 

Discusses calculation of WQI 

and PI using statistical methods 

in various water bodies. 

Applications of Deep 

Learning 

[2] Deep learning applications 

are advancing water quality 

management. 

Reviews state-of-the-art deep 

learning models and their 

applications in water quality 

monitoring. 

Coastal and 

Environmental 

Sustainability 

[18] Observations on coastal 

aquifers and their 

sustainability. 

Examines recent observations, 

evolution, and perspectives for 

sustainability. 

Atmospheric Water 

Harvesting 

[19] Techniques and performance 

of atmospheric water 

harvesting. 

Reviews various techniques, 

renewable energy solutions, and 

feasibility studies. 

Electronic Nose 

Systems 

[20] Use of Metal-oxide (MOX) 

gas sensors for 

environmental monitoring. 

Reviews applications of 

electronic nose systems based on 

MOX gas sensors. 

Portable Biological 

Spectroscopy 

[21] Field applications of portable 

biological spectroscopy. 

Discusses portable spectroscopy 

and spectrometry for on-site 

water analysis. 

Water Quality 

Prediction Models 

[22] Various models and 

techniques for water quality 

prediction. 

Reviews predictive models, 

machine learning techniques, and 

their applications. 

Machine Learning for 

Infrastructure Integrity 

and Quality 

[23] Importance of machine 

learning in water 

infrastructure. 

Reviews the application of 

natural language processing and 

machine learning in water quality 

management. 

Realtime Water Quality 

Prediction 

[24] Machine learning techniques 

for real-time prediction. 

Discusses models and 

applications for real-time water 

quality prediction. 

Water Quality Analysis 

in Chile and Latin 

America 

[25] State-of-the-art analysis in 

water quality. 

Reviews current practices and 

gaps in water quality analysis in 

Latin America. 

IoT Innovations in 

Water Management 

[26] Advances in IoT for 

sustainable water 

management. 

Comprehensive review of IoT 

advancements, implications, and 

applications in water quality 

monitoring. 

Reclamation of Areas 

Degraded by Mining 

[27] Strategies for reclaiming 

mining-degraded areas. 

Systematic review of reclamation 

techniques and their 

effectiveness. 

Treatment of Sulfur-

containing Organic 

Wastewater 

[28] Data-driven insights into 

wastewater treatment. 

Reviews treatment methods and 

data-driven approaches for 

sulphur-containing organic 

wastewater. 

Condition-based 

Maintenance 

[29] Applications of clustering in 

maintenance. 

Reviews clustering applications 

using latent Dirichlet allocation 

for condition-based maintenance. 

Water Quality for 

Human Consumption 

[30] Scoping review of water 

quality monitoring for 

human consumption. 

Examines monitoring techniques 

and regulatory standards for 

potable water. 

3.3 Summary of applications and case studies. 

Table 2 below summarizes the key aspects of each paper concerning data cleaning, feature 
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engineering, and dimensionality reduction, showing how these techniques are employed to 

improve water potability monitoring systems. From the table below papers that use PCA as 

dimensional reduction technique achieve high accuracy in their best performing model of 

course based on the nature of the datasets. 

Table 2: Key aspects of each paper concerning data cleaning, feature engineering, and 

dimensionality reduction. 

 

Paper Data Cleaning Feature 

Engineering 

Dimensionality 

Reduction 

Machine 

Learning 

Algorithms 

Used 

Data Sources  Model 

Validation 

Technique 

Used 

Model 

Accuracy  

[14] Removes noise, 

corrects errors 

in nanosensor 

data 

Extracts specific 

contaminant 

levels from 

sensor data 

PCA Random 

Forest, A 

Support Vector 

Machine 

(SVM) 

Nanosensor data Cross-

validation 

High 

[15] Implements 

real-time 

cleaning 

algorithms for 

missing data, 

outliers, and 

noise from IoT 

sensors 

Creates 

meaningful 

features like 

averages, 

variances, and 

thresholds for 

contaminants 

PCA or t-SNE Decision Trees, 

K-Nearest 

Neighbour (k-

NN)  

IoT sensor data k-fold 

cross-

validation 

Medium 

[16] Addresses 

noise, sensor 

errors in 

chemical 

sensors 

Converts raw 

sensor outputs 

into actionable 

insights like 

pollutant patterns 

PCA Neural 

Networks, 

SVM 

Chemical sensor 

data 

Train-test 

split 

High 

[3] Robust 

preprocessing 

for clean data, 

enhances model 

performance 

with new 

features like 

composite 

indicators 

Techniques like 

PCA reduce 

feature space, 

improving AI 

model efficiency 

and reducing 

overfitting 

PCA Gradient 

Boosting, 

Random Forest 

Environmental 

monitoring data 

k-fold 

cross-

validation 

High 

[17] Ensures dataset 

integrity for 

calculating 

indices like 

WQI. 

Derives indices 

and composite 

features from raw 

measurements 

for 

summarization 

Summarizes 

complex datasets 

into indices 

Linear 

Regression, k-

NN 

Water quality 

data 

Cross-

validation 

Medium 

[2] Prepares large-

scale datasets 

for deep 

learning, 

addresses noise 

and missing 

values 

Deep learning 

models perform 

automatic feature 

extraction, 

advanced 

techniques like 

autoencoders 

Autoencoders Convolutional 

Neural 

Networks 

(CNN), 

Recurrent 

Neural 

Networks 

(RNN) 

Large-scale 

environmental 

datasets 

Train-test 

split 

Very 

High 
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4. Discussion  

4.1. Comparative analysis of AI and traditional methods. 

Table 3 below is a tabulated comparative analysis of AI and traditional methods of predicting 

water potability based on the provided research papers in respect to accuracy, efficiency, real-

time capabilities and adaptability: 

Table 3: AI and traditional methods of predicting water potability. 
Aspect Traditional Methods AI-Based Methods 

Accuracy • High for specific 

contaminants (e.g., nanosensors) 

• Moderate with statistical 

methods, depending on data quality.  

• Good for biological 

contaminants with spectroscopy 

• Very high, especially with 

large datasets (machine learning) 

• Capable of recognizing 

complex patterns and non-linear 

relationships (deep learning) 

Efficiency • Requires extensive calibration 

(chemical sensors)  

• Efficient for historical data 

analysis (statistical methods) 

• Portable but needs 

recalibration (biological spectroscopy) 

• Processes large volumes 

quickly once trained (machine learning)  

• Efficient in handling high-

dimensional data (deep learning)  

• Continuous monitoring and 

data collection (IoT-based systems) 

Real-time 

Capabilities 
• Limited real-time monitoring 

(chemical sensors, nanosensors) 

• Periodic assessment, not real-

time (statistical methods)  

• Near real-time but with 

potential delays (biological 

spectroscopy) 

• Excellent real-time monitoring 

when integrated with IoT sensors.  

• Provides continuous 

monitoring and immediate alerts (IoT-

based systems) 

Adaptability • Limited adaptability to new 

contaminants  

• Requires updating indices and 

models for new parameters (statistical 

methods)  

• Adaptable within biological 

categories but less so for chemical 

parameters 

• Highly adaptable to new 

contaminants and conditions with 

retraining (machine learning)  

• Scalable and suitable for 

diverse water quality parameters (deep 

learning) 

• Integrates new sensors and 

updates models as new data is collected 

References  [14], [16], [17], [21] 
 

[14],[16],[17],[21] •  

In conclusion, while traditional methods have their strengths, particularly in established and 

well-understood scenarios, AI-based methods offer significant advantages in terms of 

accuracy, efficiency, real-time capabilities, and adaptability, making them increasingly 

essential for modern water quality monitoring. 

4.2. Challenges, limitations, and regulatory considerations. 

This Table 4 encapsulates the core challenges, limitations, and regulatory considerations for 

each paper, providing a comprehensive comparative analysis for AI and traditional methods 

in predicting water potability. 



143 Kokisa Phorah et al. Systematic Literature Review on Data...                                                                                               
 

Nanotechnology Perceptions Vol. 20 No. S11 (2024) 

Table 4: Core challenges, limitations, and regulatory considerations for each paper 
Research 

Paper 

Challenges Limitations Regulatory Considerations 

[18] • Over-extraction of 

groundwater  

• Saline intrusion 

• Climate change impacts 

• Limited data on 

long-term impacts 

•  Inadequate 

monitoring infrastructure 

• Need for stricter 

water extraction regulations.  

• Policy integration 

for sustainable groundwater 

management 

[19] • Variable efficiency in 

different climates  

• High initial setup costs 

• Limited large-

scale deployment  

• Energy 

dependency for some 

techniques 

• Standards for water 

quality from harvested 

atmospheric water.  

• Incentives for 

renewable energy integration 

[20] • Sensitivity to 

environmental changes  

• Calibration challenges 

• Limited lifespan 

of sensors  

• High 

maintenance requirements 

• Standardization of 

sensor calibration methods 

• Regulatory 

guidelines for electronic nose 

deployment in environmental 

monitoring 

[29] • Complexity of time-

varying data analysis  

• Computational resource 

demands 

• Limited by the 

quality of input data  

• Difficulties in 

real-time application 

• Data privacy and 

security regulations  

• Compliance with 

maintenance standards and 

guidelines 

[21] • Field calibration issues  

• Sensitivity to 

environmental interferences 

• Limited to 

specific biological 

markers  

• Potentially high 

cost for portable units 

• Standards for field 

spectroscopy use   

• Regulations for 

portable device certification 

[22] • Data heterogeneity  

• Integration of diverse 

data sources 

• Model accuracy 

dependent on data quality  

• Scalability 

issues 

• Standardization of 

prediction models 

• Guidelines for data 

collection and sharing 

[23] • High computational 

requirements  

• Need for large training 

datasets 

• Overfitting and 

generalization issues  

• Interpretability 

of models 

• Compliance with 

AI usage standards in water 

management  

• Data protection 

and privacy regulations 

4.3. Future research directions and emerging trends. 

The reviewed papers as presented in Table 5 highlight several key future research directions 

and emerging trends in water quality monitoring and treatment. Researchers are focusing on 

improving the cost-effectiveness, precision, and integration of advanced monitoring 

technologies. There is also a significant trend towards real-time, continuous monitoring 

systems, leveraging advancements in software engineering, artificial intelligence, and data 

analytics to enhance water quality assessment and management. Standardization of 

methodologies and extensive field validations are crucial for transitioning these technologies 

from experimental to practical applications.  
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Table 5:Several key future research directions and emerging trends in water quality 

monitoring and treatment 
Paper Future Research Directions Emerging Trends 

[9] • Reduce operational costs and simplify 

monitoring systems. 

• Assess long-term reliability and 

effectiveness. 

• Integrate with other monitoring 

technologies. 

• Real-time monitoring systems. 

• Advanced analytical techniques 

(e.g., high-performance liquid 

chromatography, chemiluminescence). 

[10] • Enhance precision and accuracy of 

capillary electrophoresis in-flight. 

• Conduct comparative studies with other 

techniques. 

• Adapt capillary electrophoresis for 

different environments. 

• Portable and in-flight monitoring 

systems. 

• Miniaturization of analytical 

devices. 

[11] • Integrate advanced software engineering 

techniques with monitoring systems. 

• Develop intelligent systems for real-time 

data analysis. 

• Improve user interfaces for accessibility. 

• Software-driven monitoring 

solutions. 

• Use of AI and ML for data analysis. 

[12] • Develop advanced data analysis tools for 

non-target analysis. 

• Standardize non-target analysis 

protocols. 

• Apply non-target analysis in various 

scenarios. 

• Adoption of non-target analysis 

techniques (e.g., LC-HRMS). 

• Use of big data and advanced 

analytics. 

[13] • Develop more sensitive detection 

systems. 

• Integrate automated response 

mechanisms. 

• Conduct field validation studies. 

• Continuous monitoring systems. 

• Integration with smart technologies 

and IoT. 

 

5. Conclusion  

5.1. Summary of key findings. 

The study's primary focus on identifying and mitigating common data potability issues is 

consistently addressed across various research papers through meticulous data cleaning, 

feature engineering, and dimensionality reduction techniques. The following key points are 

evident from the analysis: 

1. Data Cleaning: 

o Fundamental Process: Data cleaning is universally recognized as essential for removing 

noise, handling missing data, and correcting errors, ensuring the integrity and reliability of 

datasets. This foundational step is critical for accurate model predictions. 

o Improved Model Accuracy: Studies that implement rigorous data cleaning processes, 

such as those by [22] and [24], report high model accuracy, underscoring the importance of 

clean data. 

2. Feature Engineering: 
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o Enhancing Data Quality: By transforming raw data into meaningful features, feature 

engineering enhances the discriminative power of the dataset. This process is crucial for 

improving model interpretability and performance, as demonstrated by [23] and [20]. 

o Actionable Insights: Effective feature engineering methods enable the extraction of 

actionable insights from raw data, facilitating more accurate and reliable predictions. 

3. Dimensionality Reduction: 

o Managing Complexity: Techniques like PCA and t-SNE help in reducing the complexity 

of high-dimensional datasets while retaining essential information. This simplification is 

crucial for maintaining model efficiency and preventing overfitting. 

o Efficiency and Scalability: Dimensionality reduction techniques contribute to the 

development of more efficient and scalable predictive models, as seen in studies by [29] and 

[28]. 

Overall, the integration of meticulous data cleaning, strategic feature engineering, and 

advanced dimensionality reduction techniques consistently correlates with higher model 

accuracy across the studies. Employing these methods effectively ensures that the data used 

for model training is robust, relevant, and manageable, leading to more reliable and precise 

outcomes. In conclusion, optimizing data preprocessing is crucial for accurate and efficient 

water potability prediction, especially in settings with limited computational resources. This 

research contributes to making predictive modelling more accessible and applicable in diverse 

contexts, ensuring reliable and precise outcomes for water potability assessment. 

5.2. Review in relation to the study objectives  

Table 6 presents the contribution of research papers reviewed that mostly contribute to the 

research questions of the research study as presented in section 1.2 and Figure 6 presents the 

histogram of most papers contributing to the research questions.  

Table 6:Research papers reviewed that mostly contribute to the research questions. 
Objective Study Key Contributions 

How does data cleaning impact the reliability 

and accuracy of machine learning models for 

water potability prediction? 

[1] Importance of understanding contaminants 

for data preprocessing. 

[8] Clean data for precise assessments protecting 

vulnerable populations. 

[11] Role of software engineering in maintaining 

clean datasets. 

[22] Various data cleaning techniques and their 

impact on prediction models. 

[25] Addressing the gap in water quality analysis 

with clean data. 

[30] Vigilance in data cleaning for reliable human 

consumption analysis. 

How does feature engineering contribute to 

improving the discriminative power of water 

potability datasets and enhance model 

interpretability? 

[3] Feature engineering's role in improving 

assessment accuracy. 

[6] AI to process electronic nose data, enhancing 

feature extraction for contaminant detection. 

[5] Optimized sensor placement using 

engineered features. 
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[10] Capillary electrophoresis evaluation with 

engineered features for better monitoring. 

[12] Non-target analysis application, highlighting 

feature engineering's role in complex data 

handling. 

[23] Machine learning techniques that rely on 

effective feature engineering for water 

infrastructure integrity. 

[28] Insights into wastewater treatment processes 

improved by feature engineering. 

[29] Application of clustering for condition-based 

maintenance highlighting feature 

engineering. 

[29] Review of clustering applications for 

maintenance processes emphasizing feature 

extraction. 

How do dimensionality reduction methods 

manage high-dimensional data while preserving 

essential information for accurate model 

predictions? 

[2] Deep learning benefiting from 

dimensionality reduction for precise water 

quality management. 

[9] Enhanced real-time monitoring capabilities 

through dimensionality reduction. 

[13] Continuous monitoring systems leveraging 

reduced dimensions for better accuracy. 

[14] Nanosensors benefiting from reduced data 

complexity for real-time analysis. 

[15] IoT integration with reduced data dimensions 

for smart water quality monitoring. 

[16] Real-time monitoring improvements through 

effective dimensionality reduction. 

[21] Portable biological spectroscopy enhanced 

by dimensionality reduction techniques. 

[26] IoT innovations utilizing dimensionality 

reduction for efficient water quality 

monitoring. 

 

Figure 6:Histogram of papers contributing mostly to the research questions. 
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5.3. Implications for practice and policy. 

The reviewed papers on Table 7 suggest several practical and policy implications to enhance 

water quality monitoring and treatment. For practice, there is an emphasis on adopting 

advanced technologies, integrating data-driven methodologies, and ensuring comprehensive 

real-time monitoring. Policymakers are encouraged to establish regulations and standards that 

promote these advanced practices, provide funding for research and development, and support 

the integration of health and environmental data. These measures aim to improve water quality 

management, ensure sustainable reclamation practices, and enhance the safety and reliability 

of potable water supplies. 

Table 7:Several practical and policy implications to enhance water quality monitoring and 

treatment. 
Paper Implications for Practice Implications for Policy 

[9] • Implement systematic approaches for 

reclamation of mining-degraded areas. 

• Use advanced technologies and best 

practices for effective reclamation. 

• Develop and enforce regulations for 

reclamation of mining sites. 

• Provide incentives for adopting 

sustainable reclamation practices. 

[28] • Employ data-driven methodologies for 

treating sulfur-containing wastewater. 

• Integrate machine learning models to 

optimize treatment processes. 

• Establish guidelines for using data 

analytics in wastewater treatment. 

• Support research in advanced data-

driven treatment technologies. 

[31] • Standardize clustering methodologies for 

condition-based maintenance. 

• Develop adaptive algorithms for 

managing time-varying processes. 

• Create policies promoting the use of 

advanced clustering techniques in 

maintenance. 

• Fund research for developing 

adaptive maintenance technologies. 

[30] • Integrate surveillance data with health 

outcomes to improve water quality monitoring. 

• Implement real-time monitoring 

technologies for timely interventions. 

• Formulate policies that require the 

integration of health data with water quality 

monitoring. 

• Provide funding for the development 

of real-time monitoring systems. 

[4] • Use electronic nose systems for real-time 

monitoring of potable water quality. 

• Conduct extensive field trials to validate 

technology. 

• Establish standards for the 

deployment of electronic nose systems. 

• Support policies that fund field trials 

and real-world applications. 

[1] • Focus on removing emerging 

contaminants in water purification processes. 

• Conduct socio-economic analyses of 

purification technologies. 

• Develop regulations addressing 

emerging contaminants. 

• Provide economic incentives for 

advanced water purification technologies. 

[5] • Develop dynamic methodologies for 

placing water monitoring stations. 

• Utilize real-time data and predictive 

analytics for contamination detection. 

• Formulate policies for adaptive 

placement of monitoring stations. 

• Encourage the use of predictive 

analytics in water quality management. 

[6] • Use interpretable models for monitoring 

cyanobacteria in potable water. 

• Validate models extensively in real-world 

settings. 

• Establish guidelines for the use of 

black-box and interpretable models in water 

monitoring. 

• Support policies that fund real-world 

validation studies. 

[7] • Integrate multiple intelligent techniques 

for comprehensive water quality monitoring. 

• Develop policies encouraging the 

integration of various intelligent monitoring 

techniques. 
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• Transition experimental techniques to 

practical applications. 

• Provide funding for the practical 

implementation of intelligent monitoring 

systems. 

5.4. Final thoughts on the potential of AI in enhancing water potability. 

AI has the potential to transform the water industry, enhancing the quality and safety of potable 

water through advanced monitoring, data analysis, and optimization techniques. This by 

addressing the challenges and fostering collaboration between technologists, policymakers, 

and water management authorities, AI can play a pivotal role in ensuring safe and reliable 

drinking water for all. The potential of AI in enhancing water potability, as evidenced by the 

papers provided, is substantial and multifaceted. Here are the key insights and detailed reasons 

from the papers presented in Table 8: 

Table 8:Key insights and detailed reasons from the reviewed papers 
Paper Detailed Reasons  

[1] This paper discusses the nature and purification of potable water, emphasizing traditional methods. 

While it does not focus on AI directly, the foundational understanding of water contaminants and 

purification processes provides a baseline for integrating advanced AI-driven methods for more efficient 

and accurate water purification. 

[2] This review highlights the state-of-the-art applications of deep learning in water quality management. 

AI techniques, particularly deep learning, offer significant advancements in monitoring and predicting 

water quality parameters. They enhance the accuracy of detecting contaminants and predicting future 

water quality issues, enabling proactive management and intervention. 

[3] The systematic literature analysis on AI for surface water quality monitoring and assessment 

demonstrates that AI algorithms, including machine learning and neural networks, improve the precision 

of water quality assessment. These methods can analyze complex data sets from various sensors to 

provide real-time monitoring and early detection of pollution events. 

[4] This study introduces an electronic nose system for monitoring potable water quality. AI is used to 

process the data from the electronic nose, which mimics the human olfactory system. The AI-driven 

system can detect and identify different water contaminants, providing a rapid and reliable method for 

continuous water quality monitoring. 

[5] This paper focuses on methodologies for locating monitoring stations to detect contamination in potable 

water distribution systems. AI can enhance these methodologies by optimizing the placement of sensors 

and predicting potential contamination points based on historical and real-time data. 

[6] The study applies black-box modeling to electronic nose data for monitoring cyanobacteria in potable 

water. AI, through system identification techniques, helps in understanding and predicting the behavior 

of water quality parameters influenced by cyanobacteria, leading to better management strategies 

[7] A survey on intelligent techniques for potable water quality monitoring shows that AI techniques, such 

as machine learning and IoT (Internet of Things), significantly improve the detection, prediction, and 

management of water quality. AI systems can handle large volumes of data from diverse sources, 

providing comprehensive insights into water quality. 

[8] The study on potable water quality monitoring in primary schools in Bangladesh highlights the health 

risks associated with poor water quality. AI-driven analysis can enhance the monitoring and mitigation 

strategies by providing accurate and timely assessments, thus protecting vulnerable populations 

[9] This paper presents a near real-time monitoring system for N-nitrosodimethylamine in potable water 

using advanced chromatography techniques. AI algorithms can enhance the data analysis process, 

improving the speed and accuracy of contaminant detection. 

[10] The evaluation of capillary electrophoresis for monitoring ionic contaminants in space missions shows 

the potential for AI to improve the analysis and management of water quality in extreme environments, 

ensuring safe drinking water for astronauts. 

[11] AI applications in software engineering are discussed, highlighting the potential for integrating AI 

techniques in water quality monitoring systems to enhance their efficiency and accuracy. 
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[12] The application of non-target analysis with LC-HRMS for monitoring water quality illustrates how AI 

can process complex analytical data to identify and quantify a wide range of contaminants, ensuring 

comprehensive water quality assessment. 

[13] The study on continuous active monitoring to identify cross-connections between potable water and 

effluent systems emphasizes the role of AI in providing continuous, real-time monitoring and alerting 

systems to prevent contamination. 

[14] The use of nanosensors for water quality monitoring demonstrates how AI can enhance the sensitivity 

and specificity of these sensors, providing precise and real-time water quality data. 

[15] The paper on IoT-based smart water quality monitoring outlines the integration of AI with IoT devices 

to provide real-time, accurate water quality data, improving domestic water quality management. 

[16] The use of chemical sensors for real-time water quality monitoring showcases the role of AI in 

processing sensor data, leading to timely and accurate water quality assessments. 

Overall, these papers collectively highlight that AI, through various techniques such as 

machine learning, deep learning, and IoT integration, significantly enhances the monitoring, 

assessment, and management of potable water quality. AI provides real-time, accurate, and 

comprehensive insights, enabling proactive measures to ensure safe and clean drinking water. 
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