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1. Introduction 

In general topology, the concepts of compactness and their characteristics are extensively 

studied. David A. Rose and Hamlett T.R. [11] introduced the concept of one point I 

compactification in 1992. The concept of Minuscule topology was first developed in 2023 

by R. Alagar et.cl [18]. It was described as the symmetric difference, with respect to an 

equivalence relation on it, of a subset of the universe, along with approximations. A novel 

family of functions known as Ms -top.spaces and related characterizations for continuous 

functions were already investigated . The notions of minuscule compactness and one-point 

compactification are represented in terms of Minuscule compactness and M-one-point 

compactification, have been introduced in this study. 

 

2. Preliminary 

Let us discuss the definitions that will be helpful in the sequel. 

Definition 2.1 (18). Suppose a non-empty finite set U containing components known as the 

universe. Let E be an equivalence relation on U, commonly referred to as the 

indiscernibility relation. After that, the set U is divided into disjoint equivalence classes. 
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Elements in the same equivalence class are seen as indiscernible from other elements. The 

pair (U, E) is often referred to as the approximation space in academic works. Let H be 

a subset of U. 

1. The lower approximation of the set H with respect to the relation E refers to the 

collection of objects that can be unambiguously categorized as belonging to H with respect 

to the conditions defined by E. This lower approximation can be expressed as LE(H). That 

is, 

 

   

where E(H) denotes the equivalence class determined by H. 

2. The lower minimal approximation: 

 

 

3. The upper approximation of H with regard to E is the set of all objects that can be 

classified as H with respect to E. and it is highlighted by UE(H). That is, 

 

 

4. The upper minimal approximation: 

 

 

5. Let LE(H) and UEΛ(H) be two sets. The symmetric difference of the sets LE(H) 

and UEΛ(H) is LE(H)∆UEΛ(H) and it is highlighted by, 

 

 

 

 Definition 2.2.[18] Let U be the universe, E be an equivalence relation U and 

E(H) = {U, Φ, LE(H), UE(H), L E Λ(H),U EΛ(H), LE(H)∇ UEך 
Λ(H)}. Here LEΛ(H)  

is always be Φ. Φ is always within the topology. So, LEΛ(H) and it is ignored. 

Then the topology վE(H) = {U, Φ, LE(H), UE(H), UE Λ(H), LE(H)∇ UEΛ(H)} where 

  H ⊆ E. վE(H) satisfies the subsequent axioms: 

1. U and Φ ∈ վE(H). 

2. The union of the elements of any sub collection of վE(H) is in վE(H). 
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3. The intersection of all elements of any finite sub collection of վE(H) is in վE(H). That 

is, վE(H) is a topology on U called the Minuscule topology on U with respect to H. We call 

(U, վE(H)) is a Ms -top.space it is highlighted by Ms -top.space . The elements of վE(H) 

are called Minuscule opensets and it is denoted by Mso. 

Definition 2.3. If (U, վE(H)) is a Ms -top.space ,where H ⊆ U and if A ⊆ U , The 

Minuscule  interior of the set A is M int(A), which is the union of all M -open 

subsets of A. The concept of the set M -closure is defined as the intersection of all 

Msc sets that contain A. The M -closure is represented by Mcl(A). 

Properties:[18] If (U, E) is an approximation space and H, W ⊆ U, then 

1. LE(H) ⊆ H ⊆ UE(H). 

2. LE(ϕ) = UE(ϕ) = ϕ and LE(H) = UE(H) = U 

3. L E Λ(H) = ϕ 

4. UE(H ∩ W) ⊆ UE(H) ∩ UE(W) 

5. UE
Λ(H ∪ W) ⊆ UE

Λ(H) ∪ UE
Λ(W) 

6. LE(H ∩ W) = LE(H) ∩ LE(W) 

7. UE(UE
Λ(H)) = LE(U E Λ(H)) = U E Λ(H). 

8. UE(H ∪ W) = UE(H) ∪ UE(W) 

9. L E Λ(H) ∩ UE(H) = ϕ 

10. LE(H ∪ W) ⊇ LE(H) ∪ LE(W) 

11. UE Λ(H ∩ W) = UE Λ(H) ∩ UE Λ(W) 

12. LE(H) ⊆ LE(W) and UE(H) ⊆ UE(W) whenever H ⊆ W 

13. L E Λ(H)∇UE(H) = UE(H). 

 

Example 2.4. Let U = {ϖax, ϖbx, ϖcx, ϖdx} with U/E = {{ϖax}, {ϖbx, ϖcx}, {ϖdx}} 

Let H = {ϖax, ϖcx} ⊆ U Then, վE(H) = {U, ϕ, {ϖax}, {ϖax, ϖbx, ϖcx}, {ϖbx}, {ϖax, ϖbx}} 

and the M−closed sets in U are U, ϕ, {ϖbx, ϖcx, ϖdx}, {ϖdx}, {ϖax, ϖcx, ϖdx}, and {ϖcx, ϖdx}. 

 

3. Minuscule connectedness 

Definition 3.1. A Ms -top.space (U, վE(H)) is stated to be minuscule connected if (U, վE(H)) 

cannot be expressed as a disjoint union of two ≠ ϕ Mso . A subset of (U, վE(H)) is minuscule 

connected as a subspace and it is highlighted as Ms -contd. 

A subset is said to be minuscule discontd iff it is not Ms -contd. 
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Example 3.2. Let U = {ϖa, ϖb, ϖc, ϖd}, X = {ϖa, ϖd} ⊂ U and U/R = 

{{ϖa}, {ϖb}, {ϖc}, {ϖd}} with Ms -top.space վE(H) = {U, ϕ, {ϖa, ϖd}}} then it 

is Ms -contd. 

Theorem 3.3. For a Ms -top.space (U, վE(H)) the subsequent are equivalent 

(i) (U, վE(H)) is Ms -contd 

(ii) (U, վE(H)) and ϕ are the only subsets of U which are both Mso and minuscule closed 

it is marked as Msc. 

(iii) Every map that is minuscule continuous it is highlighted as Ms -conts (U, վE(H))  

and has two points or more in discrete space (V, վ′E(I)) is a constant map. 

Proof. (1) ⇒ (2) Let G be a Mso and Msc subset of (U, վE(H)). Then Z − G is also 

both Mso and Msc. Then Z = G ∪ (Z − G) a disjoint union of two ≠    ϕ Mso which 

contradicts the fact that (U, վE(H)) is Ms -contd. Hence G= ϕ or Z. 

(2) ⇒ (1) suppose that Z = J∪K where J and K are disjoint ≠ ϕ Mso subsets of (U, 

վE(H)). Since J = Z − K, then J is both Mso and Msc. 

By assumption J = ϕ or Z, which is a contradiction. Hence (U, վE(H)) is Ms - 

contd. 

 (2) ⇒ (3) Let φ: (U, վE(H)) → (V, վ′E(I)) be a Ms -conts map where (V, վ′E(I)) 

is discrete space with atleast two points. Then φ({ý}) is Msc and Mso for each ý ∈ Y. 

That is, (U, վE(H)) is covered by Msc and Mso covering {φ ({ý}): ý ∈ Y}. By assumption, φ
 

(ý) = ϕorZ for each ý ∈ Y. If φ−1 
(ý) = ϕ for each ý ∈ Y. Then φ fails to be map. 

Therefore ∃ atleast one point φ−1 
({ý}) = ϕ, ý ∈ Y such that, φ−1

 ({ý}) = Z. It is evident 

from this φ is a constant map. 

(3) ⇒ (2) Let G be both Mso and Msc in (U, վE(H)).  Suppose G ≠ ϕ.  Let 

φ: (U, վE(H)) → (V, վ′E(I)) be a Ms -conts map defined by φ(G) = {a} and φ(Z − G) 

= {b} where a≠  b and a, b ∈ Y . By assumption, φ is constant so G = Z. 

Theorem 3.4. If φ: (U, վE(H)) → (V, վ′E(I)) is Ms -conts surjection and Z is 

Ms -contd, then Y is Ms -contd. 

Proof. Suppose that Y is not Ms -contd. Let Y = J ∪ K where J and K are 

disjoint ≠ ϕ open sets in (V, վ′E(I)). Since φ is Ms -conts and onto. Z = φ−1
(J) ∪ φ−1

 

(K) where φ−1
 (J) and φ−1

 (K) are disjoint ≠ ϕ Mso subsets in (U, վE(H)). In contrary 

to it, this (U, վE(H)) is Ms -contd. Hence (V, վ′R(I )) is Ms -contd. 

Theorem 3.5. If φ is Ms -conts mappings of a Ms -contd space (U, վE(H)) onto an arbitrary 
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top.space (V, վ′E(I)) is Ms -contd. 

Proof. Let (V, վ′E(I)) be a Ms -contd. Then ∃ a ≠ ϕ proper subset G of (V, վ′E(I)) 

which is both Mso and Msc in (V, վ′E(I)). Since φ is Ms -conts and onto 

(V, վ′E(I)), φ−1 (G) is ≠ ϕ proper subset of (U, վ E(H)) which is both Mso and 

Msc in (U, վE(H)) and therefore, (U, վE(H)) is discontd. which is a contradiction. 

Hence (V, վ′E(I)) must be contd. 

Theorem 3.6. A Ms -top.space (U, վE(H)) is Ms -contd iff every ≠ ϕ proper subset of U 

has a ≠ ϕ frontier. 

Proof. Let every ≠ ϕ proper subset of (U, վE(H)) have a ≠ ϕ frontier. To show that U is 

Ms -contd. If, U is Ms -contd. Then ∃ ≠ ϕ disjoint sets I and K both are Mso and 

Msc in U such that U = I ∪ K. Therefore I ′ = I 0 = Ī but Fr(I ) = Ī − I 0 . Hence Fr(I 

) = ϕ this contradicts our hypothesis. Hence U must be Ms -contd. Conversely, Let U 

be contd, if ∃ a≠ ϕ proper subset D of U such that Fr(D) = ϕ. Now Ḏ = D0 ∪ Fr(D) = D 

∪ Fr(Ḏ). Thus, every proper subset of U must have a ≠ ϕ frontier. 

 

4. Minuscule Compactness 

Definition 4.1. A collection {Qj: j ∈ J} of Mso sets in a Ms -top.space 

(U, վE(H)) is called a Mso cover of subset B of U if B ⊂ {Qj: j ∈ J} holds. 

Definition 4.2. A subset B of a Ms -top.space (U, վE(H)) is stated to be Ms compact relative 

to (U, վE(H)), if for every collections {Qj: j∈ J} of Mso subsets of (U, վE(H)) such that B 

⊂ {Qj : j ∈ J} ∃ a finite subset I0 of I such that B ⊂ {Qj : j ∈ J0} . 

Definition 4.3. A subset B of a Ms -top.space (U, վE(H)) is said to be minuscule compact 

and it is highlighted as Ms -compt. if B is Ms -compt. as a subspace of (U, վE(H)) . 

Theorem 4.4. A Msc subset of Ms -compt. space (U, վE(H)) is Ms -compt. relative to (U, 

վE(H)). 

Proof. Let Q be a Ms -compt. subset of a Ms -top.space (U, վE(H)). Then Qc is Mso 

in (U, վE(H)). let S = {Qj: j ∈ J} be an Mso cover of Q by Mso subsets in (U, վE(H)). 

Then S∗ = S ∪ Qc is a Mso cover of (U, վE(H)). That is U = (∪ j∈J Qj) ∪ Qc. By 

hypothesis (U, վE(H)) is Ms -compt. and hence S∗ is reducible to a finite sub cover of (U, 

վE(H)) say U = Qj1 ∪ Qj2 ∪……∪ Qjn∪Qc, Qjk ∈ S∗. Thus, a Mso cover S of Q contains 

a finite sub cover. Hence Q is Ms -compt. relative to (U, վE(H)). 

Theorem 4.5. A Ms -top.space (U, վE(H)) is Ms -compt. iff every family of Msc 

sets of (U, վE(H)) having finite intersection property has a ≠ ϕ intersection. 

Theorem 4.6. The image of a Ms -compt. space under a Ms -conts map is Ms - compt. 

Proof. Let ϕ: (U, վE(H)) ⇒ (V, վE(Q)) be a Ms -conts map from a Ms -compt. space (U, 
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վE(H)) onto a Ms -top.space (V, վE(Q)). Let {Qj: j ∈ J} be an Mso cover of (V, վE(Q)).  

Then {h−1(Qj): j ∈ j} is a Mso cover of (U, վE(H)). 

Since h is Ms -conts. As (U, վE(H)) is Ms -compt., the Mso cover {h−1(Qj): j ∈ J} of 

(U, վE(H)) has a finite sub cover {h−1(Qj): j = 1, 2, 3...n} . There- fore U =∪ j∈J 

h−1(Qj).  Then h(X)=∪ j∈J Qj, that is V=∪ j∈J(Qj).  Thus, {Q1, Q2, ...Qn} is a finite 

sub cover of {Qj: j ∈ J} for (V, վE(Q)).  Hence, (V, վE(Q)) is Ms -compt. 

Definition 4.7. A Ms -top.space (U, վE(H)) is countably Ms -compt. if every countable Mso 

cover of (U, վE(H)) has a finite sub cover. 

Theorem 4.8. Let (U, վE(H)) be a Ms -top.space and (V, վE(Q)) be a M − Hausdroff. If 

h: (U, վE(H)) → (V, վE(Q)) is Ms -conts injective, then (U, վE(H)) is M − Hausdroff. 

Proof. Let H and Y be any two distinct points of (U, վE(H)). Then h(H) and h(y) are 

distinct points of (V, վE(Q)), because h is injective. Since (V, վE(Q)) is M − Hausdroff, 

there are disjoint Mso sets J and K in (V, վE(Q)) containing h(H) and h(Y) resp. Since h 

is Ms -conts and J∩ K = ϕ, we have h−1(J) and h−1(K) are disjoint Mso sets in (U, վE(H)) 

such that x ∈ h−1(J ) and y ∈ h−1(K). 

Hence (U, վE(H)) is M − Hausdroff. 

Theorem 4.9. If h(U, վE(H)) → (V, վE(Q)) is Ms -conts and bijective and if U 

is Ms -compt. and V is Hausdroff , then h is a M -homeomorphism. 

Proof. It is obvious from the theorem 4.7&4.8. K is Ms -compt. Since V is 

M − Hausdroff space implies that h(Q) is Msc in (V, վR
′(Y )) . 

Definition 4.10. A Ms -top.space (U, վE(H)) is stated to be Ms −lindelof space if every 

Mso cover of (U, վE(H)) has a countable sub cover. 

Theorem 4.11. Every Ms -compt. space is a Ms − lindelof space.  

Proof. Let (U, վE(H)) be Ms -compt. Let {Qj: j ∈ J} be Mso cover of (U, վE(H)). 

Then {Qj: j ∈ J} has a finite sub cover {Qj: j = 1, 2, ...n}, since (U, վE(H)) is Ms -

compt. Since every finite sub cover is always a countable sub cover and therefore, {Qj: j 

= 1, 2, ...n}, is countable sub cover of {Qj: j ∈ J} for (U, վE(H)). Hence (U, վE(H)) is Ms 

-lindelof space. 

Theorem 4.12. The image of Ms − lindelof space under a Ms -conts map is 

Ms -compt. 

Proof. h: (U, վE(H)) → (V, վE(Q)) be a Ms -conts map from a Ms − lindelof space (U, 

վE(H)) onto a Ms -top.space (V, վE(Q)). Let {Qj: j ∈ J} be an Mso cover of (V, վE(Q)), 

then {h−1(Qj): j ∈ J} be an Mso cover of (U, վE(H)), since h is Ms -conts. As (U, վE(H)) 

is Ms−lindelof, the Mso cover {h−1(Q j): j ∈ J} of (U, վE(H)) has a countable sub cover 

{h−1(Qj,) j = 1, 2, ...n}. Therefore H =∪ j∈Jh−1(Qj) which implies f (U)=V=∪ j∈JQj, 

that is {Q1, Q2, Q3, … … … Qn} is a countable sub family of {Qj: j ∈ J} for (V, 

վE(Q)). Hence (V, վE(Q)) is Ms − lindelof space. 
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Theorem 4.13. If (U, վE(H)) is Ms − lindelof space and Countably Ms -compt. space, then 

(V, վE) is Ms -compt.  

Proof. Suppose, (U, վE(H)) is Ms − lindelof and countably Ms -compt. space. Let {Qj: 

j ∈ I} be an Mso cover of (U, վE(H)). Since (U, վE(H)) is Ms − lindelof {Qj: j ∈ J} 

has a countable sub cover {Qin: n ∈ N}. Therefore 

{Qin: n ∈ N} is a countable sub cover of (U, վE(H)) and {Qin: n ∈ N} is subfamily of {Qj: 

j ∈ J} and so {Qin: n ∈ N} is a countable Mso cover of (U, վE(H)). Again since (U, վE(H)) 

is countably Ms -compt., {Qin: n ∈ N} has a finite sub cover {Qjk: k = 1, 2, ...n}. Therefore 

{Qjk: k = 1, 2, ...n} is a finite sub cover of {Qj: j ∈ J} for (U, վE(H)). Hence (U, վE(H)) is 

Ms -compt. space.   

Theorem 4.14. A Ms -top.space (U, վE(H)) is Ms -compt. iff every basic Mso 

cover of (U, վE(H)) has a finite sub cover. 

Proof. Let (U, վE(H)) be Ms -compt. then every Mso cover of (U, վE(H)) have a finite 

sub cover. Conversely, Suppose that every basic Mso cover of (U, վE(H)) has a finite sub 

cover and let C = {Gδ: δ ∈ Ψ} be any Mso cover of (U, վE(H)). If K = {Dγ: γ ∈ ∆} be any 

Mso base for (U, վE(H)), then, every Gδ represents the union of a subset of K members, 

and the total of all these members of K is clearly 

a basic Mso cover of (U, վE(H)) By hypothesis this collection of K members has a finite 

sub cover, {Dδi: i = 1, 2...n} for each Dδi in this finite sub cover, we can select a Gδ from 

C. Such that Dγi ⊂ Gδi. It follows that the finite sub collection 

{Gδi: i = 1, 2, 3...n}. which arises in this way is a sub cover of C. Hence (U, վE(H)) 

is Ms -compt. 

 

5. Minuscule One-point Compactification 

Definition 5.1. A Ms -top.space (U, վE(H)) , x ∈ H we denote it by վE = {v ∈ 

վE: x ∈ U}. A space J ⊆ H is called a neighbourhood of x if ∃ U ∈ վE such that x ∈ U ⊆ A. 

Definition 5.2. A M - Hausdroff space (U, վE(H)) is stated to be locally Ms - compt. iff (U, 

վE(H)) is locally M - H closed abbreviated as MHC. 

Definition 5.3. A Ms -top.space (U, վE(H)) is stated to be M − H closed iff it is 

M − H and quasi M − H closed (QMHC). 

Definition 5.4. A Ms -top.space (U, վE(H)) is claimed as strongly locally Ms - compt. if 

each point in H has a Ms -compt. neighbourhood. 

Definition 5.5. A Ms -top.space (U, վE(H)) is stated to be quasi M - H closed abbreviated as 

QMHC iff A finite subcollection of each open cover of H covers a dense subset of H . 

Definition 5.6. A M - Hausdroff space (U, վE(H)) is considered to be locally M - H closed 

if each point in H has a neighbourhood which is M - H closed on a subspace of (U, 
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վE(H)). 

Definition 5.7. A Ms -top.space (G, Ω) is considered to be a compactification of 

(H, վ) iff 

1. H ⊆ G, 

2. վ = Ω|H = {W ∩ H: W ∈ Ω}, and 

3. (G, Ω) is Ms -compt. 

If, in addition, we have 

4.   MClΩ(H) = G, 

Then (G, Ω) is said to be a Ms -compt. extension of (H, վ). Furthermore, if G − H= {r}, 

 then the M - top.space ( G, Ω ) is said to be a one-point compactification (or Ms -compt. 

extension) of (H, վ). 

Example 5.8. Let Y = {ϖa1, ϖa2, ϖa3, ϖa4}, X = {ϖa1, ϖa2, ϖa3} with R = 

{{ϖa1}, {ϖa2, ϖa3, ϖa4}}. and U = {ϖa1, ϖa2}, Then վ(H) = {X, ϕ, {ϖa1}, {ϖa1, ϖa3}, {ϖa3}}  

and Ω(Y ) = {Y, ϕ{ϖa1}, {ϖa1, ϖa3, ϖa4}, {ϖa3, ϖ a4}. hence the M - closed sets in Y are  

Y, ϕ, {ϖa2, ϖa3, ϖa4}, {ϖa2}, {ϖa1, ϖa2}. MClΩ(H) = G. Furthermore, G - H = {ϖa4},  

then the M - top.space (G, Ω) is said to be a one-point compactification of (H, վ). 

Example 5.9. Let Y = {ϖa1, ϖa2, ϖa3, ϖa4, ϖa5}, X = {ϖa1, ϖa2, ϖa3} with 

R = {{ϖa1}, {ϖa2, ϖa3, ϖa4, ϖa5}}. and U = {ϖa1, ϖa2}, 

Then վ(H) = {X, ϕ, {ϖa1}, {ϖa1, ϖa3}, {ϖa3}} and Ω(Y ) = {Y, ϕ{ϖa1}, {ϖa1, ϖa3, ϖa4, ϖa5}, {ϖa3, 

ϖa4, ϖa5}.hence the M - closed sets in Y are Y, ϕ, {ϖa2, ϖa3, ϖa4, a5}, {ϖa2}, {ϖa1, ϖa2} 

.MClΩ(H) = G. but, G - H = {ϖa4, a5}, Therefore, Clearly it is not a one-point 

compactification of (H, վ) . 

Theorem 5.10. If (G, Ω) is a Hausdroff one-point compactification of (H, վ), then we have 

the following: 

1. վ ⊆ Ω, 

2. (H, վ) is Hausdorff and strongly locally Ms -compt., and 

3. if G − H = {r} ∈ Ω, then (H, վ) is Ms -compt. 

Proof. (1) Since points are closed in (G, Ω), H ∈ Ω and hence Ω|H = վ ⊆ Ω. 

(2) Clearly (H, վ) is Hausdorff. If x ∈ H and G − H= {r}, then x ≠  r and there are 

disjoint Ω -opensets U and V with x ∈ U, r ∈ V. Then U ⊆ ClΩ (U) = Cl r(U) ⊆ G − V 

⊆ H, so that (H, վ) is strongly locally Ms -compt. since closed subsets of Ms -compt. 

spaces are Ms -compt. 

(3) If G − H= {r} ∈ Ω, then H is Ms -compt.  since it is a closed subset of 
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Ms -compt. space (G, Ω). Thus, (H, Ω|H) = (H, վ) is Ms -compt. 

Theorem 5.11. For any space (H, վ), վΨ is a M - topology on HΨ and (HΨ, rΨ) 

is a one-point compactification of (H, վ). 

Proof. Clearly, (W ∩ H|W ∈ վΨ) = վ, so that if վΨ is a topology, վΨ|H = վ. Since 

finite unions of Ms -compt. sets are Ms -compt. and վ is closed under finite 

intersection, then վΨ is closed under finite intersection. Now, if ∅   ≠ Vγ ∈ A with 

each H − Vγ compt., then ∪({r} ∪ Vγ) = r∪ (∪ γ V γ)

 

∈ վΨ.  since ∪γ Vγ ∈ վ and H−(∪γ Vγ

 

)is 

Ms -compt., being a closed subset of an Ms -compt. set. Similarly, U ∪ (r) ∪ V ∈ rΨ if U, 

V ∈ վ and H − V is Ms -compt. Therefore, վΨ is closed 

under arbitrary union and it forms a topology. 

To see that (HΨ, վΨ) is Ms -compt., let W be an rΨ -open cover of HΨ.  If r ∈ W0 ∈ 

W, then W0 = {r} ∪ V for some V with V ∈ վ and H − V is Ms - compt. Since վΨ|H = վ, 

{W ∩ H|W ∈ W, and W ≠ W0} is a r-open cover of H − V.  Hence, there is a finite 

subset (W1, W2, ………., Wn ⊆ W) such that W1 ∩ H, … … …, Wn ∩ H is a finite M-cover 

of H − V. Thus, W0, W1, ………, Wn is a finite M-sub cover of W for HΨ. 

 We note that (HΨ, վΨ) is a Ms -compt. extension of (H, վ) iff (H, վ) is not 

  Ms -compt.  In any case, (HΨ, վΨ) is T1 iff (H, վ) is T1, since for every ideal 

M, finite and hence singleton subsets of H are always Ms -compt. At the remainder point 

r, the smallest T1 topology that can be generated for any one-point compactification of a 

T1 space (H, վ) is locally cofinite. 

Corollary 5.12. If (H, վ) has a M - Hausdorff one-point compactification iff 

(H, վ) is a strongly locally M -compt. Hausdorff space. 

Proof. Theorem 4.1, part (2), contains the necessity. It is sufficient to demonstrate (HΨ, 

վΨ) is Hausdroff. Since (H, վ) is Hausdorff, The only thing left to check is whether disjoint 

վΨ -open sets can distinguish each x ∈ H from r ∈ HΨ - H. Let K be a վ- closed M -

compt. neighbourhood of x ∈ H. Then x ∈ IntrK ∈ վΨ since վ ⊆ վΨ, and r ∈ HΨ - K ∈ 

վΨ. 

 

6. Conclusion 

This paper explains the concepts of M-Hausdroff space, strongly locally Ms com- pact M-

lindelof space, Minuscule compactness and M-One-point Compactifica- tion. It is planned 

to define a weaker version of open sets in the future, as well as in Ms -top.spaces. 
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